Двухточечная краевая задача для системы функционально-дифференциальных уравнений с максимумами

Двухточечная краевая задача для системы функцио

Авторы

DOI:

https://doi.org/10.56143/ujmcs.v1i2.7

Ключевые слова:

Краевая задача, система обыкновенных дифференциальных уравнений, метод параметризации, необходимые и достаточные условия, существование и единственность решения.

Аннотация

В данной статье рассматриваются вопросы краевой задачи с двухточечными граничными условиями для системы обыкновенных дифференциальных уравнений первого порядка с максимумами. Используется метод параметризации. Получены условия сходимости и построены алгоритмы решения. Установлены необходимые и достаточные условия на коэффициенты для корректности рассматриваемой задачи. В доказательстве однозначной разрешимости функционально-интегральных уравнений в пространстве $BD\big([0,\omega],\mathbb{R}^{n} \big)$ используется метод сжимающих отображений.

Биографии авторов

  • Т. К. Юлдашев, Tashkent State Transport University

    Address: Tashkent State Transport University, Dept. of Higher Mathematics, 100169, Tashkent, Uzbekistan.
    e-mail: tursun.k.yuldashev@gmail.com
    ORCID ID: https://orcid.org/0000-0002-9346-5362

  • М. А. Тлеубергенова, K. Zhubanov Aktobe Regional University

    Address: K. Zhubanov Aktobe Regional University, Debt. of Mathematics, Aktobe, Kazakhstan
    e-mail: madina_1970@mail.ru
    ORCID ID: https://orcid.org/0000-0002-5572-2305

  • A. Танкеева, K. Zhubanov Aktobe Regional University

    Address: K. Zhubanov Aktobe Regional University, Debt. of Mathematics, Aktobe, Kazakhstan
    e-mail: aigerimtankeyeva@gmail.com
    ORCID ID: https://orcid.org/0000-0002-3897-5909

  • А. Молыбайкызы, Kazakh National Women's Pedagogical University

    Address: Kazakh National Women’s Pedagogical University, Almaty, Kazakhstan
    e-mail: altynaimolybai@gmail.com
    ORCID ID: https://orcid.org/0009-0008-2452-5932

Библиографические ссылки

[1] Abramov, A. A.: On the transfer of boundary conditions for systems of ordinary linear differential equations (a variant of the dispersive method). USSR Computat. Math. and Math. Phys. 1 (3), 617–622 (1962).

[2] Agarwal, Ravi P.: Boundary value problems for higher order differential equations. World Scientific, Singapore, Philadelphia. (1986), 307 p.

[3] Agarwal, Ravi P., Gupta, R. C.: Essentials of ordinary differential equations. McGraw-Hill Book Co., Singapore, New York. (1991), 467 p.

[4] Agarwal, Ravi P.: Focal boundary value problems for differential and difference equations. Kluwer Academic Publishers, Dordrecht. (1998), 289 p.

[5] Agarwal, Ravi P., Grace, S. R., O’Regan, D.: Oscillation theory for second order Linear differential equations. Kluwer Academic Publishers, The Netherlands. (2002), 672.

[6] Agarwal, Ravi P., Lakshmikantham, V.: Uniqueness and nonuniqueness criteria for ordinary differential equations. World Scientific, Singapore. (1993), 312.

[7] Agarwal, Ravi P., O’Regan, D.: An introduction to ordinary differential equations. Springer Science+Business Media LLC, New York. (2008), ix+314.

[8] Dzhumabayev, D. S.: Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. USSR Computat. Math. and Math. Phys. 29 (1), 34–46 (1989).

[9] Keller, H.: Numerical methods for two-point boundary value problems. Walthan, Blaisdell. (1968), 184.

[10] Кигурадзе И. Т.: Краевые задачи для систем обыкновенных дифференциальных уравнений. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. ВИНИТИ АН СССР, Москва. (1987), 3–103.

[11] Roberts, S. M., Shipman, J. S.: Two-point boundary-value problems: Shooting methods. Elsevier, New York. (1972), 269.

[12] Ronto, M., Samoilenko, A. M.: Numerical-analytic methods for investigation of periodic solutions. World Scientific, Singapore, New Jersey, London, Hong Kong. (2000), 453.

