Some functional identities derived from a single confluent hypergeometric function E₇
Some functional identities derived from a single confluent hypergeometric function E₇
DOI:
https://doi.org/10.56143/ujmcs.v1i2.18Keywords:
Конфлюэнтная гипергеометрическая функция; обобщённые гипергеометрические ряды; функциональные тождеcтва; модифицированные функции Бесселя; экспоненциальная функция.Abstract
In this paper, by decomposing the confluent hypergeometric function E₇ into eight parts, we demonstrate how some useful and generalized relations between the hypergeometric functions of Srivastava F⁽³⁾ and E₇ can be obtained. It is shown that the main results can be specified to derive certain relations among the functions F₁, Ξ₁, ₄F₃, ₂F₃, ₁F₂, ₁F₁, and F₂:₁;₁²:²;². Some other interesting functional relations involving the exponential function, hyperbolic functions, and modified Bessel functions are also discussed.
References
[1] M. Abramowitz and I. A. Stegun.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series. 1964. Washington: National Bureau of Standards. 1965.New York: Reprinted by Dover Publications.
[2] A. Altin. Some expansion formulas for a class of singular partial differential equations. Proc. Amer. Math. Soc. 1982. Vol.85, Issue 1, pp. 42-46.
[3] P. Appell and J. Kamp´e de F´eriet. Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite. 1926. Paris: Gauthier - Villars.
[4] J. Barros-Neto and I. M. Gelfand. Fundamental solutions for the Tricomi operator. Duke Math. J.1999. Vol.98, Issue 3, pp. 465-483.
[5] J. Barros-Neto and I. M. Gelfand. Fundamental solutions for the Tricomi operator II. Duke Math. J.2002. Vol. 111, Issue 3, pp. 561-584.
[6] J. Barros-Neto and I. M. Gelfand. Fundamental solutions for the Tricomi operator III. Duke Math. J.2005. Vol. 128, Issue 1, pp. 119-140.
[7] L. Bers. Mathematical Aspects of Subsonic and Transonic Gas Dynamics.1958.New York: Wiley.
[8] B. C. Carlson. Some extensions of Lardner’s relations between 0F3 and Bessel functions. SIAM J. Math. Anal. 1970. Vol. 1, Issue 2, pp. 232-242.
[9] A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher Transcendental Functions, Vol. 1. 1953.New York, Toronto and London: McGraw-Hill Book Company.
[10] A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher Transcendental Functions, Vol. 2. 1953. New York, Toronto and London: McGraw-Hill Book Company.
[11] F. I. Frankl. Selected Works in Gas Dynamics.1973. Moscow: Nauka.
[12] A. J. Fryant. Growth and complete sequences of generalized bi-axially symmetric potentials. J. Diff. Equa.1979. Vol. 31, Issue 2, pp. 155-164.
[13] A. Hasanov. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Variables and Elliptic Equations.2007. Vol. 52, Issue 8, pp. 673-683.
[14] A. Hasanov. Some solutions of generalized Rassias’s equation. Intern. J. Appl. Math. Stat.2007. Vol. 8, Issue M07, pp. 20-30.
[15] A. Hasanov. Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat.2008. Vol. 13, Issue 8, pp. 41-49.
[16] A. Hasanov and E. T. Karimov. Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Lett. 2009. Vol. 22, Issue , pp. 1828-1832.
[17] A. Hasanov, J. M. Rassias and M. Turaev. Fundamental solution for the generalized Elliptic Gellerstedt Equation, Book: Functional Equations, Difference Inequalities and ULAM Stability Notions, Nova Science Publishers Inc. NY, USA. 2010. Vol.6, pp. 73-83.
[18] A. Hasanov and H. M. Srivastava. Some decomposition formulas associated with the Lauricella Function and other multiple hypergeometric functions. Appl. Math. Lett.2006. Vol. 19, pp. 113-121.
[19] A. Hasanov and H. M. Srivastava. Decomposition formulas associated with the Lauricella multivariable hypergeometric functions. Comput. Math. Appl.2007. Vol. 53, Issue 7, pp. 1119-1128.
[20] A. Hasanov, H. M. Srivastava, and M. Turaev. Decomposition formulas for some triple hypergeometric functions. J. Math. Anal. Appl.2006. Vol. 324, pp. 955-969.
[21] T. J. Lardner. Relations between 0F3 and Bessel functions. SIAM Review. 1969. Vol. 11, pp. 69-72.
[22] T. J. Lardner and C. R. Steele. Symmetric deformations of circular cylindrical elastic shells of exponentially varying thickness. Trans. ASME Ser. E. J. Appl. Mech., 1968. Vol. 35, pp. 169-170.
[23] G. Lohofer. Theory of an electromagnetically deviated metal sphere. 1: Absorbed power. SIAM J. Appl. Math., 1989. Vol.49, pp. 567-581.
[24] P. A. McCoy. Polynomial approximation and growth of generalized axisymmetric potentials. Canad. J. Math.,1979. Vol. 31, Issue 1, pp. 49-59.
[25] A. W. Niukkanen. Generalized hypergeometric series arising in physical and quantum chemical applications. J. Phys. A: Math. Gen.,1983. Vol.16, pp. 1813-1825.
[26] M. S. Salakhitdinov and A. Hasanov. A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation. Complex Variables and Elliptic Equations.2008. Vol. 53, Issue 4, pp. 355-364.
[27] H. M. Srivastava and P. W. Karlsson. Multiple Gaussian Hypergeometric Series. 1985.New York, Chichester, Brisbane, and Toronto: Halsted Press(Ellis Horwood Limited, Chichester), Wiley.
[28] G. N. Watson. A Treatise on the Theory of Bessel Functions, 2nd Edi. 1944. Cambridge, London and New York: Cambridge University Press.
[29] A. Weinstein. Discontinuous integrals and generalized potential theory. Trans. Amer. Math. Soc.,1946. Vol. 63, pp. 342-354.
[30] A. Weinstein. Generalized axially symmetric potential theory. Bull. Amer. Math. Soc., 1953. Vol. 59, pp. 20-38.
[31] R. J. Weinacht. Fundamental solutions for a class of singular equations. Contrib. Diff. Equa.,1964. Vol. 3, Issue 43, pp.
[32] M.Ruzhansky, A.Hasanov, T.G.Ergashev. PDE-Systems associated with the hypergeometric functions in three variables and their particularsolutions near the origin. https://arxiv.org/abs/2410.00748
[33] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I. Integrals and Series Vol. 3: More Special Functions. 1986. Moscow: Nauka. Translated from the Russian by G.G. Gould. 1990. New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne: Gordon and Breach Science Publishers.