Periodic Solution of the Keller-Segel Model WithLogistic Sensitivity
Periodic Solution of the Keller-Segel Model WithLogistic Sensitivity
DOI:
https://doi.org/10.56143/ujmcs.v1i1.9Keywords:
Reaction–diffusion-taxis system; Chemotaxis; haptotaxis; Schauder estimates; Global existence.Abstract
Mathematical modeling of chemotaxis (the movement of biological cells in response to chemical gradients) has evolved into a modern discipline, aspects of which include its mechanistic basis, modeling of specific systems, and the mathematical behavior of the underlying equations. In this paper, we consider in detail the periodic variant of the Keller-Segel model. The global existence and uniqueness of the classical solutions of this system are proved by the contraction mapping principle together with $L_p$ estimates and Schauder estimates of parabolic equations.
References
[1] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970).
[2] Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971).
[3] Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresberichte DMV 105(3), 103–165 (2003).
[4] Maree, A.F., Hogeweg, P.: Walter Riemannian submanifolds with concircular canonical field. Proc. Natl. Acad. Sci. USA 98(7), 3879–3883
(2001).
[5] Mimura, M., Tsujikawa, T.: Aggregation pattern dynamics in a chemotaxis model including growth. Physica A 230, 499–543 (1996).
[6] Mittal, N., Budrene, E.O., Brenner, M.P., Van Oudenaarden, A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003).
[7] Lee, J.M. et al.: Pattern formation in prey-taxis systems. J.Biological Dynamics. 3(6): 551–573 (2009).
[8] Tao, Y., Cui, C.: A density-dependent chemotaxis-haptotaxis system modeling cancer invasion. J. Math.Anal. and Appl. 367: 612–624 (2010).
[9] Li, C.: Global existence of classical solutions to the cross-diffusion three-species model with prey-taxis. Computers and Mathematics with Appl. 72: 1394–1401 (2016).
[10] Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Analysis: RWA. 11: 2056–2064 (2010).
[11] Ainseba, B.E. et al.: A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Analysis: RWA. 9: 2086–2105 (2008).
[12] Benhadmane, M.: Analysis of reaction-diffusion system modeling predator-prey with prey-taxis. Net.Hetero.Med. 3: 863–879 (2008).
[13] Ladyzhenskaya, O.A., Solonnikov, B.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. M.:Nauka. 736 p.(1967).
[14] Friedman, A.: Partial Differential Equations of Parabolic Type. M.:Mir. 428 p. (1968).
[15] Dzhuraev, T.D., Takhirov, J.O.:A problem for quasilinear parabolic equation with nonlocal boundary conditions. Georg.Math.J. 6(5): 421–428 (1999).
[16] Kruzhkov, S.N.: Nonlinear parabolic equations with two independent variables. Proceedings of MMS 16: 329–346 (1967).