Solving the Monge-Ampere Equation using Geometric Transformations

Solving the Monge-Ampere Equation using Geometric Transformations

Authors

DOI:

https://doi.org/10.56143/ujmcs.v1i2.5/

Keywords:

Galilean motion; Monge-Ampere equation; Heisenberg group; total curvature; polar coordinat system.

Abstract

The geometric problem of recovering a convex surface from a given function is equivalent to solving a certain Monge-Ampère equation. In this case, the extrinsic curvature is defined as a function of Borel sets. I. Ya. Bakelman constructed this theory and proved the existence and uniqueness of the solution of the Monge-Ampère equation of elliptic type in a simply connected convex domain. A. Artykbaev generalized this solution for a non-simply connected domain applying of the geometry of Galilean space. This paper is devoted to the analytical solution of the Monge-Ampère equation in a non-simply connected domain. The extrinsic curvature of the surface is determined in a non-simply connected domain which is bounded by concentric circles. By applying the transformation which is the motion of Galilean space and the transition to the polar coordinate system, the equation is modified, in which it is possible to separate the variables of the solution, the equation is sought for the sum of three functions. As a result, an analytical form of the solution in a non-simply connected domain bounded by concentric circles is obtained.

Author Biographies

  • Abdullaaziz Artykbaev, Tashkent State Transport University

    Address: Tashkent State Transport University, Department of Higher Mathematics, Tashkent-Uzbekistan.
    e-mail: aartykbaev@mail.ru
    ORCID ID: 0000-0001-6228-8749

  • Gulnoza Kholmurodova, Tashkent State Transport University

    Address: Tashkent State Transport University, Department of Higher Mathematics, Tashkent-Uzbekistan.
    e-mail: xolmurodovagulnoza3@gmail.com
    ORCID ID:0009-0000-8131-8405

References

[1] Alexandrov, A.D.: Convex polyhedra. Springer Monographs in Mathematics. (2005).

[2] Alexandrov, A.D.: Intrinsic geometry of convex surfaces. Classics of Soviet Mathematics. (2006).

[3] Aminov Yu., Arslan K., Bayram B., Bulca B., Murathan C., O’zturk G. : On the solution of the Monge-Ampere equation zxxzyy − z2

xy = f (x, y) with quadratic right side. J. Math.Phys.Anal.Geom. 7 (3), 203-211 (2011).

[4] Ampere A.M. : Memoire contenant l’application de la theorie. Journal de Polytechnique (1820).

[5] Artykbaev A., Ismoilov Sh.Sh., Kholmurodova G.N. : Recovering a surface in isotropic space using dual mapping according to curvature invariants. KazNu.Bull. Math. Mech. Comp.Sci. 126 (2), 104-118 (2025).

[6] Artykbaev A., Kholmurodova G.N. : The problem of recovering convex surfaces in a semi-hyperbolic space. Springer Proc. Math.Stat. 510, 281-286 (2025).

[7] Artykbaev A., Kholmurodova G.N. : Applying of the surface theory of non-Euclidian spaces to the solution of the Monge-Ampere equation of elliptic type . Uzbek Math. J. 69 (2), 23-28 (2025).

[8] Artykbaev, А., Sultanov, B.M., Ismoilov, Sh. Sh.: Geometry of semi-Euclidean spaces: Isotropic and Galilean (in Russian). Tashkent, Transport. (2024).

[9] Aydin M.E., Kulahci M.A, Ogrenmis A.O.: Constant curvature Translation surfaces in Galilean 3-space.. Int. Elect. J. Geom. 12 (1), 9-19 (2019).

[10] Bakelman,I.Y.: Convex Analysis and Nonlinear Geometric Elliptic Equations Springer Verlag, Berlin, Heidelberg. (1994).

[11] Budd, C.J., Cullen, M.J., Walsh, E.J.: Monge-Ampere based moving mesh methods for numerical weather prediction, with applications to the Eady problem. J.Comput.Phys. 236 (1), 247-270 (2013).

[12] Cakmak A., Karacan M.K., Kiziltug S., : Dual surfaces defined by z = f (u) + g(v) in simply isotropic 3-space I1

3 . Commun. Korean math. soc. 34 (1), 267-277 (2019).

[13] Chen, B.Y. : Solutions to homogenious Monge-Ampere equations of homothetic functions and their applications to production models in economics. J. Math.Anal.Appl. 411 (1), 223-229 (2014).

[14] Dairbekov, N.S. : Otobrajeniya s ogranichennem na gruppax Geyzenberga. Sibirean Math. J. 41, 567-590 (2000).

[15] Dede, M., Ekici, C., Goemans, W. : Surfaces of revolution with vanishing curvature in Galilean 3-space. J.Math.Phys.Anal.Geom. 14 (2), 141-152 (2018).

[16] Hartenstine, D. : The Dirichlet problem for the Monge-Ampere equation in convex (but not strictly convex) domains. Elect. J. Diff.Equat. 138, 1-9 (2006).

[17] Ismoilov Sh.Sh. : Geometry of the Monge-Ampere equation in an isotropic space . Uzbek Math.J. 66 (2), 66-77 (2022).

[18] Ju H.J., Bao J.G., : On the exterior Dirichlet problem for Monge-Ampere equations. J.Math. Anal. Appl. 405, 475-483 (2013).

[19] Karacan M.K., Yoon D.W., Yuksel N. : Classification of some special types ruled surfaces in simply isotropic 3-space. Anal. Uni. de vest, Timisoara Seria Math –info. 55, 87-98 (2017).

[20] Khabirov S.V. : Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogenious Monge-Ampere equation. Math.USSR.Sbornik 21 (2), 447-462 (1992).

[21] Kholmurodova G.N. : Solution of the Monge-Ampere equation in a ring domain . Uzbek Math. J. 69 (3), 114-120 (2025).

[22] Kushner, A.G. : A contact linearization problem for Monge-Ampere equations and laplace invariants . Acta. Appl.Math. 101, 177-189 (2008).

[23] Lone M.S, Karacan M.K., : Dual translation surfaces in the three dimensional simply isotropic space. Tamkang J.Math. 49 (1), 67-77 (2018).

[24] Monge G. : Sur le calcul integral des equations aux differences partielles. Memoires de l’Academie des Sciences (1784).

[25] Nam Q.L. : Analysis of Monge-Ampere equations. American. Math.Soc. (2024).

[26] Philippis G., Figalli, A. : The Monge-Ampere equation and its link to optimal transportation. Bull. American Math.Soc. 51 (4), 527-580 (2014).

[27] Pogorelov, A.V.: Extrinsic geometry of convex surfaces. Moscow, Science. (1991).

[28] Polyanin, A.D., Zhurov, A.I.: Methods for separation of variables and exact solutions of nonlinear equations of mathematical physics. Moscow, Ipmex. Ran. (2020).

[29] Polyanin, A.D.: Lectures on nonlinear equations of mathematical physics. Moscow, Ipmex. Ran. (2023).

[30] Sultanov, B.M., Kurudirek, A., Ismoilov, Sh.Sh. : Development and isometry of surfaces Galilean space. Math.Stat. 11 (6), 965-972 (2023).

[31] Tomter, P.: Constant mean curvature surface in the Heisenberg group Proc. of Symp. Pure Math. 54 (1), 485-495 (1993).

[32] Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Springer, New York pp. 326 (1979).

Downloads

Published

2025-11-30

Issue

Section

Статьи

How to Cite

Solving the Monge-Ampere Equation using Geometric Transformations: Solving the Monge-Ampere Equation using Geometric Transformations. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 36-43. https://doi.org/10.56143/ujmcs.v1i2.5/

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.