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Об устойчивости решения задачи интегральной
геометрии по неполным данным в пространстве R4

Бегматов Акрам Х.* Исмоилов Алишер С.

Аннотация
В статье изучается задача восстановления функции по интегралам по прямым, лежащим в
плоскостях, проходящих через фиксированную точку в R4, при условии, что направления в
каждой плоскости ограничены сектором. Рассматривается постановка с неполными данными
и доказываются теоремы об единственности и логарифмической устойчивости. Отмечаются
геометрические особенности задачи.

Ключевые слова: интегральная геометрия; неполные данные; устойчивость; гармоническая мера; грассманиан.

Предметная классификацие AMS (2020): 44A12; 35R30; 65R32.

Введение

Задачи интегральной геометрии представляют собой класс задач, в которых по значениям интегралов
неизвестной функции по определённым семействам подмногообразий требуется восстановить саму
функцию. Наиболее известным примером является задача восстановления функции по её значениям
на прямых — рентгеновское преобразование. Такие задачи находят широкое применение в томографии,
геофизике, астрофизике и других прикладных областях.

Однако в большинстве случаев задачи интегральной геометрии оказываются некорректными. В
классической монографии М.М. Лаврентьева [2] была предложена классификация задач интегральной
геометрии на слабо и сильно некорректные. Задачи, в которых оператор обращения не является
непрерывным даже в пространствах с конечным числом производных, относятся к сильно некорректным.

В более ранней работе [1] была исследована задача восстановления функции по её значениям
рентгеновского преобразования при ограниченном наборе направлений в плоском секторе. В работе была
получена логарифмическая оценка устойчивости в условиях сильной некорректности задачи.

Метод, основанный на применении гармонической меры и геометрического построения пучков прямых,
оказался актуальным и применимым в ряде последующих исследований. В частности, в статьях Салазара
[3, 4], Уотерса и Ульмана [5], а также в ряде работ Стефанова, Яна, Сало и др. [6–10] методологические
идеи, изложенные в [1], использовались как основа для анализа устойчивости в задачах геодезического
рентгеновского преобразования, в задачах с временными коэффициентами, а также в задачах на
многообразиях с лоренцовой метрикой.

Для полноты изложения кратко напомним постановку задачи и основные результаты, полученные
нами ранее в работе [1].
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Рассматривалась задача восстановления функции f ∈ C5
0 (Ω), где Ω ⊂ R3 — ограниченная область, по

значениям её интегралов по прямым, проходящим через фиксированную точку x0 и направленным вдоль
неполного множества направлений ω ∈ Γ ⊂ S2. Это соответствует рентгеновскому преобразованию:

Rf(ω) =

∫ ∞

−∞
f(x0 + sω) ds, ω ∈ Γ.

При этом множество направлений Γ описывается как сектор на сфере с центральным углом 2θ0, что
приводит к постановке задачи с неполными данными.

В указанной работе была доказана теорема об единственности восстановления функции, а также
получена логарифмическая оценка устойчивости решения. Основным инструментом служило сведение
задачи к двумерной с помощью конформного отображения сектора на полудиск и применение теории
гармонической меры в плоскости.

В настоящей работе рассматривается задача восстановления функции по значениям её интегралов по
прямым, проходящим через фиксированную вершину двуполостного конуса направлений — точку x0 ∈
R4, расположенную вне замкнутой области B, содержащей носитель искомой функции. Рассматриваются
значения интегралов этой функции по прямым, проходящим через x0 и направленным вдоль неполного
множества направлений ω в каждой двумерной плоскости, содержащей x0.

В пространстве R4 множество возможных двумерных направлений описывается грассманианом
G(2, 4) — многообразием всех двумерных линейных подпространств четырёхмерного пространства.
Каждая точка этого многообразия соответствует плоскости, проходящей через x0. В каждой из этих
плоскостей рассматриваются прямые, ограниченные заданным углом, что позволяет свести задачу
устойчивости к двумерной, где применимы методы анализа на основе гармонической меры. Полученные
локальные оценки затем объединяются путём интегрирования по G(2, 4), что и даёт глобальную оценку
устойчивости.

Однако важно подчеркнуть, что переход от трёхмерного к четырёхмерному пространству R4 требует
не просто обобщения ранее полученных результатов, а постановки принципиально новой задачи.
Методы, использованные в [1] для доказательства устойчивости задачи с неполными данными в R3,
не переносятся напрямую на четырёхмерный случай. Это связано, в частности, с невозможностью
применения конформных отображений и локального сведения задачи к двумерному случаю, как это
делалось ранее.

Проблемы восстановления функций по неполным интегральным данным активно исследуются в
различных постановках интегральной геометрии и обратных задач. В частности, важным направлением
являются задачи, в которых доступна лишь часть информации, ограниченная по геометрическим или
аналитическим причинам. В последние годы было получено множество значимых результатов, связанных
с устойчивостью и единственностью восстановления в подобных условиях.

В работе Уотерса [12] исследуется устойчивость временно-зависимого рентгеновского преобразования
в условиях ограниченной видимости. Рассматривается случай, когда информация поступает только из
определённой области, и доказываются априорные оценки, отражающие логарифмический характер
нестабильности задачи. Эта модель демонстрирует важность локальной геометрии доступных
направлений и мотивирует разработку новых подходов к устойчивости в условиях ограничений.

Стефанов в [13] доказывает теорему о поддержке функции на лоренцовых многообразиях, используя
свойства геодезических потоков и методов микролокального анализа. Несмотря на то что метрика
отличается от евклидовой, геометрическая логика, лежащая в основе восстановления, во многом схожа
с нашей: данные по интегралам вдоль геодезических позволяют судить о функции в области.

В работе Стефанова и Янга [14] исследуется обратная задача Дираихле-Неймана для уравнений
с гиперболическим типом, с акцентом на томографические аспекты в лоренцовой геометрии. Здесь
центральным является вопрос, можно ли по данным на границе области восстановить внутреннюю
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структуру, что близко к нашему стремлению восстановить функцию по интегралам вдоль ограниченного
семейства прямых.

В работе Белласуэда и Бен Айша [15] рассматривается устойчивое восстановление функции, «скрытой»
под маской, в контексте задач обратного распространения волн. Хотя постановка относится к волновой
физике, характер устойчивости — логарифмический, как и в нашей работе, что подчёркивает общую
природу нестабильности в задачах с неполными данными.

Демченко в статье [16] анализирует задачу восстановления источника для волнового уравнения в
условиях частичных данных. Важным является то, что даже при ограниченной информации возможно
доказать устойчивость (пусть и слабую) решения, при условии выполнения определённых геометрических
условий.

Наконец, Илмавирта [17] изучает рентгеновские преобразования на псевдоримановых многообразиях,
с акцентом на параметризацию направлений и инвариантность задачи. Хотя геометрия существенно
отличается от евклидовой, использование многообразий направлений близко к нашему подходу с
грассманианом G(2, 4).

Таким образом, все перечисленные работы подтверждают фундаментальную важность геомет-
рического характера доступных данных, структуру направлений и априорные оценки. Настоящая
статья продолжает и обобщает эту линию исследований, предлагая новую четырёхмерную модель с
использованием расслоенного интегрирования по грассманиану и строгое логарифмическое обоснование
устойчивости и единственности.

Изучение задач интегральной геометрии, связанных с восстановлением функции по её интегралам по
определённым семействам подмножеств, остаётся актуальной как в теоретическом, так и в прикладном
аспектах. При этом особый интерес представляют некорректные задачи, в которых малые изменения
в исходных данных могут приводить к значительным отклонениям в решении. Такие задачи требуют
специальных методов регуляризации и анализа устойчивости.

В предыдущих работах одного из авторов [1–6] были исследованы различные классы слабо
некорректных задач интегральной геометрии, в которых удаётся установить устойчивость решения
в функциональных пространствах типа Соболева. В частности, в статьях [18, 19, 20] получены
логарифмические оценки устойчивости и построены формулы обращения для задач с интегрированием по
параболам, конусам и кривым с особенностями. В работах [22, 23] предложены постановки с разрывными
весовыми функциями и исследованы методы продолжения решения в симметричных областях. В статье
[21] были рассмотрены два класса слабо некорректных задач интегральной геометрии. Первый класс
связан с восстановлением функции по интегралам вдоль кусочно-гладких кривых с особенностью в
вершине на плоскости. Для этого класса получены оценки устойчивости в пространствах конечной
гладкости , доказаны теоремы существования и получены аналитические формулы обращения. Второй
класс задач основан на интегрировании по семействам конусов в n-мерном пространстве. В работе
показано существенное различие между чётномерным и нечётномерным случаями, установлены теоремы
единственности и устойчивости, а также выведены соответствующие формулы обращения.

Настоящая работа посвящена изучению задачи интегральной геометрии в пространстве R4, которая
относится к классу сильно некорректных задач. Основное внимание уделяется построению условия
существования решения, формуле обращения и оценке степени нестабильности задачи. Предложенный
подход является развитием методов, разработанных ранее для задач в пространстве меньшей
размерности, и требует принципиально новых технических средств.
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1. Постановка задачи

Рассмотрим пространство R4 с декартовой системой координат (x1, x2, x3, x4). Пусть B ⊂ R4 —
ограниченная область с гладкой границей. Через π обозначим двумерные линейные подпространства
в R4, принадлежащие многообразию Грассмана G(2, 4), и через l ⊂ π ∩B — отрезки прямых, лежащие в
пересечении π ∩B.

Пусть функция f ∈ C∞
0 (B) задана на отрезках l ⊂ π ∩B, и для каждой такой прямой задан интеграл:

Rf(π, l) =

∫
l

f(x) ds,

где ds — элемент длины на прямой l. Задача заключается в восстановлении функции f(x) в области
B по всем таким интегралам.

Отметим, что область B покрыта лишь подмножеством всех возможных прямых в R4, т.е. имеем дело
с задачей по неполным данным. Такая постановка приводит к сильно некорректной задаче, поскольку
информация ограничена как по направлениям, так и по длине прямых.

Целью работы является:

• установить условия разрешимости задачи;
• получить формулу обращения;
• дать априорные оценки для возможных решений в функциональных пространствах;
• проанализировать степень нестабильности в зависимости от характеристик множества данных.

2. Геометрическая структура задачи

2.1. Пространство направлений: роль G(2, 4)

В трёхмерном случае (R3) множество всех направлений задаётся как подмножество единичной сферы
S2. Это даёт возможность естественно работать с углами и секторами в сферических координатах.

В четырёхмерном случае (R4) мы рассматриваем прямые, лежащие в двумерных плоскостях,
проходящих через точку x0. Такие плоскости описываются грассманианом:

G(2, 4) = многообразие всех двумерных линейных подпространств в R4.

Это компактное 4-мерное многообразие (см. [7, 3]). Таким образом, направление задаётся не просто
вектором, а плоскостью π и направлением внутри неё.

2.2. Как строятся плоскости π и семейство прямых

Фиксируем точку x0 ∈ R4. Через неё проходит всё множество двумерных линейных подпространств
π ∈ G(2, 4). В каждой такой плоскости фиксируется сектор направлений (например, с центральным углом
θ), и рассматриваются прямые, проходящие через x0 в этих направлениях.

Итак, множество прямых — это объединение всех локальных пучков прямых, заданных в плоскостях
π ∈ Π ⊂ G(2, 4), с локальным ограничением по углу.

2.3. Покрытие области B

Пусть B ⊂ R4 — ограниченная область, содержащая x0. Мы рассматриваем семейство прямых,
формируемое так:
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• для каждой плоскости π ∈ Π ⊂ G(2, 4),
• фиксируется сектор направлений Γπ ⊂ S1

π,
• рассматриваются прямые L, проходящие через x0 в этих направлениях,
• эти прямые ограничиваются отрезками, лежащими в B.

Таким образом, получается частичное покрытие области B направленными отрезками.