[13] Yuldashev, T. K.: Periodic solutions for an impulsive system of nonlinear differential equations with maxima. Nanosystems: Physics. Chemistry. Mathematics. 13 (2), 135–141 (2022). https://doi.org/10.17586/2220-8054-2022-13-2-135-141

[14] Yuldashev, T. K.: Periodic solutions for an impulsive system of integro-differential equations with maxima. Вестник Самарского государственного технического университета. Серия: Физико-математические науки. 26 (2), 368–379 (2022). https://doi.org/10.14498/vsgtu1917

[15] Yuldashev, T. K., Abduvahobov, T. A.: On a (ω, c)− periodic solution for an impulsive system of second-order differential equation with product of two nonlinear functions and mixed maxima. Uzbekistan Journal of Mathematics and Computer Science. 1 (1), 20–32 (2025). https://doi.org/10.56143/ujmcs.112032

[16] Yuldashev, T. K. Fayziyev, A. K.: Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector. Lobachevskii Journal of Mathematics. 43 (8), 2332–2340 (2022). https://doi.org/10.1134/S1995080222110312

[17] Yuldashev, T. K., Fayziyev, A. K.: On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima. Nanosystems: Physics. Chemistry. Mathematics. 13 (1), 36–44 (2022). https://doi.org/10.17586/2220-8054-2022-13-1-36-44

[18] Yuldashev, T. K., Fayziyev, A. K.: Inverse problem for a second order impulsive system of integro-differential equations with two redefinition vectors and mixed maxima. Nanosystems: Physics. Chemistry. Mathematics. 14 (1), 13–21 (2023). https://doi.org/10.17586/2220-8054-2023-14-1-13-21

[19] Yuldashev, T. K., Apakov, Y. P., Zhuraev, A. K.: Boundary value problem for third order partial integro-differential equation with a degenerate kernel. Lobachevskii Journal of Mathematics. 42 (6), 1317–1327. (2021)

[20] Asanova, A. T.: On a nonlocal boundary-value problem for systems of impulsive hyperbolic equations. Ukrainian Mathematical Journal. 65 (3), 349–365 (2013). https://doi.org/10.1007/s11253-013-0782-x.

[21] Assanova, A. T.: Solvability of a nonlocal problem for a hyperbolic equation with integral conditions. Electronic Journal of Differential Equations. 2017 (170), 1–12 (2017).

[22] Assanova, A. T.: An integral-boundary value problem for a partial differential equation of second order. Turkish Journal of Mathematics. 43 (4), 1967–1978 (2019). https://doi.org/10.3906/mat-1903-111.

[23] Assanova, A. T., Bakirova, E. A., Kadirbayeva, Z. M., Uteshova, R. E.: A computational method for solving a problem with parameter for linear systems of integro-differential equations. Computational and Applied Mathematics. 39 (3), Art.no. 248 (2020). https://doi.org/10.1007/s40314-020-01298-1.

[24] Assanova, A. T.: On the solvability of nonlocal problem for the system of Sobolev-type differential equations with integral condition. Georgian Mathematical Journal. 28 (1), 49–57 (2021). https://doi.org/10.1515/gmj-2019-2011.

[25] Assanova, A. T.: A generalized integral problem for a system of hyperbolic equations and its applications. Hacettepe Journal of Mathematics and Statistics. 52 (6), 1513–1532 (2023). https://doi.org/10.15672/hujms.1094454.

[26] Assanova, A. T., Mynbayeva, S. T.: New general solution to a quasilinear Fredholm integro-differential equation and its application. Lobachevski Journal of Mathematics 44 (10), 4231–4239 (2023). https://doi.org/10.1134/S1995080223100062.

[27] Dzhumabaev, D. S.: On one approach to solve the linear boundary value problems for Fredholm integrodifferential equations. J. of Comp. and Applied Math. 294, 342–357 (2016).

[28] Dzhumabaev, D. S.: Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. USSR Comput. Math. Math. Phys. 29 (1), 34–46 (1989).

[29] Dzhumabaev, D. S., Dzhumabaev, A. D., Assanova, A. T.: Properties of a partial Fredholm integro-differential equations with nonlocal condition and algorithms. Mediterranean Journal of Mathematics 21 (6), Art. No. 169 (2024). https://doi.org/10.1007/s00009-024-02712-2.

[30] Tleulessova, A. B.: On the correct solvability of a two-point boundary value problem with impulsive action. Almaty Mat. Zhurn. 4 (3), 87–95 (2005).

[31] Tleulessova, A. B.: On the unique solvability of a two-point boundary value problem with impulsive action. Almaty, Mat. Zhurn. 4 (4), 93–102 (2004).

[32] Temesheva, S. M., Dzhumabaev, D. S., Kabdrakhova, S. S.: On one algorithm to find a solution to a linear two-point boundary value problem. Lobachevskii Journal of Mathematics. 42 (3), 606–612 (2021). https://doi.org/10.1134/S1995080221030173

[33] Yuldashev, T. K., Fayziyev, A. K.: Periodic solutions of impulsive system of equations with a nonlinear function under the sign of a second-order differential and maxima. Lobachevskii Journal of Mathematics. 46 (2), 658–671 (2025). https://doi.org/10.1134/S1995080225600256

Загрузки

Опубликован

2025-11-30

Выпуск

Раздел

Статьи

Как цитировать

Двухточечная краевая задача для системы функционально-дифференциальных уравнений с максимумами: Двухточечная краевая задача для системы функцио. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 50-57. https://doi.org/10.56143/ujmcs.v1i2.7