Idempotent probability measures spaces on П-complete spaces and maps

Idempotent probability measures spaces on П-complete spaces and maps

Authors

DOI:

https://doi.org/10.56143/ujmcs.v1i2.12/

Keywords:

идемпотентные вероятностные меры, конечный носитель, пространства идемпотентных вероятностных мер, индуцированные отображения, звёздно-конечное открытое покрытие, конечно-компонентное покрытие, совершенная компактификация, компактификация Стоуна--Чexа.

Abstract

In this paper we study the behavior of П-completeness for Tychonoff maps under the functor of idempotent probability measures with finite support. We prove that a Tychonoff map is П-complete if and only if the induced map between the corresponding spaces of idempotent probability measures is П-complete. As a consequence, the functor of idempotent probability measures with finite support both preserves and reflects П-completeness for maps. This provides a convenient criterion for verifying П-completeness via induced mappings and supports the transfer of completeness-type properties to functorially constructed spaces. The obtained result yields a lifting of the functor to the category whose objects are П-complete spaces and whose morphisms are П-complete maps.

Author Biography

  • Sh.X. Eshtemirova, V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan

    Address: V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan, 9, University Str.,
    100174, Tashkent, Uzbekistan
    e-mail: shaxnoza.eshtemirova@mail.ru
    ORCID ID: https://orcid.org/0009-0005-8316-5082

References

[1] Akian, M.: Densities of idempotent measures and large deviations. Transactions of the American Mathematical Society. 351(11), 4515–4543, (1999).

[2] Arkhangel’skii, A.V., Ponomarev, V.I.: Fundamentals of General Topology: Problems and Exercises. D. Reidel Publishing Company. Dordrecht, (1983).

[3] Fedorchuk, V.V., Filippov, V.V.: General Topology. Basic Structures. Fizmatlit. Moscow (2006).

[4] Buhagiar, D., Miwa, T.: On superparacompact and Lindel¨of GO spaces. Houston Journal of Mathematics. 24(3), 443–457 (1998).

[5] Musayev, D.K., Pasynkov, B.A.: On compactness and completeness properties of topological spaces and continuous maps. Fan. Tashkent (1994). (in Russian)

[6] Zarichnyi, M.: Spaces and maps of idempotent measures. Izvestiya: Mathematics. 74(3), 481–499 (2010).

[7] Chigogidze, A.Ch.: Extension of normal functors. Vestnik Moskovskogo Universiteta. Seriya Matematika i Mekhanika. (6), 23–26 (1984).

[8] Fedorchuk, V.V.: Functors in topology. Russian Mathematical Surveys. 46(3), 1–40 (1991). https://doi.org/10.1070/

RM1991v046n03ABEH002737

[9] Ishmetov, A.Ya.: On the functor of idempotent probability measures with compact support. Uzbek Mathematical Journal. (1), 72–80 (2010).

[10] Radul, T.: Idempotent Measures: Absolute Retracts and Soft Maps. Preprint arXiv:1810.09140v1 (2018).

[11] Zaitov, A.A.: Geometrical and topological properties of a subspace Pf (X) of probability measures. Russian Mathematics (Izvestiya VUZ). 63(10), 24–32 (2019).

[12] Zaitov, A.A.: On a metric on the space of idempotent probability measures. Applied General Topology. 21(1), 35–51 (2020).

[13] Ayupov, Sh.A., Zaitov, A.A., Eshtemirova, Sh.H.: Π-completeness of the space of idempotent probability measures. Uzbek Mathematical Journal. 69(1), 37–48 (2025).

[14] Zaitov, A.A., Jumaev, D.I.: Hyperspaces of superparacompact spaces and continuous maps. Universal Journal of Mathematics and Applications. 2(2), 8 pp. (2019). https://arxiv.org/abs/1811.05347.

Downloads

Published

2025-11-30

Issue

Section

Статьи

How to Cite

Idempotent probability measures spaces on П-complete spaces and maps: Idempotent probability measures spaces on П-complete spaces and maps. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 101-111. https://doi.org/10.56143/ujmcs.v1i2.12/