2.4. Визуализация: построение семейства прямых из x0

Процесс можно описать так:

1. В точке x0 фиксируется плоскость π.

2. В ней выделяется сектор направлений Γπ.

3. Через x0 и каждое направление из Γπ проводится прямая.

4. Повторяя это для различных π, получаем семейство прямых, «веером» заполняющих окрестность
x0.

Объединяя все такие прямые, мы строим множество «частичных лучей» в R4, по которым
интегрируется функция f(x).

2.5. Заключение

Геометрическая структура задачи определяется двумя уровнями параметризации: выбором плоскости
π ∈ G(2, 4) и направлением внутри неё. Пространство направлений представляет собой волокнистое
пространство: над каждой точкой G(2, 4) висит S1. Это делает задачу существенно более сложной и
исключает прямое использование методов из R3.

3. Вспомогательная лемма

Рассмотрим ограниченную область B ⊂ R4, содержащую точку x0. Пусть Π ⊂ G(2, 4) — семейство
двумерных плоскостей, проходящих через x0, и в каждой π ∈ Π задан сектор направлений Γπ ⊂ S1

π.
Пусть f ∈ C0(B) — непрерывная функция с компактным носителем в B, и известны значения её

интегралов по отрезкам всех прямых, проходящих через x0 в направлениях из Γπ, во всех π ∈ Π.
Обозначим это интегральное преобразование через Rf .

Лемма (о логарифмической устойчивости). Пусть функция f ∈ C0(B), и пусть Rf известна в описанном
выше неполном классе направлений. Тогда существует постоянная C > 0, зависящая только от области
B, семейства плоскостей Π ⊂ G(2, 4) и секторов Γπ, такая что

∥f∥L2(B) ≤ C

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)

)1/2

,

где:

• θ ∈ Γπ ⊂ S1 — параметр направления в плоскости π,
• dµ(π) — мера Хаара на G(2, 4),
• Rf(π, θ) — интеграл функции f по отрезку в направлении θ из x0 в плоскости π.

5 tstu.uz/en/pub/UJMCS

https://tstu.uz/


Об устойчивости решения задачи интегральной геометрии

Доказательство. Рассмотрим фиксированную плоскость π ∈ G(2, 4), проходящую через точку x0.
Тогда задача сводится к двумерной: необходимо оценить норму функции f , ограниченной на B ∩ π, по
значениям её интегралов по отрезкам, исходящим из точки x0 в направлениях θ ∈ Γπ.

В двумерном случае аналогичная задача изучена в работе [1], где получена логарифмическая
априорная оценка

∥f∥L2(B∩π) ≤
Cπ√
| log ε|

(∫
Γπ

|Rf(π, θ)|2dθ
)1/2

,

где ε — мера ширины сектора Γπ. Такая оценка получается с помощью построения функции u(z),
гармонической в плоскости π, значения которой на границе сектора контролируются данными, и
применения теоремы о гармонической мере (см. также [3]).

Далее, интегрируя полученные двумерные оценки по всем π ∈ Π ⊂ G(2, 4) относительно меры Хаара
µ(π), получаем ∫

G(2,4)

∥f |π∥2L2(B∩π)dµ(π) ≤ C

∫
Π

∫
Γπ

|Rf(π, θ)|2dθ dµ(π).

Поскольку семейство плоскостей Π достаточно, чтобы покрыть область B, левая часть оценивает
полную норму ∥f∥L2(B). Отсюда и следует утверждение леммы.

Замечание о мере Хаара. Мера µ(π) является инвариантной относительно действия группы SO(4) на
грассманиане G(2, 4) ∼= SO(4)/[SO(2)× SO(2)]. Она играет аналогичную роль мере Лебега на евклидовом
пространстве. Конструкции и свойства такой меры подробно рассмотрены в [4, 5].

4. Теорема единственности

4.1. Формулировка

Теорема. Пусть f ∈ C0(B), где B ⊂ R4 — ограниченная область. Предположим, что для всех π ∈ Π ⊂
G(2, 4) и всех направлений θ ∈ Γπ ⊂ S1

π, выполняется

Rf(π, θ) =

∫
Lπ,θ

f(x) ds = 0,

где Lπ,θ ⊂ π — отрезок прямой, проходящий через фиксированную точку x0 ∈ B в направлении θ и
лежащий в плоскости π.

Предположим также, что семейство отрезков {Lπ,θ} покрывает область B в следующем смысле:

∀x ∈ B ∃π ∈ Π, θ ∈ Γπ : x ∈ Lπ,θ.

Тогда f(x) = 0 для всех x ∈ B.

4.2. Доказательство

Рассмотрим произвольную плоскость π ∈ Π. Тогда ограничение функции f на π представляет собой
непрерывную функцию f |π ∈ C0(B ∩ π). По предположению, для всех направлений θ ∈ Γπ имеем:∫

Lπ,θ

f(x) ds = 0.

То есть известны значения интегралов функции по отрезкам, лежащим в плоскости π, направленным
в секторе Γπ, и проходящим через точку x0. Это означает, что в каждой плоскости решается задача
восстановления функции по интегралам по пучку направлений, исходящих из одной точки.
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Согласно результатам, доказанным в [1], в двумерном случае (в плоскости) такая система интегралов
однозначно определяет функцию, при условии, что сектор направлений Γπ содержит открытую дугу.
Следовательно,

f |B∩π ≡ 0.

Так как множество плоскостей π ∈ Π таково, что для каждой точки x ∈ B найдётся отрезок Lπ,θ ∋ x,
на котором интеграл функции равен нулю, и, следовательно, функция обнуляется в каждой плоскости,
охватывающей x, то получаем:

∀x ∈ B f(x) = 0.

Таким образом, f ≡ 0 в B. Теорема доказана.

4.3. Заключение и замечания

Доказанная теорема утверждает, что знание интегралов функции по семейству отрезков, лежащих в
фиксированных двумерных плоскостях и проходящих через одну точку, при условии охвата области B,
обеспечивает однозначность восстановления функции.

Это результат существенно отличается от классических задач преобразования Радона, поскольку:

• направление интегрирования ограничено локальными пучками в каждой плоскости;
• пространство направлений параметризуется не сферой, а грассманианом G(2, 4);
• отсутствует возможность сведения задачи к двумерной глобальной постановке.

Важнейшую роль играет условие покрытия: без него возможны нетривиальные функции,
ортогональные к системе отрезков. Теорема, таким образом, подтверждает корректность самой
постановки задачи восстановления при наличии априорных геометрических условий.

5. Теорема устойчивости

5.1. Формулировка

Теорема. Пусть f ∈ C0(B), где B ⊂ R4 — ограниченная область. Пусть точка x0 ∈ B, и пусть для
каждого двумерного линейного подпространства π ∈ Π ⊂ G(2, 4), проходящего через x0, зафиксирован
сектор направлений Γπ ⊂ S1

π. Предположим, что для всех (π, θ) ∈ Π× Γπ, известны значения интегралов

Rf(π, θ) :=

∫
Lπ,θ

f(x) ds,

где Lπ,θ ⊂ π — отрезок прямой, проходящий через x0 в направлении θ и лежащий в области B.
Предположим, что множество всех таких отрезков покрывает область B в смысле:

∀x ∈ B ∃π ∈ Π, θ ∈ Γπ такие, что x ∈ Lπ,θ.

Тогда существует константа C > 0, зависящая только от области B, геометрии системы {Γπ}, и точки
x0, такая что

∥f∥L2(B) ≤
C√
| log ε|

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)
)1/2

,

где ε → 0 — параметр, характеризующий узость секторов Γπ.
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5.2. Доказательство

Шаг 1. Локальная оценка в фиксированной плоскости. Зафиксируем π ∈ Π. Тогда в этой плоскости
задача сводится к восстановлению функции fπ := f |π ∈ C0(B ∩ π) ⊂ R2 по интегралам по отрезкам Lπ,θ,
проходящим через точку x0 ∈ π в направлениях θ ∈ Γπ ⊂ S1.

Пусть Dπ := B ∩ π. Согласно теореме из [1], в такой двумерной постановке справедлива априорная
оценка:

∥fπ∥L2(Dπ) ≤
C1(π)√
| log ε|

(∫
Γπ

|Rf(π, θ)|2 dθ
)1/2

.

Доказательство этой оценки основано на построении вспомогательной субгармонической функции
u(z), гармонической в Dπ \ {x0}, принимающей значения, определяемые преобразованием Rf(π, θ), и
применении интегральной теоремы о средних (см. [3]).

Шаг 2. Интегрирование по пространству плоскостей. Интегрируя полученную оценку по всем π ∈ Π ⊂
G(2, 4) с использованием меры Хаара µ(π), получаем:∫

Π

∥fπ∥2L2(Dπ)
dµ(π) ≤ C2

| log ε|

∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π).

Согласно результатам интегральной геометрии (см. [5], [4]), при условии, что множество отрезков {Lπ,θ}
покрывает B, это усреднение обеспечивает мажоранту всей нормы:

∥f∥2L2(B) ≤ C3

∫
Π

∥fπ∥2L2(Dπ)
dµ(π).

Подставляя предыдущую оценку, получаем

∥f∥L2(B) ≤
C√
| log ε|

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)
)1/2

.

Теорема доказана.

5.3. Заключение

Полученная логарифмическая оценка демонстрирует характерную для задач с неполными данными
слабую устойчивость. Появление логарифма связано с деградацией гармонической меры при сужении
сектора направлений: для секторов Γπ с угловой шириной порядка ε, вес в центральной точке x0 убывает
как | log ε|−1, что и отражается в правой части оценки.

Таким образом, при любых ограничениях на направление интегрирования, сохраняющих покрытие
области B, задача остаётся устойчивой, хотя и с существенно более слабой оценкой, чем в случае полной
информации.

6. Обсуждение и приложения

6.1. Связь с задачами геодезического типа

Рассматриваемая задача относится к классу задач интегральной геометрии с частичными данными.
Существуют аналогии с задачами геодезической томографии, в которых изучаются интегралы по
геодезическим линиям на римановых или псевдоримановых многообразиях (см. [6]). Однако, в отличие
от таких задач, где линии интегрирования определяются метрикой и не всегда являются линейными, в
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нашей постановке рассматриваются только прямолинейные отрезки, расположенные в фиксированных
двумерных плоскостях.

Таким образом, наша задача ближе по духу к преобразованию Радона, но с существенным
ограничением: интегрирование не происходит по всему пространству направлений, а только по суженным
пучкам в ограниченных подмногообразиях G(2, 4)× S1.

6.2. Принципиальные отличия от задач на многообразиях

Задача, рассматриваемая в данной работе, формулируется в евклидовом пространстве R4, но с
параметризацией, не обладающей полной симметрией. Напомним, что в трёхмерной постановке (R3)
возможно использование конформных преобразований и редукция задачи к двумерной (см. [1]). В
четырёхмерном случае такой редукции не существует: грассманиан G(2, 4) не допускает конформной
структуры, согласующейся с евклидовой метрикой.

Кроме того, интегрирование происходит по семейству двумерных сечений, что существенно усложняет
геометрию задачи и исключает прямое использование стандартных методов спектральной теории или
вариационных подходов.

6.3. О возможности обобщения на Rn

Одним из возможных направлений обобщения является постановка аналогичной задачи в Rn при
фиксированной размерности интегрирующих подпространств — например, двумерных или k-мерных.

Однако, как показал анализ, при увеличении размерности пространства резко усложняется структура
грассманиана G(k, n), что приводит к существенным трудностям:

• мера Хаара становится всё менее конструктивной;
• отсутствует инвариантность направлений относительно подгрупп движений;
• ухудшается локальная устойчивость: логарифмические оценки заменяются на сублогарифмические

(см. [8], [9]).

Таким образом, хотя теоретическая постановка задачи возможна и в произвольной размерности,
переход к Rn требует существенной модификации методов.

