Idempotent probability measures spaces on П-complete spaces and maps
Idempotent probability measures spaces on П-complete spaces and maps
DOI:
https://doi.org/10.56143/ujmcs.v1i2.12/Keywords:
идемпотентные вероятностные меры, конечный носитель, пространства идемпотентных вероятностных мер, индуцированные отображения, звёздно-конечное открытое покрытие, конечно-компонентное покрытие, совершенная компактификация, компактификация Стоуна--Чexа.Abstract
In this paper we study the behavior of П-completeness for Tychonoff maps under the functor of idempotent probability measures with finite support. We prove that a Tychonoff map is П-complete if and only if the induced map between the corresponding spaces of idempotent probability measures is П-complete. As a consequence, the functor of idempotent probability measures with finite support both preserves and reflects П-completeness for maps. This provides a convenient criterion for verifying П-completeness via induced mappings and supports the transfer of completeness-type properties to functorially constructed spaces. The obtained result yields a lifting of the functor to the category whose objects are П-complete spaces and whose morphisms are П-complete maps.
References
[1] Akian, M.: Densities of idempotent measures and large deviations. Transactions of the American Mathematical Society. 351(11), 4515–4543, (1999).
[2] Arkhangel’skii, A.V., Ponomarev, V.I.: Fundamentals of General Topology: Problems and Exercises. D. Reidel Publishing Company. Dordrecht, (1983).
[3] Fedorchuk, V.V., Filippov, V.V.: General Topology. Basic Structures. Fizmatlit. Moscow (2006).
[4] Buhagiar, D., Miwa, T.: On superparacompact and Lindel¨of GO spaces. Houston Journal of Mathematics. 24(3), 443–457 (1998).
[5] Musayev, D.K., Pasynkov, B.A.: On compactness and completeness properties of topological spaces and continuous maps. Fan. Tashkent (1994). (in Russian)
[6] Zarichnyi, M.: Spaces and maps of idempotent measures. Izvestiya: Mathematics. 74(3), 481–499 (2010).
[7] Chigogidze, A.Ch.: Extension of normal functors. Vestnik Moskovskogo Universiteta. Seriya Matematika i Mekhanika. (6), 23–26 (1984).
[8] Fedorchuk, V.V.: Functors in topology. Russian Mathematical Surveys. 46(3), 1–40 (1991). https://doi.org/10.1070/
RM1991v046n03ABEH002737
[9] Ishmetov, A.Ya.: On the functor of idempotent probability measures with compact support. Uzbek Mathematical Journal. (1), 72–80 (2010).
[10] Radul, T.: Idempotent Measures: Absolute Retracts and Soft Maps. Preprint arXiv:1810.09140v1 (2018).
[11] Zaitov, A.A.: Geometrical and topological properties of a subspace Pf (X) of probability measures. Russian Mathematics (Izvestiya VUZ). 63(10), 24–32 (2019).
[12] Zaitov, A.A.: On a metric on the space of idempotent probability measures. Applied General Topology. 21(1), 35–51 (2020).
[13] Ayupov, Sh.A., Zaitov, A.A., Eshtemirova, Sh.H.: Π-completeness of the space of idempotent probability measures. Uzbek Mathematical Journal. 69(1), 37–48 (2025).
[14] Zaitov, A.A., Jumaev, D.I.: Hyperspaces of superparacompact spaces and continuous maps. Universal Journal of Mathematics and Applications. 2(2), 8 pp. (2019). https://arxiv.org/abs/1811.05347.