On p-convexification of Symmetric Banach-Kantorovich Spaces
On p-convexification of Symmetric Banach-Kantorovich Spaces
DOI:
https://doi.org/10.56143/ujmcs.v1i2.15Keywords:
p-convexification, Maharam measure, Banach-Kantorovich space, symmetric spaces.Abstract
Let B be a complete Boolean algebra, Q(B) the Stone compact of B, and C∞(Q(B)) the commutative unital algebra of all continuous functions x : Q(B) → [−∞, +∞], which may take the values ±∞ only on nowhere-dense
subsets of Q(B). Let (E, ||·||E) ⊂ C∞(Q(B)) be a Banach–Kantorovich lattice over the algebra L0(Ω) of equivalence classes of almost everywhere finite real-valued measurable functions defined on a measurable space (Ω, Σ, μ) with a σ-finite measure μ. The paper considers the p-convexification of lattice-normed spaces and proves that the p-convexification (Ep, ||·||Ep) of a symmetric Banach–Kantorovich space (E, ||·||E) over L0(Ω) is also a symmetric Banach–Kantorovich space over L0(Ω). It is established that an L0(Ω)-valued norm in the space (Ep, ||·||Ep) has the Fatou property or the property of order continuity whenever the corresponding L0(Ω)-valued norm in the space (E, ||·||E) possesses this property.
References
[1] Lindenstrauss J., Tzafriri L. Classical Banach Spaces II. Springer-Verlag, Berlin, 243 p. (1979).
[2] Канторович Л.В. Об одном классе функциональных уравнений, Докл. Акад. Наук СССР. 5(4). p. 211–216. (1936).
[3] Кусраев А.Г., Векторная двойственность и ее приложения. - Новосибирск: Наука. 256 с. (1985).
[4] Гутман А.Е. Банаховы расслоения в теории решеточно нормированных пространств. Линейные операторы, согласованные с порядком. - Новосибирск: изд-во ИМ СО РАН, С. 63 – 211. (1995).
[5] Кусраев А.Г., Мажорируемые операторы. - М.: Наука. 619 c. (2003).
[6] Кусраев А.Г., Кутателадзе С.С. Введение в булевозначный анализ. - М.: Наука. 525 c. (2005).
[7] Zakirova G.B. On p-convexification of the Banach-Kantorovich lattice, e-Journal of Analysis and Applied Mathematics. p. 21–32. (2024).
https://doi.org/10.62780/ejaam/2024-004
[8] Владимиров Д.А. Булевы алгебры. - М.: Наука. 318 c. (1969).
[9] Вулих Б.З. Введение в теорию полуупорядоченных пространств. - М.: ГИФМЛ. 407 с. (1961).
[10] Meyer-Nieberg P. Banach Lattices. Springer-Verlag, Berlin, Heidelberg, p. 395 (1961)
[11] Закиров Б.С., Чилин В.И. Разложимые меры со значениями в порядково полных векторных решетках, Владикавказский матем. журн. - Владикавказ, 4(10). C. 31–38. (2008).
[12] Chilin V., Zakirov B. Decomposable L0- valued measures as measurable bundles, Positivity, 14(3). p. 395-405.
[13] Закиров Б.С., Теорема Амемия для L0-нормированных векторных решоток, Узбекский мат. журн. 5. c. 23–33. (2008).
[14] Chilin V.I., Zakirova G.B. Symmetric spaces of Banach-Kantorovich, Al-Farabi Kazakh National University Journal of Mathematics, Mechanics and Computer Science. 2(126). p. 80–90. (2025).
[15] Chilin V., Zakirova G. The decreasing rearrangements of functions for vector-valued measures, Uzbek Mathematical Journal. Vol. 69, Issue 4. p. 70–82. (2025).