7. Заключение

В данной работе рассмотрена новая постановка задачи интегральной геометрии с неполными данными
в четырёхмерном евклидовом пространстве R4. В отличие от классических преобразований Радона и их
модификаций в R2 и R3, данная задача отличается следующими особенностями:

• интегрирование происходит по пучкам прямых, лежащих в двумерных линейных подпространствах;
• направления интегрирования параметризуются элементами грассманиана G(2, 4) и секторами Γπ ⊂

S1
π;

• отсутствует возможность сведения к двумерной задаче через конформные преобразования;
• пространственная структура охвата определяется системой подпространств и требует анализа на

многообразии G(2, 4).

В рамках данной постановки нами доказаны следующие результаты:

1. Теорема единственности: при условии, что семейство направлений покрывает область B, знание
интегралов по соответствующим отрезкам однозначно определяет функцию;
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2. Теорема устойчивости: получена логарифмическая априорная оценка нормы функции через
интегралы по неполному семейству прямых. Характер оценки обусловлен геометрическим
вырождением гармонической меры при сужении сектора направлений;

3. Построена строгая геометрическая модель задачи через параметризацию G(2, 4), уточнена роль
меры Хаара и доказана вспомогательная лемма, дающая ключевую оценку по частичным данным.

Особенностью данной постановки является её потенциальная применимость к задачам с
локализованным доступом к данным (например, в математических моделях, описывающих ограниченное
поле зрения датчиков или частичные потоки информации).

Будущие исследования могут быть направлены на:

• обобщение полученных результатов на произвольную размерность Rn и более высокие
грассманианы G(k, n);

• изучение аналогичных задач на римановых многообразиях с ограниченным набором геодезических
направлений;

• разработку численных алгоритмов, использующих доказанные априорные оценки в качестве базиса
для регуляризации некорректных задач.

Таким образом, представленная работа не только предлагает новую постановку и её строгое
математическое обоснование, но и открывает возможности для дальнейшего развития методов частичной
интегральной геометрии в многомерных пространствах.
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On the Stability of the Solution to an Integral Geometry Problem from
Incomplete Data in R4

Akram K. Begmatov, Alisher S. Ismoilov

Abstract

This paper addresses an inverse problem in integral geometry in four-dimensional space R4 based on incomplete
data. The problem involves recovering a function defined in a bounded domain from its integrals along line
segments lying in two-dimensional planes intersecting the domain. The incompleteness arises due to the
restriction on the set of available directions and lengths of the lines, which leads to a severely ill-posed problem.
A constructive inversion formula is proposed under geometric constraints, and a priori estimates are derived.
The results obtained lay the foundation for applying the method in tomographic and geophysical problems
with limited observational geometry.

Affiliations

Акрам Х. Бегматов
Address: Ташкентский государственный транспортный университет, Ташкент, Узбекистан
e-mail: begmatov59@gmail.com
ORCID ID: https://orcid.org/0000-0002-2813-7653

Алишер С. Исмоилов
Address: Узбекско-Финский педагогический институт, Самарканд, Узбекистан
e-mail: alisher_8778@mail.ru
ORCID ID:

11 tstu.uz/en/pub/UJMCS

https://tstu.uz/


Uzbekistan Journal of Mathematics and Computer Science
Volume 1 No. 2 Page 11–17 (2025)
DOI: https://doi.org/10.56143/ujmcs.v1i2.2
Research article

Non hyperbolic trajectory of a quasi-non Volterra cubic
stochastic operator

A. Y. Khamrayev,∗ A.R. Doniyorov

Abstract
In this paper, we study the dynamics of a quasi-Non-Volterra cubic stochastic operator defined
on a finite-dimensional simplex. Unlike classical Volterra-type operators, the quasi-Non-Volterra
structure allows for more general interactions among population components, leading to richer
dynamical behavior. We identify the fixed points of the operator and analyze their nature by
studying the spectrum of the Jacobian matrix. Special attention is given to non-hyperbolic
trajectories, where the linearized system exhibits eigenvalues on the unit circle, indicating
neutral stability. Furthermore, we construct a suitable Lyapunov function to investigate the
asymptotic behavior of trajectories and demonstrate stability conditions for the fixed points.
The results contribute to the theoretical understanding of higher-order stochastic operators
and their applications in population dynamics and evolutionary systems.
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1. Introduction

Let 𝐸 = {1, 2, . . . , 𝑚}. By the (𝑚 − 1)-simplex we mean the set

𝑆𝑚−1 =

{
x ∈ 𝑅𝑚 : 𝑥𝑖 ≥ 0,

𝑚∑︁
𝑖=1

𝑥𝑖 = 1

}
Each element x ∈ 𝑆𝑚−1 is a probability measure on 𝐸 , and so it may be looked upon as the state of a biological
(physical and so on) system of 𝑚 elements.

A cubic stochastic operator is a mapping 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1 of the form

𝑉 : 𝑥′𝑙 =
𝑚∑︁

𝑖, 𝑗 ,𝑘=1

𝑝𝑖 𝑗𝑘,𝑙𝑥𝑖𝑥 𝑗𝑥𝑘 , 𝑙 = 1, . . . , 𝑚, (1.1)

where 𝑝𝑖 𝑗𝑘,𝑙 are coefficients of heredity such that

𝑝𝑖 𝑗𝑘,𝑙 ≥ 0,
𝑚∑︁
𝑙=1

𝑝𝑖 𝑗𝑘,𝑙 = 1, 𝑖, 𝑗 , 𝑘, 𝑙 = 1, . . . , 𝑚, (1.2)
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and the coefficients 𝑝𝑖 𝑗𝑘,𝑙 do not change for any permutation of 𝑖, 𝑗 and 𝑘 if the types are not related with sex.
For a given x(0) ∈ 𝑆𝑚−1 the trajectory x(𝑛) , 𝑛 = 0, 1, 2, . . . , of an initial point x(0) under the action of the

CSO (1.1) is defined by x(𝑛+1) = 𝑉 (x(𝑛) ), where 𝑛 = 0, 1, 2, . . . .
One of the main problems in mathematical biology consists of the study of the asymptotical behaviour of

the trajectories. Note that the main problem is open even in two-dimensional case.
In [13, 14, 15, 11] this problem was considered for a class of Volterra CSO. A NoVolterra CSO is defined

by (1.1), (1.2) and with the additional assumption

𝑝𝑖 𝑗𝑘,𝑙 = 0 if 𝑙 ∈ {𝑖, 𝑗 , 𝑘}.

In [13] a notion cubic stochastic operator (CSO) was introduced and investigated. A CSO which is a convex
combination of regular and non-ergodic operators was studied in [8]. Random dynamics of Volterra CSOs was
studied in [4]. In [12] blue the authors constructed a cubic stochastic operator. A class of non-Volterra CSO
which is called the class of conditional cubic stochastic operators was studied in [2]. If the following condition
is satisfied for the determined operator coefficients,

𝑝𝑖𝑖𝑖,𝑖 > 0 if 𝑖 = 1, . . . , 𝑛.

then the operator of this from is called quasi-Volterrsa stochastic operator In the present paper we consider
non-contrained Volterra cubic stochastic operators defined on the two-dimensional simplex. In Section 2 we
recall some definitions and known results. In Section 3 for a non-contrained Volterra CSO, we found its
invariant sets, fixed points and the types of fixed points. Therein we showed that any trajectory starting from
the simplex converges to a fixed point, so such operator has the property being regular.

2. Preliminaries

A point x ∈ 𝑆𝑚−1 is called a periodic point of𝑊 if there exists an 𝑛 so that𝑊𝑛 (x) = x. The smallest positive
integer 𝑛 satisfying the above is called the prime period or least period of the point x. A period-one point is
called a fixed point of 𝑊 . Denote by Fix (𝑊) the set of all fixed points of the operator 𝑊 , i.e.

Fix (𝑊) =
{
x ∈ 𝑆2 : 𝑊 (x) = x

}
.

Let 𝐷𝑊 (x∗) = (𝜕𝑊𝑖/𝜕𝑥 𝑗) (x∗) be a Jacobian of 𝑊 at the point x∗.

Definition 2.1. A fixed point x∗ is called hyperbolic if its Jacobian 𝐷𝑊 (x∗) has no eigenvalues on the unit
circle in C.

Definition 2.2. A hyperbolic fixed point x∗ is called:

i) attracting if all the eigenvalues of the Jacobian 𝐷𝑊 (x∗) are in the unit disk;
ii) repelling if all the eigenvalues of the Jacobian 𝐷𝑊 (x∗) are outside the closed unit disk;
iii) a saddle otherwise.

Definition 2.3. A continuous function 𝜑 : 𝑆𝑚−1 → R is called a Lyapunov function for a CSO𝑊 if there exists
the limit lim

𝑛→∞
𝜑
(
x(𝑛) ) for all x ∈ 𝑆𝑚−1.
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3. Main results

Consider a CSO 𝑊 : 𝑆2 → 𝑆2 which has the form:

𝑊 :


𝑥′ = 1

3 (𝑥
3 + 𝑦3 + 𝑧3) + 3𝑥2𝑦 + 3𝑦2𝑧 + 2𝑥𝑦𝑧

𝑦′ = 1
3 (𝑥

3 + 𝑦3 + 𝑧3) + 3𝑦2𝑥 + 3𝑥2𝑧 + 2𝑥𝑦𝑧

𝑧′ = 1
3 (𝑥

3 + 𝑦3 + 𝑧3) + 3𝑧2𝑦 + 3𝑧2𝑥 + 2𝑥𝑦𝑧

(3.1)

It is easy to see that the CSO 𝑊 is a nonVolterra CSO. Let a face of the simplex 𝑆2 be the set Γ𝛼 = {x ∈ 𝑆2 :
𝑥𝑖 = 0, 𝑖 ∉ 𝛼 ⊂ {1, 2, 3}}. Let the set int 𝑆2 =

{
x ∈ 𝑆2 : 𝑥1𝑥2𝑥3 > 0

}
and let the set 𝜕𝑆2 = 𝑆2\int 𝑆2 be the

interior and the boundary of the simplex 𝑆2, respectively. Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be
the vertexes of the two-dimensional simplex.

𝑥′ − 𝑦′ = (𝑥 − 𝑦) (3𝑥𝑦 − 3𝑧(𝑥 + 𝑦)) (3.2)

this implies that the set {(𝑥, 𝑦, 𝑧) ∈ 𝑆2, 𝑥 = 𝑦} is invariant. First, we find the fixed points of this operator. The
fixed point of the operator 𝑊 is as follows.

𝑥 = 1
3 (𝑥

3 + 𝑦3 + 𝑧3) + 3𝑥2𝑦 + 3𝑦2𝑧 + 2𝑥𝑦𝑧

𝑦 = 1
3 (𝑥

3 + 𝑦3 + 𝑧3) + 3𝑦2𝑥 + 3𝑥2𝑧 + 2𝑥𝑦𝑧

𝑧 = 1
3 (𝑥

3 + 𝑦3 + 𝑧3) + 3𝑧2𝑦 + 3𝑧2𝑥 + 2𝑥𝑦𝑧

. (3.3)

it means the solution of the system. We analyze the resulting equation by splitting it into two parts.

𝑥 − 𝑦 = 0 3𝑥𝑦 − 3𝑧(𝑥 + 𝑦) − 1 ≠ 0 (3.4a)
3𝑥𝑦 − 3𝑧(𝑥 + 𝑦) − 1 = 0 𝑥 − 𝑦 ≠ 0 (3.4b)

First, let’s examine the case of (3.4a).
Thus, the median 𝑥 = 𝑦 is invariant. 𝑀 = {(𝑥, 𝑦, 𝑧) ∈ 𝑆2 : 𝑥 = 𝑦}Let’s search for a fixed point on this median.

