Two-point boundary value problem for a system of functional-differential equations with maxima

Двухточечная краевая задача для системы функцио

Authors

DOI:

https://doi.org/10.56143/ujmcs.v1i2.7

Keywords:

Boundary value problem, system of ordinary differential equations, parameterization method, necessary and sufficient conditions, existence and uniqueness of the solution.

Abstract

{This article considers the questions of two-point boundary value problem for a system
of first-order ordinary differential equations with maxima. The parametrization method is using. The convergence conditions are obtained and  the algorithms of solving are built. The necessary and sufficient coefficient conditions for the well-posedness of considered problem are established. The method of contracted mapping is used in the proof of unique solvability of functional-integral equations in the space $BD\big([0,\omega],\mathbb{R}^{n} \big)$.

Author Biographies

  • Tursun Yuldashev, Tashkent state transport university

    Address: Tashkent State Transport University, Dept. of Higher Mathematics, 100169, Tashkent, Uzbekistan.
    e-mail: tursun.k.yuldashev@gmail.com
    ORCID ID: https://orcid.org/0000-0002-9346-5362

  • Madina Tleubergenova, K.Zhubanov Aktobe Regional University

    Address: K. Zhubanov Aktobe Regional University, Debt. of Mathematics, Aktobe, Kazakhstan
    e-mail: madina_1970@mail.ru
    ORCID ID: https://orcid.org/0000-0002-5572-2305

  • A. K. Tankeyeva, K. Zhubanov Aktobe Regional University

    Address: K. Zhubanov Aktobe Regional University, Debt. of Mathematics, Aktobe, Kazakhstan
    e-mail: aigerimtankeyeva@gmail.com
    ORCID ID: https://orcid.org/0000-0002-3897-5909

  • Altynay Molybaikyzy, Kazakh National Women's Pedagogical University

    Address: Kazakh National Women’s Pedagogical University, Almaty, Kazakhstan
    e-mail: altynaimolybai@gmail.com
    ORCID ID: https://orcid.org/0009-0008-2452-5932

References

[1] Abramov, A. A.: On the transfer of boundary conditions for systems of ordinary linear differential equations (a variant of the dispersive method). USSR Computat. Math. and Math. Phys. 1 (3), 617–622 (1962).

[2] Agarwal, Ravi P.: Boundary value problems for higher order differential equations. World Scientific, Singapore, Philadelphia. (1986), 307 p.

[3] Agarwal, Ravi P., Gupta, R. C.: Essentials of ordinary differential equations. McGraw-Hill Book Co., Singapore, New York. (1991), 467 p.

[4] Agarwal, Ravi P.: Focal boundary value problems for differential and difference equations. Kluwer Academic Publishers, Dordrecht. (1998), 289 p.

[5] Agarwal, Ravi P., Grace, S. R., O’Regan, D.: Oscillation theory for second order Linear differential equations. Kluwer Academic Publishers, The Netherlands. (2002), 672.

[6] Agarwal, Ravi P., Lakshmikantham, V.: Uniqueness and nonuniqueness criteria for ordinary differential equations. World Scientific, Singapore. (1993), 312.

[7] Agarwal, Ravi P., O’Regan, D.: An introduction to ordinary differential equations. Springer Science+Business Media LLC, New York. (2008), ix+314.

[8] Dzhumabayev, D. S.: Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. USSR Computat. Math. and Math. Phys. 29 (1), 34–46 (1989).

[9] Keller, H.: Numerical methods for two-point boundary value problems. Walthan, Blaisdell. (1968), 184.

[10] Кигурадзе И. Т.: Краевые задачи для систем обыкновенных дифференциальных уравнений. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. ВИНИТИ АН СССР, Москва. (1987), 3–103.

[11] Roberts, S. M., Shipman, J. S.: Two-point boundary-value problems: Shooting methods. Elsevier, New York. (1972), 269.

[12] Ronto, M., Samoilenko, A. M.: Numerical-analytic methods for investigation of periodic solutions. World Scientific, Singapore, New Jersey, London, Hong Kong. (2000), 453.

[13] Yuldashev, T. K.: Periodic solutions for an impulsive system of nonlinear differential equations with maxima. Nanosystems: Physics. Chemistry. Mathematics. 13 (2), 135–141 (2022). https://doi.org/10.17586/2220-8054-2022-13-2-135-141

[14] Yuldashev, T. K.: Periodic solutions for an impulsive system of integro-differential equations with maxima. Вестник Самарского государственного технического университета. Серия: Физико-математические науки. 26 (2), 368–379 (2022). https://doi.org/10.14498/vsgtu1917

[15] Yuldashev, T. K., Abduvahobov, T. A.: On a (ω, c)− periodic solution for an impulsive system of second-order differential equation with product of two nonlinear functions and mixed maxima. Uzbekistan Journal of Mathematics and Computer Science. 1 (1), 20–32 (2025). https://doi.org/10.56143/ujmcs.112032

