Free Boundary Problem for a Nonlinear Diffusion Equation

Authors

DOI:

https://doi.org/10.56143/ujmcs.v1i2.10

Keywords:

квазилинейное параболическое уравнение; свободная граница; априорные оценки; теорема существования и единственности.

Abstract

In this paper, a Stefan-type problem with two free boundaries for a nonlinear heat equation in the one-dimensional case is considered. The study of nonlinear problems with free boundaries is carried out using a method based on constructing a priori estimates. In this regard, some initial a priori estimates are first established for solving the problem under consideration. Then, the problem is reduced to a problem with a fixed boundary through a change of variables. The resulting problem has time- and position-dependent coefficients with nonlinear terms. Next, a priori estimates of the Schauder type are constructed for solving the equation with nonlinear terms and a fixed boundary. Based on the estimates obtained, the solvability of the original problem is established.

Author Biographies

  • Mirojiddin Rasulov, V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan; Tashkent State University, Tashkent,, Uzbekistan.

    Address: V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9 University str., Tashkent,
    100174, Uzbekistan;
    Tashkent State University of Transport, 1, Temiryolchilar str., Tashkent, 100071, Uzbekistan.
    e-mail: rasulovms@bk.ru
    ORCID ID: 0000-0003-0704-6012

  • Masudkhon Umirkhonov, Tashkent State University of Economics

    Address: Tashkent State University of Economics, 49, Islom Karimov str., Tashkent, 100066, Uzbekistan.
    e-mail: m.umixonov@tsue.uz
    ORCID ID: 0009-0003-9440-3440

References

[1] Adriana C. Briozzo.: Free boundary problem governed by a non-linear diffusion-convection equation with Neumann condition Jour. of Math. Anal. and Appl., 54 (2), 129461 (2025)

[2] Adriana C. Briozzo, Tarzia, D.: A free boundary problem for a diffusion-convection equation. Int. J. Non-Linear Mech. 120, 103394 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103394

[3] Cannon, J. R.: The One-Dimensional Heat Equation. Cambridge: CUP, (1984). 500 pp.

[4] Crank, J.: Free and Moving Boundary Problem. Oxford (1984). 425 pp.

[5] Du, Y., Lin Zh.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42, 377-405 (2010). https://doi.org/10.1137/090771089

[6] Du, Y., Li, B.: Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. 17, 2673-2724 (2015). https://doi.org/10.4171/JEMS/568

[7] Friedman, A.: Free boundary problems arising in biology. Discrete Contin. Dyn. Syst. Ser. B 23 (1), 193-202 (2016). https://doi.org/10.3934/dcdsb.2018013

[8] Gupta, S. C.: The Classical Stefan Problem: Basic concepts, modelling and analysis with quasi-analytical solutions and methods. Elsevier (2017). 717 pp.

[9] Gu, H., Lin, Z. G., Lou, B. D.: Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries. J. Funct. Anal. 269, 1714-1768 (2015). https://doi.org/10.1016/j.jfa.2015.07.002

[10] Kruzhkov, S. N.: Nonlinear parabolic equations with two independent variables. Tr. Mosk. Mat. Obs. 16, 329-346 (1967). (In Russian)

[11] Friedman, A.: Partial Differential Equations of Parabolic Type. Mir, Moscow (1964). 428 pp. (In Russian)

[12] Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow (1967). 736 pp. (In Russian)

[13] Meirmanov, A.: Stefan Problem. Nauka, Novosibirsk (1986). 240 pp. (In Russian)

[14] Meirmanov, A. M., Galtsev, O. V., Galtseva, O. A.: On the existence of a classical solution in the whole time for a free boundary problem. Sib. Math. J. 60 (2), 419-428 (2019). https://doi.org/10.1134/S0037446619020137

[15] Pan, H., Xu, R., Hu, B.: A free boundary problem with two moving boundaries modeling grain hydration. Nonlinearity 31, 3591-3616 (2018). https://doi.org/10.1088/1361-6544/aabf04

[16] Rasulov, M. S.: Problem for a quasilinear parabolic equation with two free boundaries. Uzbek Math. J. 2, 89-102 (2019). https://doi.org/10.29229/uzmj.2019-2-11

[17] Takhirov, J. O.: A free boundary problem for a reaction-diffusion equation in biology. Indian J. Pure Appl. Math. 50, 95-112 (2019). https://doi.org/10.1007/s13226-019-0309-8

[18] Takhirov, J. O., Rasulov, M. S.: Problem with free boundary for systems of equations of reaction-diffusion type. Ukr. Math. J. 69, 1968-1980 (2018). https://doi.org/10.1007/s11253-018-1481-4

[19] Takhirov J. O., Rasulov M. S., Norov A. Q.: On a Mathematical Model with a Free Boundary of the Dynamics of Diffuse Infection with an Immune Response. Lobachevskii Journal of Mathematics 45 (8), 3986-3996 (2024).

[20] Takhirov, Zh. O., Turaev, R. N.: Nonlocal Stefan problem for a quasilinear parabolic equation. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 60 (28), 8-16 (2012). https://doi.org/10.14498/vsgtu1010 (In Russian)

[21] Takhirov J. O., Umirkhonov M. T..: On a free boundary problem for the relaxation transfer equation. Theoretical and Mathematical Physics, 209 (1), 1473–1489 (2021).

[22] Wang, R., Wang, L., Wang, Zh.: Free boundary problem of a reaction-diffusion equation with nonlinear convection term. J. Math. Anal. Appl. 467, 1233-1257 (2018). https://doi.org/10.1016/j.jmaa.2018.07.065

Downloads

Published

2025-11-30

Issue

Section

Статьи

How to Cite

Free Boundary Problem for a Nonlinear Diffusion Equation. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 82-89. https://doi.org/10.56143/ujmcs.v1i2.10

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.