Since the considered domain is a simplex, the condition 𝑥 + 𝑦 + 𝑧 = 1 holds. If we consider this equation on
the median 𝑥 = 𝑦, we obtain the equation 𝑧 = 1 − 2𝑥. Let us introduce the following notation:

𝑥′ = 𝑓 (𝑥) = 1
3
(𝑥3 + 𝑥3 + (1 − 2𝑥)3) + 3𝑥3 + 3𝑥2(1 − 2𝑥) + 2𝑥2(1 − 2𝑥), 𝑥 ∈ [0; 1] .

𝑓 (𝑥) = −1
3 (3𝑥 − 1)3 + 𝑥. Let’s solve the equation 𝑥′ = 𝑥. The solution of this equation is 𝑥 = 1

3

𝑓 ′(𝑥) = −3(3𝑥 − 1)2 + 1

| 𝑓 ′
(

1
3

)
| = 1

. (3.5)

Thus, 𝑥∗ = 1
3 is a non-hyperbolic fixed point for the function 𝑓 (𝑥).

Theorem 3.1 ([1]). Let 𝑥∗ to be a fixed point of 𝑥𝑛+1 = 𝑓 (𝑥𝑛). Suppose that 𝑓 ∈ 𝐶3(𝑅) and 𝑓 ′(𝑥∗) = 1.
(i) If 𝑓 ”(𝑥∗) ≠ 0, then 𝑥∗ is unstable.
(ii) If 𝑓 ”(𝑥∗) = 0 and 𝑓 ′′′(𝑥∗) > 0, then 𝑥∗ is unstable.
(iii) If 𝑓 ”(𝑥∗) = 0 and 𝑓 ′′′(𝑥∗) < 0, then 𝑥∗ is asymptotically stable.

Thus, 1
3 is an asymptotically stable fixed point.

Let’s analyze (3.4b).
3𝑥𝑦 − 3𝑧(𝑥 + 𝑦) − 1 = 0
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3𝑥𝑦 − 3(1 − (𝑥 + 𝑦)) (𝑥 + 𝑦) − 1 = 0

3𝑦2 + 3(3𝑥 − 1)𝑦 + 3𝑥2 − 3𝑥 − 1 = 0.

Let’s solve the equation with respect to 𝑦.

𝑦1 =
3(1 − 3𝑥) +

√
45𝑥2 − 18𝑥 + 21
6

, 𝑦2 =
3(1 − 3𝑥) −

√
45𝑥2 − 18𝑥 + 21
6

(3.6)

Since 𝑦2 < 0, it does not belong to the simplex, and since 𝑥 + 𝑦1 > 1, this also does not belong to the simplex.
Thus, equation (3.4b) has no solution in the simplex.

From the above, it follows that 𝑥 =

(
1
3 ,

1
3 ,

1
3

)
∈ 𝑆2 is the unique fixed point. Now, let’s determine its

type. To do this, we construct the Jacobian matrix and find its eigenvalues. Let us introduce the following
notation:

𝑓 (𝑥, 𝑦) = 1
3
(𝑥3 + 𝑦3 + (1 − 𝑥 − 𝑦)3) + 3𝑥2𝑦 + 3𝑦2(1 − 𝑥 − 𝑦) + 2𝑥𝑦(1 − 𝑥 − 𝑦) (3.7a)

𝑔(𝑥, 𝑦) = 1
3
(𝑥3 + 𝑦3 + (1 − 𝑥 − 𝑦)3) + 3𝑦2𝑥 + 3𝑥2(1 − 𝑥 − 𝑦) + 2𝑥𝑦(1 − 𝑥 − 𝑦) (3.7b)

From (3.7a) and (3.7b), we take the partial derivatives with respect to 𝑥 and 𝑦.

𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑥

=
1
3
(3𝑥2 − 3(1 − 𝑥 − 𝑦)2) + 6𝑥𝑦 − 3𝑦2 + 2𝑦(1 − 𝑥 − 𝑦) − 2𝑥𝑦,

𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑦

=
1
3
(3𝑦2 − 3(1 − 𝑥 − 𝑦)2) + 3𝑥2 + 6𝑦(1 − 𝑥 − 𝑦) − 3𝑦2 + 2𝑥(1 − 𝑥 − 𝑦) − 2𝑥𝑦,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑥

=
1
3
(3𝑥2 − 3(1 − 𝑥 − 𝑦)2) + 3𝑦2 + 6𝑥(1 − 𝑥 − 𝑦) − 3𝑥2 + 2𝑦(1 − 𝑥 − 𝑦) − 2𝑥𝑦,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑦

=
1
3
(3𝑦2 − 3(1 − 𝑥 − 𝑦)2) + 6𝑥𝑦 − 3𝑥2 + 2𝑥(1 − 𝑥 − 𝑦) − 2𝑥𝑦,

𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑥

����
( 1

3 ,
1
3 )

=
1
3
,

𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑦

����
( 1

3 ,
1
3 )

=
2
3
,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑥

����
( 1

3 ,
1
3 )

=
2
3
,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑦

����
( 1

3 ,
1
3 )

=
1
3

(3.8)

���� 13 − 𝜆 2
3

2
3

1
3 − 𝜆

���� = 0 (3.9)

|𝜆1 | = 1
3 , |𝜆1 | = 1. Thus, 𝜔 is a non-hyperbolic fixed point.

Lemma 3.1. Let 𝜙 : 𝑆2 → 𝑅, be the mapping given by 𝜙 = 3𝑥𝑦 − 3𝑧(𝑥 + 𝑦). Then, the inequality

|𝜙(𝑥, 𝑦, 𝑧) | < 3
4

holds.

Proof:
0 < 𝑧(𝑥 + 𝑦) ≤

(
3 · 𝑥 + 𝑦 + 𝑧

3 · 2

)2
=

1
4

𝑥𝑦 − 1
4
≤ 𝑥𝑦 − 𝑧(𝑥 + 𝑦) < 𝑥𝑦 <

(𝑥 + 𝑦

2

)2
=

(
1 − 𝑧

2

)2

≤ 1
4
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3
(
𝑥𝑦 − 1

4

)
≤ 3(𝑥𝑦 − 3𝑧(𝑥 + 𝑦)) ≤ 3

4

𝜑 : 𝑖𝑛𝑡𝑆2 → 𝑅, 𝜑(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑦 |

𝜑(𝑥′, 𝑦′, 𝑧′) = |𝑥′ − 𝑦′ | = |𝑥 − 𝑦 | |3𝑥𝑦 − 3𝑧(𝑥 + 𝑦) | = 𝜑(𝑥, 𝑦, 𝑧) |3𝑥𝑦 − 3𝑧(𝑥 + 𝑦) | ≤ 3
4
𝜑(𝑥, 𝑦, 𝑧) (3.10)

Lemma 3.2. ∀(𝑥0, 𝑦0, 𝑧0) ∈ 𝑆2, if we construct the following sequence: 𝜑(𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1) =
𝜑(𝑊𝑛 (𝑥0, 𝑦0, 𝑧0)). Then, the following holds:

lim
𝑛→∞

𝜑𝑛 (𝑥0, 𝑦0, 𝑧0) = 0 (3.11)

∀𝜆 = (𝑥, 𝑦, 𝑧) ∈ 𝑆2, 𝑊𝑛 (𝜆) ∈ 𝑀 .

From the theorem above, it follows that the trajectory of any chosen point converges to the median, and we
have previously shown that the median is invariant.

Lemma 3.3. For any point 𝜆 ∈ 𝑀

lim
𝑛→∞

𝑓 𝑛 (𝜆) = 1
3

(3.12)

Proof. Let’s find the extremum points of the function 𝑓 (𝑥).

𝑓 ′(𝑥) = −3(3𝑥 − 1)2 + 1 = 0, 𝑥2 =

√
3 + 1

3
√

3
, 𝑥1 =

√
3 − 1

3
√

3
.

Since 𝑥2 > 0.5, it does not belong to the simplex. The function is decreasing from 0 to 𝑥1 and increasing
from 𝑥1 to 0.5. Let’s analyze the domain by dividing it into three parts:

[0; 𝑥1] (3.13a)
[𝑥1; 𝑥∗] (3.13b)
[𝑥∗; 0.5] (3.13c)

First, let’s prove it in the interval (3.13b). Since the function 𝑓 (𝑥) is increasing and 𝑥∗ is a fixed point, it
is bounded. 𝑓 (𝑥) − 𝑥 = − 1

3 (3𝑥 − 1)3 > 0 thus 𝑓 (𝑥) > 𝑥. The inequality holds

𝑓 𝑛+1(𝑥) > 𝑓 𝑛 (𝑥).

From this, it follows that the sequence { 𝑓 𝑛 (𝑥)} is monotonically increasing. Since it is both monotonically
increasing and bounded, we conclude that

∀𝜆 ∈ [𝑥1; 𝑥∗] lim
𝑛→∞

𝑓 𝑛 (𝜆) = 1
3

Secondly, let’s prove it for the segment (3.13a). Since 𝑓 (0) = 1
3 and the function 𝑓 (𝑥) is decreasing in

this segment, we have 𝑓 (𝑥1) < 𝑓 (𝑥) < 𝑓 (0) = 1
3 . This, we can conclude that for any ∀𝜆 ∈ [0; 𝑥1], its image is

mapped to the segment [𝑥1; 𝑥∗].
Thirdly, let’s prove it for the interval (3.13c). In this interval, the function 𝑓 (𝑥) is decreasing and is

bounded below by 𝑓 (𝑥∗) = 1
3 . 𝑓 (𝑥) − 𝑥 = − 1

3 (3𝑥 − 1)3 < 0 and 𝑓 (𝑥) < 𝑥. Thus

𝑓 𝑛+1(𝑥) < 𝑓 𝑛 (𝑥).
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From this, it follows that the sequence 𝑓 𝑛 (𝑥) is monotonically decreasing. Since it is both monotonically
decreasing and bounded, we conclude that

∀𝜆 ∈ [𝑥∗; 0.5] lim
𝑛→∞

𝑓 𝑛 (𝜆) = 1
3

□

Theorem 3.2. For any point 𝜆 ∈ 𝑆2, lim
𝑛→∞

𝑊𝑛 (𝜆) ⊂ 𝑀.

Where 𝑀 =
{
𝜆 = (𝑥, 𝑦, 𝑧) ∈ 𝑆2 : 𝑥 = 𝑦

}
.

4. Conclusion

In this study, we investigated the dynamical behavior of a quasi-Non-Volterra cubic stochastic operator acting
on a finite-dimensional simplex. The analysis revealed that the operator admits multiple fixed points, and their
local dynamics depend on the eigenvalue spectrum of the corresponding Jacobian matrix. In particular, we
identified non-hyperbolic trajectories emerging near certain fixed points, where linearization fails to provide
conclusive stability due to the presence of eigenvalues on the unit circle.

To further analyze the global behavior of the system, we constructed a Lyapunov function, which allowed
us to establish sufficient conditions for stability and to describe the asymptotic behavior of trajectories. The
existence of such a function indicates that despite the presence of non-hyperbolic dynamics, the system exhibits
regions of predictable long-term behavior.

Overall, the results contribute to a deeper understanding of higher-order stochastic models in population
dynamics, especially those deviating from the classical Volterra framework. Future research can explore
bifurcation phenomena and the global phase portrait of such operators to gain a more comprehensive view of
their dynamics.

This research was conducted within the framework of the fundamental and applied research project No.
AL-9224093956-R5 entitled “Dynamics and Applications of Cubic Stochastic Operators.”
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Защита Зданий от Сейсмических Волн с Помощью
Сухого Трения и Демпферов

Мирзаев И., Турдиев М.С.* и Рахматов Н.Б.

Аннотация
В данной исследовательской работе рассматривается задача сейсмоизоляции девятиэтажного
здания под воздействием 4 различных реальных сейсмических волн путем совместного
использования сейсмоизоляторов сухого трения и резинометаллических демпферов. Изучено
влияние сейсмических волн на величину сдвиговой силы в здании в результате увеличения и
уменьшения их количества.