[16] Yuldashev, T. K. Fayziyev, A. K.: Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector. Lobachevskii Journal of Mathematics. 43 (8), 2332–2340 (2022). https://doi.org/10.1134/S1995080222110312

[17] Yuldashev, T. K., Fayziyev, A. K.: On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima. Nanosystems: Physics. Chemistry. Mathematics. 13 (1), 36–44 (2022). https://doi.org/10.17586/2220-8054-2022-13-1-36-44

[18] Yuldashev, T. K., Fayziyev, A. K.: Inverse problem for a second order impulsive system of integro-differential equations with two redefinition vectors and mixed maxima. Nanosystems: Physics. Chemistry. Mathematics. 14 (1), 13–21 (2023). https://doi.org/10.17586/2220-8054-2023-14-1-13-21

[19] Yuldashev, T. K., Apakov, Y. P., Zhuraev, A. K.: Boundary value problem for third order partial integro-differential equation with a degenerate kernel. Lobachevskii Journal of Mathematics. 42 (6), 1317–1327. (2021)

[20] Asanova, A. T.: On a nonlocal boundary-value problem for systems of impulsive hyperbolic equations. Ukrainian Mathematical Journal. 65 (3), 349–365 (2013). https://doi.org/10.1007/s11253-013-0782-x.

[21] Assanova, A. T.: Solvability of a nonlocal problem for a hyperbolic equation with integral conditions. Electronic Journal of Differential Equations. 2017 (170), 1–12 (2017).

[22] Assanova, A. T.: An integral-boundary value problem for a partial differential equation of second order. Turkish Journal of Mathematics. 43 (4), 1967–1978 (2019). https://doi.org/10.3906/mat-1903-111.

[23] Assanova, A. T., Bakirova, E. A., Kadirbayeva, Z. M., Uteshova, R. E.: A computational method for solving a problem with parameter for linear systems of integro-differential equations. Computational and Applied Mathematics. 39 (3), Art.no. 248 (2020). https://doi.org/10.1007/s40314-020-01298-1.

[24] Assanova, A. T.: On the solvability of nonlocal problem for the system of Sobolev-type differential equations with integral condition. Georgian Mathematical Journal. 28 (1), 49–57 (2021). https://doi.org/10.1515/gmj-2019-2011.

[25] Assanova, A. T.: A generalized integral problem for a system of hyperbolic equations and its applications. Hacettepe Journal of Mathematics and Statistics. 52 (6), 1513–1532 (2023). https://doi.org/10.15672/hujms.1094454.

[26] Assanova, A. T., Mynbayeva, S. T.: New general solution to a quasilinear Fredholm integro-differential equation and its application. Lobachevski Journal of Mathematics 44 (10), 4231–4239 (2023). https://doi.org/10.1134/S1995080223100062.

[27] Dzhumabaev, D. S.: On one approach to solve the linear boundary value problems for Fredholm integrodifferential equations. J. of Comp. and Applied Math. 294, 342–357 (2016).

[28] Dzhumabaev, D. S.: Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. USSR Comput. Math. Math. Phys. 29 (1), 34–46 (1989).

[29] Dzhumabaev, D. S., Dzhumabaev, A. D., Assanova, A. T.: Properties of a partial Fredholm integro-differential equations with nonlocal condition and algorithms. Mediterranean Journal of Mathematics 21 (6), Art. No. 169 (2024). https://doi.org/10.1007/s00009-024-02712-2.

[30] Tleulessova, A. B.: On the correct solvability of a two-point boundary value problem with impulsive action. Almaty Mat. Zhurn. 4 (3), 87–95 (2005).

[31] Tleulessova, A. B.: On the unique solvability of a two-point boundary value problem with impulsive action. Almaty, Mat. Zhurn. 4 (4), 93–102 (2004).

[32] Temesheva, S. M., Dzhumabaev, D. S., Kabdrakhova, S. S.: On one algorithm to find a solution to a linear two-point boundary value problem. Lobachevskii Journal of Mathematics. 42 (3), 606–612 (2021). https://doi.org/10.1134/S1995080221030173

[33] Yuldashev, T. K., Fayziyev, A. K.: Periodic solutions of impulsive system of equations with a nonlinear function under the sign of a second-order differential and maxima. Lobachevskii Journal of Mathematics. 46 (2), 658–671 (2025). https://doi.org/10.1134/S1995080225600256

Downloads

Published

2025-11-30

Issue

Section

Статьи

How to Cite

Two-point boundary value problem for a system of functional-differential equations with maxima: Двухточечная краевая задача для системы функцио. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 50-57. https://doi.org/10.56143/ujmcs.v1i2.7

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.