The singular value function, associated with a Maharamtrace

von Neumann algebra, algebra of measurable operators,vector-valued trace, Dedekind complete vector lattice, singular value function, Maharam trace.

Авторы

DOI:

https://doi.org/10.56143/ujmcs.v1i1.6

Ключевые слова:

von Neumann algebra, algebra of measurable operators, vector-valued trace, Dedekind complete vector lattice, singular value function, Maharam trace.

Аннотация

Let  $M$ be a finite von Neumann algebra, let $S(M)$ be the $*$-algebra of measurable operators affiliated with $M$. Maharam traces  $\Phi$  on  a  von Neumann algebra $M$ with values in complex Dedekind complete vector lattices are considered.  The singular value function of operators from $S(M)$, associated with such a trace $\Phi$ are determined.  The main properties of these singular value functions, similar to classical singular value functions of measurable operators, are studied.

Биография автора

  • B.S. Zakirov , Tashkent state transport university

    Tashkent State Transport University, Tashkent, Uzbekistan

Библиографические ссылки

[1] Segal I.E. A non-commutative extension of abstract integration, Ann. Math. – 1953. – 57. – P. 401–457.

[2] Dixmier J. Formes lineares sur un anneau d’operators. Bull. de la Soc. Math. de France 1953, V. 81, 9–39.

[3] Nelson E. Notes on non commutative integration J. Funct. Anal. 1974. No 15. p. 103–116.

[4] Yeadon F.J. Convergence of measurable operators Proc. Camb. Phil. Soc. – 1973. – V. 74. – P. 257–268.

[5] Yeadon F.J. Non-commutative Lp-spaces Math. Proc. Camb. Phil. Soc. – 1975. – V. 77. – P. 91–102.

[6] Fack T., Kosaki H. Generalised s-numbers of t-measurable operators Pacif. J. Math. 123 (1986), 269–300.

[7] Dixmier J. Les algebras d’operateurs dans l’espace Hilbertien (Algebres de von Neunann). Paris: Gauthier-Villars, 1969. –367 p.

[8] Stratila S., Zsido L. Lectures on von Neumann algebras. – England Abacus Press, 1975. –477 p.

[9] Takesaki M. Theory of operator algebras I. – New York: Springer, 1979. –415 p.

[10] Muratov M.A., Chilin V.I. Algebras of measurable and locally measurable operators. Kyiv, Pratsi In-ty matematiki NAN

Ukraini. 2007. V. 69. 390 p. (Russian).

[11] Dodds P.G., Ben de Pagter, Sukochev F.A. Noncommutative integration and operator theory. Progress in Nathematics 349, Birkhauser, 2023, 577 p.

[12] Kusraev A.G., Dominanted Operators, Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000. 446 p.

[13] Chilin V., Zakirov B. Maharam traces on von Neumann algebras Methods of Functional Analysis and Topology Vol. 16 (2010), 2. pp. 101–111.

[14] Zakirov B.S., Chilin V.I. Noncommutative integration for traces with values in Kantorovich-Pinsker spaces Russian Math. (Iz. VUZ), 2010, 54(10), 15-26.

[15] Chilin V., Zakirov B. Non-commutative Lp -spaces associated with Maharam trace J. Operator theory, 2012, 68(1), 67–83.

[16] Muratov M.A., Chilin V.I. Central extensions of *-algebras of measurable operators Dokl. NAN Ukraini, Kyiv, 2009. 7. –P. 24–28. (Russian).

[17] Zakirov B.S., Chilin V.I. Duality for non-commutative L1-spaces, associated with Maharam trace Research in Mathematical Analysis. Series Mathematical Forum. V.3. VSC RAS, Vladikavkaz, 2009, 67–91.

Опубликован

2025-05-01

Выпуск

Раздел

Статьи

Как цитировать

The singular value function, associated with a Maharamtrace: von Neumann algebra, algebra of measurable operators,vector-valued trace, Dedekind complete vector lattice, singular value function, Maharam trace. (2025). Uzbekistan Journal of Mathematics and Computer Science , 1(1), 71-80. https://doi.org/10.56143/ujmcs.v1i1.6

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.