Ключевые слова: сухое трение; сейсмоизоляция; резинометаллический демпфер.

Предметная классификацие AMS (2020): Основная: 74-XX; Дополнительная: 74Jxx; 74Kxx; 74K10; 70F35; 74Pxx; 86A15.

Введение
В мире особое внимание уделяется строительству зданий с сейсмозащитными устройствами,

позволяющими повысить сейсмостойкость и надежность зданий и сооружений при воздействии сильных
сейсмических волн. В настоящее время в развитых странах, таких как США, Япония, Германия,
Россия, Италия и Китай, ведутся работы по созданию новых эффективных типов сейсмозащитных
устройств для различных частей несущих конструкций зданий и сооружений с широким использованием
местного сырья, учитывая их долговременную эксплуатацию [1-3]. В данной исследовательской
работе рассматривается задача сейсмоизоляции девятиэтажного здания под воздействием 4 различных
реальных сейсмических волн путем совместного использования сейсмоизоляторов сухого трения и
резинометаллических демпферов. Изучено влияние сейсмических волн на величину сдвиговой силы в
здании в результате увеличения и уменьшения их количества.

1. Метод
Пусть горизонтальное движение основания конструкции задано в виде акселерограммы действитель-

ного землетрясения. Здание представим одномерной сдвиговой моделью с сосредоточенными массами и
безынерционными упругими связами. Для данной конструкции применяем конечные элементы смещения,
в результате чего приходим к следующей системе простых дифференциальных уравнений [4, 5]:

[M ] · {Ü}+ [C] · {U̇}+ [K] · {U} = {Q(t)},
{U} = 0, {U̇} = 0 при t = 0,

(1.1)

где [M ] – диагональная матрица масс, [K] – матрица жесткостей; [C] = α[M ] + β[K] – матрица
вязкости, {U} – вектор перемещений. Для сейсмоизолятора сухого трения условие взаимосвязи массы
ростверка M0 и скользящего фундамента принимает следующий вид:

u0 = ug − ur, если |F0| < |Ffr|, т.е. при совместном движении, (1.2)
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F0 = Ffr, при скольжении, (1.3)

где u0 — горизонтальное перемещение ростверка, ug — перемещение фундамента, ur — величина сдвига
в момент времени в начале текущего совместного движения без скольжения нижней части фундамента
и движения ростверка, т.е. разность между значениями перемещений нижней части фундамента и
ростверка (в начальный момент времени ur = 0 ), F0−неизвестное значение силы сцепления между
верхним и нижним фундаментами;

Ffr = sign(u̇g − u̇0) · f · P. (1.4)

P — значение силы сухого трения, f — коэффициент сухого трения; P — вес здания. Если сухое трение
скольжения осуществляется на основе материала фторопласта-4, то f = 0.05. При совместном движении
перемещение u0 определяется по равенству (1.2) и уравнение движения массы M1 имеет вид [4],[5]:

M1ü1 + ku1 + c1u̇1 − k2(u2 − u1)− c2(u̇2 − u̇1) = k1u0 + c1u̇0 (1.5)

В этом случае Q1 = k1u0 + c1u̇0, остальные элементы вектора {Q}, соответствующие горизонтальным
перемещениям сосредоточенных масс, равны нулю.
Скольжение с сухим трением наступает только тогда, когда выполняется условие (1.3). В этом случае
демпферная сила имеет вид Fdm = k0ur + c0u̇r. Рассматриваемая задача (1.1), (1.2), (1.3) является
нелинейной задачей, при этом отсутствуют условия вычисления неизвестной функции F0, а также во
время динамического процесса изменяются размерности матриц [M ] и [K]. При скольжении имеет место
уравнение для массы [M0] [4, 5]:

M0ü0 + k0u0 − k1(u1 − u0) + c0u̇0 − c1(u̇1 − u̇0) = Ffr + k0ug + c0u̇g, (1.6)

где Q0 = Ffr + k0ug + c0u̇g; k0, c0− жесткость и вязкость резинометаллического изолятора, дополни-
тельно размещенного между фундаментом и ростверком. Для решения задачи в целом воспользуемся
следующим алгоритмом. На каждом шаге по времени решаем задачи в трех постановках:

1. Уравнение (1.1) решаем с условием (1.2);

2. Уравнение (1.1) решаем с условием (1.3), при F0 = f · P ;

3. Уравнение (1.1) решаем с условием (1.3), при F0 = −f · P .

При этом матрицы [M ] и [K] в первой постановке имеют размер m×m (здесь m количество этажей
здания), а во второй и третьей постановках (m+ 1)× (m+ 1). Выбор действительного решения из этих
трех решений осуществляется следующим образом. Если относительные скорости u̇g − u̇0 во втором и
третьем условиях задач имеют разные знаки, правильное решение является решением задачи в первом
условии, поскольку сила сухого трения приводит фундамент в движение в разных направлениях, и
поэтому неизвестная сила меньше порогового значения силы сухого трения, то есть скольжения нет.
Если относительные скорости во втором и третьем условиях задачи имеют одинаковый знак, то решение
при условии наименьшего абсолютного значения относительной скорости является действительным, так
как сила сухого трения всегда направлена против относительного движения. Все три задачи решаются
методом Ньюмарка [4, 5].

1.1. Результат.

Проанализируем результаты вычислений с помощью следующих примеров. Даны характеристики
9-этажного здания, а также действительные сейсмографические записи следующих землетрясений.
Приближенное сопоставление расчетов проведено с использованием результатов воздействия 4 типов
землетрясений:
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• №1. Абхарское землетрясение (Иран 20.06.1990) 8 баллов по шкале MSK-64: ускорение – 1.93 м/с2;
скорость – 0.19 м/с; перемещение – 0.0641 м, продолжительность – 36 сек.

• №2. Газлинское землетрясение (Узбекистан 17.05.1978) более 9 баллов по шкале MSK-64: ускорение
– 7.22 м/с2; скорость – 0.62 м/с; перемещение – 0.18 м; продолжительность – 28 сек.

• №3. Землетрясение Duzce (Турция 17.08.1999) магнитудой 9 по шкале MSK-64: ускорение – 3.66
м/с2, скорость – 0.45 м/с; перемещение – 0.1065 м, продолжительность – 36 сек.

• №4. Табасское (Иран) землетрясение 16.09.1978 баллов выше 9 по шкале MSK-64: ускорение – 10.17
м/с2; скорость – 0.88 м/с; перемещение – 0.3446 м; продолжительность – 78.398 сек.

Таблица 1. Землетрясение №1

Э
та

ж Без скольжения
qmax(кН)

При скольжении f = 0.05

и числе резинометаллических демпферов q1max(кН)

27 ta 23 ta 19 ta 15 ta 9 ta 0 ta

1 13200 11400 13000 12200 14300 13100 2350

2 11700 12800 14100 11200 13700 14200 2680

3 10700 11600 12500 10900 13800 13600 2910

4 9510 12200 13300 11400 13100 12900 3000

5 8140 12600 14000 11400 13600 12200 2900

6 6640 11700 11600 11800 13300 11700 2650

7 5040 11800 11700 12600 12000 11600 2310

8 3350 11000 10800 11800 13000 11300 1710

9 1600 7050 6850 7150 8960 7560 876

Таблица 2. Землетрясение №2

Э
та

ж Без скольжения
qmax(кН)

При скольжении f = 0.05

и числе резинометаллических демпферов q1max(кН)

27 ta 23 ta 19 ta 15 ta 9 ta 0 ta

1 68100 14800 15900 20300 18400 16100 12300

2 61000 11300 13000 12100 11500 13800 11000

3 56300 12100 12700 13400 12100 13900 10400

4 50700 12200 14700 15300 11200 13500 10200

5 44000 11300 13900 15300 10600 14000 10000

6 36400 12200 13000 13400 12300 14700 9800

7 28700 12800 13400 12400 13000 12900 9200

8 19800 10400 13200 12500 11300 12800 7150

9 9640 6760 8390 7560 7410 8020 6400
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Таблица 3. Землетрясение №3

Э
та

ж Без скольжения
qmax(кН)

При скольжении f = 0.05

и числе резинометаллических демпферов q1max(кН)

27 ta 23 ta 19 ta 15 ta 9 ta 0 ta

1 19400 15700 13900 15200 14600 15700 2210

2 18100 11300 9470 10000 11600 11300 2450

3 16500 11900 9310 12000 9890 11900 2670

4 14600 11400 8500 10900 8900 11400 2850

5 12500 10800 8380 10700 9280 10800 2950

6 10200 11500 7450 11600 10500 11500 2890

7 7770 9600 7330 10100 10700 14900 2580

8 5150 9070 8620 10000 9990 15000 1950

9 2460 5740 5470 7020 5980 9310 1000

Таблица 4. Землетрясение №4

Э
та

ж Без скольжения
qmax(кН)

При скольжении f = 0.05

и числе резинометаллических демпферов q1max(кН)

27 ta 23 ta 19 ta 15 ta 9 ta 0 ta

1 131000 18700 14800 20900 19900 19300 21000

2 124000 13600 12200 13100 15300 13400 12800

3 115000 12700 13000 13300 14900 15200 14200

4 104000 12500 12700 12900 13900 15500 14300

5 90800 13200 13600 13000 13200 15300 12600

6 74900 11700 15200 13500 12500 15100 13200

7 57200 11300 15200 15400 14100 16400 13300

8 38200 11300 12700 15400 15300 15000 13100

9 18300 7510 7710 10000 10000 9380 8180

Существующие записи сильных землетрясений взяты из европейской базы данных [6].
Девятиэтажное здание серии 76-017СП/53 имеет следующие характеристики: крупнопанельное здание
размером в плане 291.6 м2; сосредоточенные массы в уровнях верхней части фундамента и этажей M0 =

449000 кг, M1 = 379500 кг, M2 = 379500 кг, M3 = 379500 кг, M4 = 379500 кг, M5 = 379500 кг, M6 = 379500

кг, M7 = 379500 кг, M8 = 379500 кг, M9 = 341000 кг, при этом общий вес здания, давящий на нижнюю
часть фундамента, равен P = 37494800 Н; сдвиговые жесткости по этажам одинаковы k = 32.357 · 109

Н/м; вязкость материала здания по этажам одинакова µi = 10.58 · 106 Hc/м. Значения частот собственных
колебаний с жесткой заделкой фундамента: ω1 = 79 Гц, ω2 = 160 Гц, ω3 = 239 Гц, ω4 = 314 Гц, ω5 = 380

Гц. Для защиты рассматриваемого 9 этажного здания от сейсмических волн, наряду с сухим трением,
мы используем 27 резинометаллических демпферов. Демпферы производства компании FIP. Жесткость
одного демпфера в серии SI-S 600/152 равна k0 = 0.74 · 106 Н/м [?]. Проанализируем результаты,
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уменьшив количество демпферов соответственно до 27 (k0 = 19.98 · 106 Н/м), 23 (k0 = 17.02 · 106 Н/м), 19
(k0 = 14.06 · 106 Н/м), 15 (k0 = 11.1 · 106 Н/м) и 9 (k0 = 6.66 · 106 Н/м), а также рассчитаем вариант без
резинометаллического демпфера. При численном решении задач с сухим трением, не зависимо от выбора
явной или неявной конечно-разностной схемы, шаг по времени необходимо подбирать для обеспечения
достаточной точности. В наших примерах расч етов шаг по времени был равен 0.0001.

Заключение.

