Generalized Models of the Seir Epidemiological Model and Their Discrete  Analogues

Generalized Models of the Seir Epidemiological Model and Their Discrete  Analogues

Авторы

DOI:

https://doi.org/10.56143/ujmcs.v1i1.2

Ключевые слова:

The SEIR model; Lotka-Volterra mapping; simplex; graph; trajectory; skew-symmetric matrix; viral diseases.

Аннотация

The paper considers a discrete analogue of the $SEIR$ model, which, unlike SIR, includes a group of infected individuals in the incubation (latent) period.  This model is based on Lotka-Volterra mappings operating in a three-dimensional simplex with degenerate skew-symmetric matrices, which correspond to mixed graphs.  The models considered in this paper are intended to study the course of viral diseases transmitted by the air-capillary route without a repeated effect.

Биографии авторов

  • Dilfuza Eshmamatova, Tashkent State Transport University

    Doctor of physical and mathematical sciences, head of the department of higher mathematics, Tashkent State Transport University, Institute of Mathematics named after V.I. Romanovsky Academy of Sciences of the Republic of Uzbekistan, Senior Researcher. Tashkent, Uzbekistan.

  • M.A. Tadzhieva, Tashkent State Transport University

    Tashkent State Transport University, Institute of Mathematics named after V.I. Romanovsky Academy of Sciences of the Republic of Uzbekistan, Senior Researcher. Tashkent, Uzbekistan.

  • S.Yu. Zavgorodneva, Tashkent State Transport University

    Department of Higher Mathematics, Tashkent State Transport University, Uzbekistan

Библиографические ссылки

[1] https://www.hmong.press/wiki/ Mathematical modelling in epidemiology.

[2] Daly, D.J., Ghani, J.: Epidemic modeling: an introduction. New York: Cambridge University Press.(2005).

[3] Murray, J.D.: Mathematical biology. Third Edition. Springer.p.776. (2009).

[4] Hammer, W.: Epidemiology is old and new . London: Kegan Paul. (1928)

[5] Ross, R.: The prevention of malaria. New York: Dutton. (2010)

[6] Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov function and tournaments, Acad. Sci. Sb. Math., 76(2), pp.489-506, (1993)

[7] Ganikhodzhaev, R.N., Tadzieva, M.A., Eshmamatova, D.B.: Dynamical Proporties of Quadratic Homeomorphisms of a Finite-Dimensional Simplex. Journal of Mathematical Sciences — 245 — (3). — P. — 398-402, (2024)

[8] Ganikhodzhaev, R.N., Eshmamatova, D.B.: Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories. Vladikavkaz. Mat. Zh., Volume 8, Number 2, 12-28, (2006)

[9] Harary, F., Palmer, E.M.: Graphical enumeration. Academic Press New York and London. (1973)

[10] Kermack, W.O. and McKendrick, A.G.: A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond, 115, 700-721. (1927)

[11] Eshmamatova, D.B., Ganikhodzhaev, R.N.: Tournaments of Volterra type transversal operators acting in the simplex Sm-1

. AIP Conference

Proceedings 2365, 060009, https:doi.org/10.1063/5.0057303. (2021)

[12] Ganikhodzhaev, R.N., Tadzhieva, M.A.: Stability of fixed points of discrete dynamic systems of Volterra type. AIP Conference Proceedings, V. 2365. P. 060005-1 − 060005-7. https://doi.org/10.1063/5.0057979. (Scopus. IF=0.7). (2021)

[13] Ganikhodzhaev, R.N.: A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems, Math. Notes, 56 (5-6), pp.1125-1131, (1994)

[14] Kuznetsov, Y.A.: Elements of applied bifurcation theory. Second edition. NewYork 10027, p 592, (1998)

[15] Murray, Y. D.: On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex, Russ. Marh. Surv 59. 13. p.571-573, (2004)

[16] Ulam, S.: A collection of mathematical problems.Interscience. New-York, 150 p.Graph Theory. Addison-Wesley.1969. p.274. (1960)

[17] Volterra, V.: Theorie mathematique de la lutte pour la vie. Paris, p.290, (1931)

Опубликован

2025-05-01

Выпуск

Раздел

Статьи

Как цитировать

Generalized Models of the Seir Epidemiological Model and Their Discrete  Analogues: Generalized Models of the Seir Epidemiological Model and Their Discrete  Analogues. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(1), 1-14. https://doi.org/10.56143/ujmcs.v1i1.2

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.