Non-hyperbolic trajectory of a quasi-non-Volterra cubic stochastic operator

Non-hyperbolic trajectory of a quasi-non-Volterra cubic stochastic operator

Authors

DOI:

https://doi.org/10.56143/ujmcs.v1i2.2

Keywords:

кубический стохастический оператор, квазиневольтерровский кубический стохастический оператор, функция Ляпунова, траектория, предельное множество.

Abstract

In this paper, we consider the dynamics of a quasi-non-Volterra cubic stochastic operator defined on the 2D simplex.
We find the invariant set of this operator and show that it has a unique non-hyperbolic fixed point. Furthermore,
we construct and use the Lyapunov function to prove that the set of limit points of a trajectory for any initial point
is unique.

Author Biographies

  • A. Y. KHAMRAYEV, Karshi State University

    Address: Karshi State University, Karshi. Uzbekistan.
    e-mail: khamrayev-ay@yandex.ru
    ORCID ID:0009-0005-4858-9285

  • F.A. Yusupov, Tashkent state transport university

    Address: Tashkent State Transport University, Tashkent. Uzbekistan
    e-mail: farrukhyusupovchambil@mail.ru
    ORCID ID: 0000-0003-1909-6420

References

[1] Kouichi Murakami, Stability for non-hybrbolic fixed points of scalar differense equations, J. Math Anal. Appl. 310(2005) 492-505

[2] Davronov R. R., Jamilov (Zhamilov) U. U. and Ladra M. Conditional cubic stochastic operator. J. Difference Equ. ppl., 2015, vol. 21, no. 12, pp. 1163–1170. DOI: 10.1080/10236198.2015.1062481.

[3] Devaney R.L., An introduction to chaotic dynamical systems, (Studies in Nonlinearity), Westview Press, Boulder, 2003, reprint of the second (1989) edition.

[4] Freedman H. I. and Waltman P. Persistence in models of three interacting predator-prey populations. Math. Biosci., 1984, vol. 68, no. 2, pp. 1213–231. DOI: 10.1016/0025-5564(84)90032-4

[5] Homburg A. J., Jamilov U. U. and Scheutzow M. Asymptotics for a class of iterated random cubic operators. Nonlinearity, 2019, vol. 32, no. 10. pp. 3646–3660. DOI: 10.1088/1361-6544/ab1f24.

[6] Jamilov U. U. Khamraev A. Yu. and Ladra M. On a Volterra cubic stochastic operator. Bull. Math. Biol., 2018, vol. 80, no. 2, pp. 319–334. DOI: 10.1007/s11538-017-0376-0.

[7] Jamilov U. U. Khamraev A. Yu. On dynamics of Volterra and non-Volterra cubic stochastic operators. Bull. Math. Biol., 2022, vol. 37, no. 1, pp. 66–82. DOI: 10.1080/14689367.2021.2006150

[8] Khamraev A. Yu. Makhmatkobilov N. P. On the dynamics of a quasi-strictly non-Volterra cubic stochastic operator Bull. Math. Biol., 2025, vol. 15, no. 1, DOI: 10.62476/jcam.151.1

[9] Jamilov U. U. and Ladra M. On identically distributed non-Volterra cubic stochastic operator. Jour. Appl. Nonlin. Dyn., 2017, vol. 6, no. 1, pp. 79–90. DOI: 10.5890/JAND.2017.03.006.

[10] Jamilov U. U. and Reinfelds A. On constrained Volterra cubic stochastic operators. J. Difference Equ. Appl., 2020, vol. 26, no. 2, pp. 261–274. DOI: 10.1080/10236198.2020.1720664.

[11] Jamilov U. U. and Reinfelds A. A family of Volterra cubic stochastic operators. Journal Convex Analysis, 2021, vol. 28, no. 1, pp. 19–30. DOI: https://www.heldermann.de/JCA/JCA28/JCA281/jca28003.html

[12] Mukhamedov F. M., Embong A. F. and Rosli A. Orthogonal preserving and surjective cubic stochastic operators. Ann. Funs. Anal. 2017, vol. 8, no. 4, pp. 490–501. DOI: 10.1215/20088752-2017-0013.

[13] Mukhamedov F. M., Pah C. H. and Rosli A. On non-ergodic Volterra cubic stochastic operators. Qual. Theory Dyn. Syst. 2019, vol. 18, no. 3, pp. 1225–1235. DOI: 10.1007/s12346-019-00334-8.

[14] Mukhamedov F., Embong A.F., Rosli A. Orthogonal-preserving and surjective cubic stochastic operators Ann. Funct. Anal. 2019, vol. 8, no. 4, pp. 490–501. DOI: 10.1215/20088752-2017-0013.

[15] Rozikov U. A. Population dynamics: algebraic and probabilistic approach. World Sci Publ., p. 460., Singapore (2020)

[16] Rozikov U. A. and Khamraev A. Yu. On cubic operators defined on finite-dimensional simplices. Ukrainian Math. J., 2004, vol. 56, no. 10, pp. 1699–1711. DOI: 10.1007/s11253-005-0145-3.

[17] Rozikov U. A. and Khamraev A. Yu. On construction and a class of non-Volterra cubic stochastic operators. Nonlinear Dyn. Syst. Theory., 2014, vol. 14, no. 1, pp. 92–100.

[18] Khamraev A. Yu. On cubic operators of Volterra type. Uzbek. Math. Zh., 2004, no. 2, pp. 79–84. (in Russian)

[19] Khamraev A. Yu. A condition for the uniqueness of a fixed point for cubic operators. Uzbek. Math. Zh., 2005, no. 1, pp. 79–87. (in Russian)

[20] Khamraev A. Yu. On a Volterra-type cubic operator. Uzbek. Math. Zh., 2009, no. 3. pp. 65–71. (in Russian)

[21] Khamraev A. Yu. and Tursunova A. Kh. Prob. Comp. App. Math. Full description of the behavior of trajectories of a cubic operator. 2020, vol. 2, no. 26, pp. 32–38. (in Russian)

Downloads

Published

2025-11-30

Issue

Section

Статьи

How to Cite

Non-hyperbolic trajectory of a quasi-non-Volterra cubic stochastic operator: Non-hyperbolic trajectory of a quasi-non-Volterra cubic stochastic operator. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(2), 12-19. https://doi.org/10.56143/ujmcs.v1i2.2