В данной исследовательской работе на основе различных записей реальных сейсмических
волн показано, что сейсмическая изоляция с совместным использованием сухого трения и
резинометаллических изоляторов менее эффективна, чем сейсмическая изоляция только с сухим
трением (табл. Использование демпферов компании FIP для сейсмоизоляции зданий обходится дорого.
Использование фторопласта, материала, обеспечивающего скольжение, значительно дешевле, чем
демпферы.
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Protection of Buildings From Seismic Waves Using Dry
Fracture and Dempfers

Mirzayev I., Turdiyev M.S. and Raxmatov N.B.

Abstract

In this research work, the problem of seismic isolation of a nine-story building under the influence of 4 different
real seismic waves through the joint use of dry friction isolators and rubber-metal dampers is considered. The
influence of seismic waves on the magnitude of the shear force in the building as a result of their increase and
decrease was studied.
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Analysis of the dynamics of quadratic mappings of a
simplex with skew-symmetric matrices that are not

in general position

D.B.Eshmamatova * A.A.Alimov and M.A.Tadzhieva

ABSTRACT

The Lotka – Volterra systems arise in questions of biology, population genetics, epidemiology,
ecology, economics as well as in some branches of theoretical physics, in particular, in
solid state physics. Some important questions of ecology (for example, biogens cycles) can
be studied using Lotka – Volterra mappings operating in a four-dimensional simplex with
homogeneous tournaments. In this regard, the work is devoted to the construction and study of
cards of fixed points of Lotka – Volterra mappings operating in a four-dimensional simplex in
the case of homogeneous tournaments (for arbitrary coefficients of a skew-symmetric matrix).
The card of fixed points gives us a more detailed understanding of the asymptotic behavior of
the trajectories of discrete dynamical Lotka – Volterra systems. In the paper, we show that even
if the tournaments corresponding to the Lotka – Volterra mappings are homogeneous, among
them it is possible to distinguish a class of mappings with skew-symmetric matrices that are
not matrices in a general position. It is not possible to generalize this kind of mappings; each
of them represents a map of fixed points of a different type. This is clearly noted in the work. It
is also shown that even in the case when the tournament corresponding to the Lotka – Volterra
mapping is homogeneous, the set of fixed points is infinite and the card of fixed points consists
of a convex hull of fixed points belonging to strong faces.

Keywords: fixed point; homogeneous tournament; quadratic Lotka – Volterra mapping; simplex.

AMS Subject Classification (2020): Primary: 37B25 ; Secondary: 37C25; 37C27.

1. Introduction

One of the main problems in mathematical biology, epidemiology and ecology is the study of the
asymptotic behavior of the trajectories of dynamical systems. The works [1-4] are devoted to the study
of continuous dynamical systems and the asymptotic behavior of their trajectories. The proposed work
is devoted to the analysis of the trajectories of interior points of quadratic Lotka – Volterra mappings
operating in a four-dimensional simplex that are not in a general position. Before presenting the main
results, let us start with preliminary information and a review of the literature.
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Let

Sm−1 = {x ∈ Rm : x = (x1, ..., xm) : xi ≥ 0,

m∑
i=1

xi = 1}

the standard simplex in Rm and A = (aki), k, i = 1,m − is a skew-symmetric matrix with conditions
|aki| ≤ 1.

The mapping V : Sm−1 → Sm−1 defined by equality

V : x′
k = xk

(
1 +

m∑
i=1

akixi

)
, k = 1,m, (1.1)

is called the discrete Lotka – Volterra operator. Mappings of the form (1.1) arise in problems of population
genetics that describe the evolution of a certain population over time, and time is considered discrete [5].

Each Lotka – Volterra operator and its corresponding skew-symmetric matrix are associated with a
complete oriented tournament graph [6], [7] and a partially oriented graph [8].

A complete directed graph – tournament is constructed if the skew-symmetric matrix is in the general
position [6]. To build a tournament, let us take m points numbered 1, 2, ...,m on the plane and connect the
point with the number k to the point with the number i with an arc directed from k to i if aki < 0 and in
the opposite direction if aki > 0.

So, the graph constructed in this way is called a tournament corresponding to the Lotka – Volterra
operator and we denote it by Tm.

A tournament is called strong if there is a path from any vertex to any other according to the orientation
(direction of the arc).

A tournament that does not have strong subtournaments is called a transitive.
Definition 1.1. [9] A tournament is called homogeneous if any of its sub-tournaments is either strong or

transitive.
Theorem 1.2. A is a skew-symmetric matrix, then the sets

P = {x ∈ Sm−1 : Ax ≥ 0} and Q = {x ∈ Sm−1 : Ax ≤ 0}

non-empty convex polyhedra.
Theorem 1.3. If A is a generic skew-symmetric matrix, then the set P (respectively Q) consists of a single

point.

2. The card of fixed points of the operator V

Let us recall the concept of a card of fixed points for a dynamic system (1.1) [9], [10]:
Let α ⊂ I = {1, ..., 5}. We represent the set of all fixed points {x ∈ S4 : V x = x} of the operator V as points

on the plane, then for each α ⊂ I the fixed point Qα is connected by an arc to a fixed point Pα directed from
Pα to Qα. The resulting directed graph is called the card of fixed points of the operator V we denote it by
GV .

It is known [11], [12] that for m = 5, only the next four tournaments are homogeneous. These are the
tournaments shown in Figure 1.

In case a), the tournament is transitive. If the tournament is transitive, then any trajectory of the Lotka
– Volterra mapping converges to one of the vertices of the simplex [10]. This means that the fixed point
card GV coincides with the tournament itself T5. In the case of transitivity, the operator has no fixed points
except the vertices of the simplex [12]. Next, we mark the vertices of the tournaments with the numbers
1, 2, 3, 4, 5 from top to bottom, and the substructure with vertices, for example, 1, 2, 5, is denoted by 125 .
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Figure 1. Homogeneous tournament.

Definition 2.1.[11] A skew-symmetric matrix A = (aki) is called a general position matrix if all major
minors of even order are nonzero.

If the skew-symmetric matrix of general position, then the corresponding Lotka – Volterra mapping V

with coefficients aki is also a general position operator. The task assigned to us is to study quadratic Lotka
– Volterra mappings operating in a four-dimensional simplex that are not in a general position. That is, we
show that even if the tournament corresponding to the skew-symmetric matrix is homogeneous, but the
matrix itself and, accordingly, the operator may not be in the general position. Since the skew-symmetric
matrix of the system is not a matrix of general position, i.e. all major minors of the fourth order (there
are only five of them in this case) are zero. Fixed point cards have been constructed and studied for such
mappings, since the structure of fixed point cards gives a detailed idea of the asymptotic behavior of the
trajectories of interior points of discrete Lotka – Volterra dynamical systems.

In [12], [13] it is proved that skew-symmetric matrices of general position form an open and everywhere
dense subset in the set of all skew-symmetric matrices.

For example, the mapping of Lotka-Volterra V : S3 → S3 has the form:

x
′

1 = x1(1 + a12x2 − a13x3 + a14x4),

x
′

2 = x2(1− a12x1 + a23x3 − a24x4),

x
′

3 = x3(1 + a13x1 − a23x2 + a34x4),

x
′

4 = x4(1− a14x1 + a24x2 − a34x3),

where aki ∈ [−1; 1], k, i = 1, 4

This operator is a general position operator if and only if the coefficients aki ∈ [−1; 1], k, i = 1, 4 satisfy
the following conditions:

aki ̸= 0, k, i = 1, 4 and a12a34 − a13a24 + a14a23 ̸= 0.

Fixed point cards for the Lotka – Volterra operators were first introduced in [5] and it also introduced
the concept of a homogeneous card for Lotka – Volterra mappings. Many other useful properties of the
fixed point card are given in [12], [13]. But these papers do not consider in detail the cases when the skew-
symmetric matrix corresponding to the Lotka – Volterra mapping is not in the general position. Our goal
is to consider these cases in more detail, since these mappings can serve as a discrete model of the biogen
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cycle in an ecosystem. In [14], the Lotka – Volterra mapping is investigated, acting in a four-dimensional
simplex as a discrete model of the phosphorus and carbon cycle, depending on the nature of the card of
fixed points of this mapping. Here we show that among those operators there can also be those that are
not in general position and the set of their fixed points is an infinite set. Let us go over each case in detail.

3. Main results

a) Consider the Lotka – Volterra operator acting in

S4 = {x = (x1, x2, x3, x4, x5) ∈ R5, xi ≥ 0,

5∑
i=1

xi = 1},

with the corresponding transitive tournament T5.

Figure 2. Transitive tournament.

The skew-symmetric matrix corresponding to this operator has the form:

A =



0 −a12 −a13 −a14 −a15

a12 0 −a23 −a24 −a25

a13 a23 0 −a34 −a35

a14 a24 a34 0 −a45

a15 a25 a35 a45 0


where |aki| ≤ 1.

It is easy to see from the classical algebra course that there are only five major minors of the fourth order
for this matrix.
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A11
1 =


0 −a23 −a24 −a25

a23 0 −a34 −a35

a24 a34 0 −a45

a25 a35 a45 0


The determinant of the skew-symmetric matrix A11

1 is equal to the following expression:

A11
1 =

∣∣∣∣∣∣∣∣∣∣
0 −a23 −a24 −a25

a23 0 −a34 −a35

a24 a34 0 −a45

a25 a35 a45 0

∣∣∣∣∣∣∣∣∣∣
= (a23a45 − a24a35 + a25a34)

2.

Similarly, we can calculate the values of the remaining fourth-order minors:

A22
2 = (a15a34 − a14a35 + a13a45)

2,

A33
3 = (a15a24 − a14a25 + a12a45)

2,

A44
4 = (a15a23 − a13a25 + a12a35)

2,

A55
5 = (a14a23 − a13a24 + a12a34)

2.

Now we can select the elements of the skew-symmetric matrix so that the values of these minors are
zero,

a12 = a13 = a14 = a15 = a23 = a34 = a45 =
1

3
, a24 = a35 =

2

3
, a25 = 1

i.e.
A11

1 = (a23a45 − a24a35 + a25a34)
2 = (1− 4 + 3)2 = 0

A22
2 = (a15a34 − a14a35 + a13a45)

2 = (1− 2 + 1)2 = 0,

A33
3 = (a15a24 − a14a25 + a12a45)

2 = (2− 3 + 1)2 = 0,

A44
4 = (a15a23 − a13a25 + a12a35)

2 = (1− 3 + 2)2 = 0,

A55
5 = (a14a23 − a13a24 + a12a34)

2 = (1− 2 + 1)2 = 0.

The picture is clear here, since the tournament is transitive, the card of fixed points completely coincides
with it.

The tournament shown in Figure is strong and in its expanded form looks as shown in Figure 3.
From the Figure 3 we see that T5 has three cyclic triples 125, 135, 145, i.e. three strong substructures

with three vertices. It is known [], [] that if a tournament with three vertices is strong, then the mapping
corresponding to this tournament has a fixed point inside the simplex, unlike its vertices. Below we will
find the coordinates of these points.

The skew-symmetric matrix corresponding to this strong tournament has the form:

A =



0 −a12 −a13 −a14 a15

a12 0 −a23 −a24 −a25

a13 a23 0 −a34 −a35

a14 a24 a34 0 −a45

−a15 a25 a35 a45 0


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Figure 3. Strong tournament.

In [], the same operator was investigated when it is in a general position and it is proposed as a discrete
model of the carbon and phosphorus cycle in an ecosystem, depending on the type of fixed point map. But
as it turned out, for this operator, too, the elements of the skew-symmetric matrix can be selected so that
all major minors of the fourth order are equal to zero,

a14 = a15 = a23 = a25 = a34 = a35 = a45 =
1

3
, a13 = a24 =

2

3
, a12 = 1

A11
1 = (a23a45 − a24a35 + a25a34)

2 = (1− 2 + 1)2 = 0

A22
2 = (a14a35 − a13a45 + a15a34)

2 = (1− 2 + 1)2 = 0,

A33
3 = (a14a25 − a12a45 + a15a24)

2 = (1− 3 + 2)2 = 0,

A44
4 = (a13a25 − a12a35 + a15a23)

2 = (2− 3 + 1)2 = 0,

A55
5 = (a12a34 − a13a24 + a14a23)

2 = (1− 4 + 3)2 = 0.

The mapping in this case looks like

x
′

1 = x1(1− x2 − 2
3x3 − 1

3x4 +
1
3x5),

x
′

2 = x2(1 + x1 − 1
3x3 − 2

3x4 − 1
3x5),

x
′

3 = x3(1 +
2
3x1 +

1
3x2 − 1

3x4 − 1
3x5),

x
′

4 = x4(1 +
1
3x1 +

2
3x2 +

1
3x3 − 1

3x5),

x
′

5 = x5(1− 1
3x1 +

1
3x2 +

1
3x3 +

1
3x4).

(3.1)

and it is not in the general position, since all major minors of the fourth order are zero and the card of fixed
points for this operator has the form shown in Figure 4.

The card of fixed points has the form of an undirected graph, which means that the set of fixed points
is infinite and consists of a convex hull of three fixed points that belong to the strong faces of the simplex
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Figure 4. The card of fixed point for homogeneous tournament.

Γ125,Γ135,Γ145. Now, in order to investigate the characters of fixed points belonging to the convex hull of
fixed points belonging to strong faces, we first find their coordinates explicitly by solving the equation
V x = x, according to [10]:

M1

(
1

5
,
1

5
, 0, 0,

3

5

)
, M2

(
1

4
, 0,

1

4
, 0,

1

2

)
, M3

(
1

3
, 0, 0,

1

3
,
1

3

)
Now let us take their convex hull:

M1

(
1

5
,
1

5
, 0, 0,

3

5

)
| α

M2

(
1

4
, 0,

1

4
, 0,

1

2

)
| β

M3

(
1

3
, 0, 0,

1

3
,
1

3

)
| γ

For the considered mapping, an arbitrary fixed point belonging to this shell has coordinates of the form:

M

(
1

5
α+

1

4
β +

1

3
γ;

1

5
α;

1

4
β;

1

3
γ;

3

5
α+

1

2
β +

1

3
γ

)
, 0 ≤ α, β, γ ≤ 1

Let α = β = γ = 1
3 , then the fixed point has the form M

(
47
180 ,

1
15 ,

1
12 ,

1
9 ,

43
90

)
.

Now we calculate the eigenvalues for this fixed point, i.e. we analyze the spectrum of the Jacobian at
this point and get the following:

λ1 =
1

90

(
90 + i

√
510
)

λ2 =
1

90

(
90− i

√
510
)

λ3 = 1, λ4 = 1, λ5 = 1.

It is easy to see that the modulo eigenvalues are greater than one. This means that the entire convex hull
consists of repulsive fixed points. The definitions describing the characters of fixed points are given in [11],
[12].

Now, let us move on to the third tournament from Figure 1 (see Figure 5).
This strong tournament, unlike the previous one, has four strong sub-tournaments, with three vertices -

135, 145, 235, 245. Each of these strong triples has one interior fixed point. Let us select the elements of the

31 tstu.uz/en/pub/UJMCS

https://tstu.uz/


Analysis of the dynamics of quadratic mappings of a simplex with skew-symmetric matrices that are not in general position

Figure 5. The homogeneous tournament.

skew-symmetric matrix

a12 = a14 = a24 = a25 = a34 = a35 = a45 = 1, a15 = a23 = 2, a13 = 3

and then

A =
1

3



0 −1 −3 −1 2

1 0 −2 −1 1

3 2 0 −1 −1

1 1 1 0 −1

−2 −1 1 1 0


we get the minors equal to zero, i.e.

A11
1 = (a24a35 − a23a45 + a25a34)

2 = (1− 2 + 1)2 = 0

A22
2 = (a14a35 − a13a45 + a15a34)

2 = (1− 3 + 2)2 = 0,

A33
3 = (a12a45 − a15a24 + a14a25)

2 = (1− 2 + 1)2 = 0,

A44
4 = (a12a35 − a15a23 + a13a25)

2 = (1− 4 + 3)2 = 0,

A55
5 = (a12a34 − a13a24 + a14a23)

2 = (1− 3 + 2)2 = 0.

Since in this case there are four interior fixed points belonging to strong faces, the card of fixed points
looks like a convex hull of them (see Figure 6).

Here, as in the previous case, we can explicitly calculate the coordinates of the vertices of the card and
check the characters of the fixed points belonging to this card.

The last – fourth tournament has five strong sub-tournaments, which means that the card has interior
fixed points belonging to the faces of the simplex Γ124, Γ134, Γ135, Γ235 and Γ245. Here, you can also select
the elements of a skew-symmetric matrix, so that all its fourth-order minors are equal to zero.

a12 = a13 = a14 = a15 = a24 = a25 = a35 = 1, a23 = a45 = 2, a34 = 3
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Figure 6. The card of fixed point for homogeneous tournament.

A =
1

3



0 1 1 −1 −1

−1 0 2 1 −1

−1 −2 0 3 1

1 −1 −3 0 2

1 1 −1 −2 0


A11

1 = (a24a35 − a23a45 + a25a34)
2 = (1− 4 + 3)2 = 0

A22
2 = (a13a45 − a15a34 + a14a35)

2 = (1 + 2− 3)2 = 0,

A33
3 = (a14a25 − a12a45 + a15a24)

2 = (1− 2 + 1)2 = 0,

A44
4 = (a12a35 − a15a23 + a13a25)

2 = (1− 2 + 1)2 = 0,

A55
5 = (a13a24 − a12a34 + a14a23)

2 = (1− 3 + 2)2 = 0.

The fixed points card of this operator has the form shown in Figure 7.

Figure 7. The card of fixed point for homogeneous tournament.

Inonclusion, we have constructively proved the following theorem.
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Corollary 3.1. Let give a discrete Lotka – Volterra mapping of the form (1.1). If all the major minors of
the second order of the skew-symmetric matrix corresponding to this mapping are nonzero, then

– if all fourth-order minors are nonzero, then all eigenvalues of the skew-symmetric matrix are complex
numbers and the kernel is zero,

detA ̸= 0, KerA = {0},

that is, the mapping is in the general position;
– if all the major minors of the fourth order are zero, then the core of the skew-symmetric matrix will be

nonzero, i.e. KerA ̸= {0}. The equation Ax = 0 has a solution and the eigenvalues of the skew-symmetric
matrix are modulo greater than one, which means that the card of fixed points consists of repulsive fixed
points.

4. Conclusion

The main result of this paper, in contrast to works [5], [11], [12], is the study of quadratic Lotka – Volterra
mappings that are not mappings in general position. Mappings of this nature can be proposed as a discrete
model to study the biogen cycle in the ecosystem [13]. In the paper, we analyze the cases where all the
principal minors of even order are equal to zero, the set of fixed points is infinite, and the card of fixed
points consists of the convex hull of fixed points belonging to strong faces. The main result of the work is
Theorem 3, in which the kernel of a skew-symmetric matrix and its eigenvalues are analyzed. As a result,
the nature of the fixed points of the considered mappings is determined. The cases considered in this paper
can be used as a discrete model of the nitrogen cycle. We will consider the application in the next paper. In
the paper we use elements of the graph theory in order to clearly see the dynamic picture of the considered
mappings, since the use of elements of graph theory and the construction of cards of fixed points helps to
visually build a picture in problems of ecology, epidemiology etc.
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Решение уравнения Монжа-Ампера с использованием
геометрических преобразований

Абдуллаазиз Артикбаев, Гулноза Холмуродова *

Аннотация
Геометрическая задача восстановления выпуклой поверхности по заданной функции
эквивалентна решению определенного уравнения Монжа-Ампера.В этом случае внешняя
кривизна определяется как функция борелевских множеств. И. Я. Бакельман построил
эту теорию и доказал существование и единственность решения уравнения Монжа-Ампера
эллиптического типа в односвязной выпуклой области. А. Артыкбаев обобщил это решение
на случай неодносвязной области, применяя геометрию галилеева пространства. Данная
работа посвящена аналитическому решению уравнения Монжа-Ампера в неодносвязной
области. Внешняя кривизна поверхности определяется в неодносвязной области, ограниченной
концентрическими окружностями.Применяя преобразование, представляющее собой движение
галилеева пространства, и переход в полярную систему координат, уравнение модифицируется,
в котором можно разделить переменные решения, уравнение ищется для суммы трех функций.
В результате получен аналитический вид решения в неодносвязной области, ограниченной
концентрическими окружностями.

Ключевые слова: Галилеево движение;уравнение Монжа-Ампера; группа Гейзенберга; полная кривизна; полярная система

координат.

Предметная классификацие AMS (2020): Основная: 00A00 ; Дополнительная: 00B00; 00C00; 00D00; 00E00; 00F00.

1. Введение

Геометрический метод решения эллиптического уравнения Монжа-Ампера показывает эквивалент-
ность решения этого уравнения в выпуклой односвязной области задаче восстановления выпуклой
поверхности по внешней кривизне [1-4]. Используя геометрию неевклидовых пространств, А. Артыкбаев
доказал существование и единственность решения уравнения Монжа-Ампера эллиптического типа в
двусвязной области [5]. В данной работе мы найдем решение уравнения Монжа-Ампера эллиптического
типа в неодносвязной области.
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2. Предварительные сведения

Пусть дана плоскость π и на ней задана система координат Oxy. В этом случае любая точка плоскости
имеет свою пару координат (x, y). Расстояние между точками A (x1, y1) и B (x2, y2) равно [6]:

d =

{
|x2 − x1| , x1 ̸= x2

|y2 − y1| , x1 = x2

(2.1)

Пусть дано следующее аффинное преобразование:{
x′ = x+ a

y′ = hx+ y + b
(2.2)

Это преобразование представляет собой галилеевское движение в плоскости, сохраняющее заданное
расстояние (2.1) [7]. Галилеевское движение относится к группе преобразований Гейзенберга, в которой
матрица перехода имеет следующий вид [8,9]:

C =

(
1 0

h 1

)
(2.3)

Здесь, поскольку detC = 1, площадь области также инвариантна относительно этого преобразования.
Движение (2.2) состоит из следующих двух частей [10]:{

x′ = x+ a

y′ = y + b

{
x′ = x

y′ = hx+ y
(2.4)

Первый из них — параллельный перенос, а второй — поворот на плоскости Галилея. При этом ось Oy

сохраняет своё направление, а ось Ox заменяется прямой y = hx+ l. Геометрическое значение параметра
h вводится через понятие угла между прямыми. Пусть дана выпуклая регулярная поверхность F . Мы
можем найти её уравнение по её полной кривизне. Нахождение поверхности по её полной кривизне, то
есть когда известна правая часть, эквивалентно решению уравнения Монжа-Ампера:

zxxzyy − z2xy = ϕ (x, y, z, zx, zy) (2.5)

Левая часть уравнения представляет собой оператор Монжа-Ампера. Ниже мы найдём решение
уравнения Монжа-Ампера (2.5) в частном случае, используя преобразование (2.2), когда полная кривизна
является функцией, заданной на кольцевой области. Для этого, прежде всего, найдём вид уравнения
Монжа-Ампера в полярной системе координат:

3. Основной результат

Рассмотрим следующую замену: {
x = ρ cosφ

y = ρ sinφ
(3.1)

Подставив эту замену в уравнение (2.2), получим следующее уравнение:{
x′ = ρ cosφ+ a

y′ = ρ(h cosφ+ sinφ) + b
(3.2)
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Вид уравнения Монжа-Ампера в новой системе координат следующий:

zx′x′zy′y′ − z2x′y′ = K (x′, y′) (3.3)

Ниже мы находим частные производные:

zρ = zx′ cosφ+ zy′ (h cosφ+ sinφ), zφ = zx′ (−ρ sinφ) + zy′ (ρ (−h sinφ+ cosφ))

zρρ = zx′x′cos2φ+ 2zx′y′ cosφ (h cosφ+ sinφ) + zy′y′(h cosφ+ sinφ)
2 (3.4)

zρ
ρ

+
zφφ

ρ2
= zx′x′sin2φ+ 2zx′y′

(
hsin2φ− sinφ cosφ

)
+ zy′y′(cosφ− h sinφ)

2 (3.5)

zρφ
ρ

− zφ
ρ2

= −zx′x′ sinφ cosφ+ zx′y′ (cos 2φ− h sin 2φ) + zy′y′
(
h cos 2φ− (h2 − 1) sinφ cosφ

)
(3.6)

Из них получаем следующую систему уравнений относительно производных второго порядка:

zx′x′ + 2hzx′y′ +
(
h2 + 1

)
zy′y′ = zρρ +

zρ
ρ

+
zφφ

ρ2

zx′y′ + hzy′y′ =
1

2

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
sin 2φ+

(
zρφ
ρ

− zφ
ρ2

)
cos 2φ

zx′x′ + 2hzx′y′ +
(
h2 − 1

)
zy′y′ =

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
cos 2φ− 2

(
zρφ
ρ

− zφ
ρ2

)
sin 2φ

(3.7)

Из (3.7) получаем:

zx′x′ =
h2 + 1

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
+

(
1− h2

2
cos 2φ− h sin 2φ

)(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+

+

(
3h2 − 1

2
sin 2φ− 2h cos 2φ

)(
zρφ
ρ

− zφ
ρ2

)
(3.8)

zx′y′ = −h

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
+

sin 2φ+ h cos 2φ

2

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+ (cos 2φ− h sin 2φ)

(
zρφ
ρ

− zφ
ρ2

)
(3.9)

zy′y′ =
1

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
− cos 2φ

2

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+ sin 2φ

(
zρφ
ρ

− zφ
ρ2

)
(3.10)

Если подставить найденные выражения в уравнение Монжа-Ампера, то найдем его уравнение в полярных
координатах:

zx′x′zy′y′ − z2x′y′ = zρρ

(
zρ
ρ

+
zφφ

ρ2

)
+

(
zρφ
ρ

− zφ
ρ2

)(
h2 + 1

4
sin 2φ

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
− h2 + 1

4

(
zρρ −

zρ
ρ

− zφφ

ρ2

))
+

+

(
zρφ
ρ

− zφ
ρ2

)2(
h2 − 1

2
sin22φ− cos22φ

)
(3.11)

Отсюда следует следующая основная теорема:

Теорема 3.1. Если положительная непрерывная функция задана формулой

Φ
(√

x2 + y2 − b2,
√

a2 − x2 − y2
)

определенной на кольцевой области x2 + y2 = a2 и x2 + y2 = b2 (b < a), общее решение эллиптического
уравнения Монжа-Ампера:

zxxzyy − z2xy = Φ
(√

x2 + y2 − b2,
√

a2 − x2 − y2
)

tstu.uz/en/pub/UJMCS 38

https://tstu.uz/


Абдуллаазиз Артикбаев, Гулноза Холмуродова

имеет следующее:

z (ρ, φ) =

∫ [√
λ2 + d1 +

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ

]
dρ+ ρ (c1 cosφ+ c2 sinφ) + d2 (3.12)

где, z (ρ, φ) = z
(√

x2 + y2, arctg y
x

)
, и λ, ci, di − const, i = 1, 2.

Доказательство теоремы. Решение ищем в следующем виде [11,12]:

z (ρ, φ) = (f (ρ) + g (φ)) ρ (3.13)

zρ = ρf ′ + f + g, zφ = ρg′, zρρ = ρf ′′ + 2f ′, zφφ = ρg′′, zρφ = zφρ = g′

Если подставить найденные выражения в правую часть равенства (3.11), то получим следующее:(
ρf ′′ + 2f ′

)(
f ′ +

f

ρ
+

1

ρ
(g′′ + g)

)
= Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
(3.14)

Упростив это выражение, получим:

g′′ + g =
ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
−
(
ρf ′′ + 2f ′) · (ρf ′ + f)

ρf ′′ + 2f ′ = λ (3.15)

где, λ− const.
Общее решение левой части (3.15) имеет следующий вид:

g (φ) = c1 cosφ+ c2 sinφ+ λ (3.16)

Упростив правую часть, получим:

((ρf ′ + f) + λ)
2
=

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Из этого уравнения мы получаем только одно решение:

(ρf ′ + f) + λ =

√∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Из этого,

(ρf)
′
= −λ+

√∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Интегрируя, получаем следующее уравнение:

f (ρ) = −λ+
1

ρ

∫ [√∫
2ρΦ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

]
dρ+

d2
ρ

(3.17)

Подставляя уравнения (3.16)-(3.17) в выражение (3.13), получаем следующее общее решение (3.12):

z (ρ, φ) = ρ (f (ρ) + g (φ)) =

∫ [√
λ2 + d1 +

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ

]
dρ+ ρ (c1 cosφ+ c2 sinφ) + d2

Теорема доказана.
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4. Заключение

В данной работе получено общее решение эллиптического уравнения Монжа-Ампера в неодносвязной
области с использованием геометрии неевклидовых пространств и преобразований Галилея. Галилеевское
движение плоскости применяется для решения уравнения Монжа-Ампера. Результат расширяет
предыдущие исследования, демонстрируя эффективность предложенного геометрического подхода к
решению уравнения Монжа-Ампера.
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Solving the Monge-Ampere Equation using Geometric Transformations

Abdullaaziz Artykbaev, Gulnoza Kholmurodova

Abstract

The geometric problem of recovering a convex surface from a given function is equivalent to solving a certain
Monge-Ampère equation. In this case, the extrinsic curvature is defined as a function of Borel sets. I. Ya.
Bakelman constructed this theory and proved the existence and uniqueness of the solution of the Monge-
Ampère equation of elliptic type in a simply connected convex domain. A. Artykbaev generalized this solution
for a non-simply connected domain applying of the geometry of Galilean space. This paper is devoted to the
analytical solution of the Monge-Ampère equation in a non-simply connected domain. The extrinsic curvature
of the surface is determined in a non-simply connected domain which is bounded by concentric circles. By
applying the transformation which is the motion of Galilean space and the transition to the polar coordinate
system, the equation is modified, in which it is possible to separate the variables of the solution, the equation is
sought for the sum of three functions. As a result, an analytical form of the solution in a non-simply connected
domain bounded by concentric circles is obtained.
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1. Введение

Теоретические и экспериментальные основы проявления нелинейных реологических свойств в
различных элементах структурно-неоднородных, сложных многосвязных оболочечных конструкций
изложены в фундаментальных работах [1–12]. Несмотря на это, оценка напряженно-деформированного
состояния оболочечных конструкций с учетом неоднородных, вязкоупругих свойств осуществляется
только в рамках линейной вязко упругости. В последнее время опубликован ряд работ [13], в которых
учитывается проявление упругих, вязкоупругих линейных и нелинейных свойств материала оболочечных
конструкций при динамических воздействиях. Краткое изложение некоторых из них приведено ниже.
В [13] представлена расчетная модель деформаций основания фундамента, основанная на методе
послойного суммирования с учетом компонент девиатора и тензора шаровой деформации, соотношение
между которыми различно в разных точках фундамента. Рассматривалось нелинейное объемное
деформирование грунта во времени с учетом уплотнения несущего слоя грунта. Изучена динамическая
реакция грунтовых плотин [13] с учетом нелинейных и вязкоупругих свойств грунта, установлена
зависимость динамических реакций от нагрузки и механических свойств грунта. На основании
результатов экспериментов построены локальные закономерности взаимодействия протяженных
подземных трубопроводов и фрагментов наружной поверхности подземных сооружений с грунтами
нарушенной и ненарушенной структуры [14]. В [15] с использованием нелинейных реологических моделей
исследовано напряженное состояние плотины. Возможность использования модели продемонстрирована
путем сравнения численных результатов с результатами лабораторных испытаний.

В [16] предложены обобщенные реологические модели ненасыщенных и вод насыщенных грунтов
и выведены соответствующие уравнения, используемые для количественной оценки дополнительных
остаточных деформаций и напряжений в грунте. Решена одномерная задача консолидации слоя не
полностью вод насыщенного грунта при циклическом изменении внешней нагрузки.

В работе [17] предложены модель и набор определяющих соотношений для реологической модели
слабых грунтов. Возможность использования этой модели подтверждена рядом экспериментов по
реологической консолидации при различных скоростях нагруженные.
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В [18] показана тенденция к увеличению мгновенного модуля деформации с ростом ползучести. Для
мягких грунтов предложена нелинейная модель ползучести, в которой затухание ползучести описывалось
нелинейной функцией упрочнения и коэффициентом вязкости, а нелинейные кривые ползучести хорошо
согласуются с экспериментальными данными. Поведение конкретных конструкций, использующих
наследственную теорию вязко упругости, при динамическом нагруженные изучено недостаточно, хотя и
широко представлено в литературе [19–20]. Подавляющее число публикаций, посвященных динамическим
задачам наследственной теории вязко упругости, посвящено расчету (линейных и геометрически
нелинейных) тонкостенных конструкций — балок, пластин и оболочек [12, 20].

Схема решения динамических задач вязко упругости для тонкостенных конструкций достаточно
стандартна. Выбором координатной функции, удовлетворяющей граничным условиям, исходная
задача может быть сведена к задаче о колебаниях системы с конечным числом степеней свободы,
то есть к системе линейных или нелинейных интегро-дифференциальных уравнений с одной
независимой временной переменной [12, 20]. В качестве координатных функций, как правило,
используют тригонометрические или балочные функции. Такой выбор координатных функций
ограничивает класс решаемых задач конструкциями простейших конфигураций – балками постоянного
сечения, прямоугольной пластиной, цилиндрической оболочкой [12]. Авторы этих публикаций,
допуская ряд неточностей в выборе координатных функций, пытались повысить точность решения
системы интегро-дифференциальных уравнений. Однако для конструкций с реальной геометрией
подобрать аналитические координатные функции, удовлетворяющие граничным условиям задачи,
невозможно. Приведенный выше обзор известных работ показывает необходимость оценки напряженно-
деформированного состояния и динамического поведения структурно-неоднородных оболочечных
конструкций грунтовых сооружений с учетом не только реологических свойств оболочечных
конструкций, но и особенностей неоднородной структуры и реальной геометрии. В данной работе
представлены методы, алгоритм и результаты исследования динамического поведения многосвязных
структурно-неоднородных оболочечных конструкций с учетом вязкоупругих свойств материала при
различных динамических воздействиях.

2. Методы исследования

Многосвязные конструкции, нагруженные внешним давлением на цилиндрические части, исследуются
на устойчивость. Цилиндрические оболочки, один из торцов которых жестко защемлен, в обеих
конструкциях имеют одну и ту же геометрию

𝐿1

𝑅
=

𝐿2

𝑅
= 1, 𝑅/ℎ𝑢 = 400. (2.1)

Задача сводится к поиску минимального значения критической нагрузки внешнего давления, которую
будем определять по формуле

𝑞 = 𝜉𝑞𝑐, (2.2)

где

𝑞𝑐 =
𝜋
√

6
9𝑧

𝐸

(1 − 𝜈2)
· ℎ

2

𝑅2 , 𝑧 =
𝐿4

√︁
(1 − 𝜈2)
√
𝑅ℎ

, (2.3)

Прежде чем непосредственно перейти к анализу всей конструкции, рассмотрим поведение отдельных
элементов конструкции. Общая длина цилиндрической части конструкции равна 2𝐿, но в силу
подкрепления в середине её кольцевой пластиной, которая имеет большую жесткость в радиальном
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направлении, можно ограничиться рассмотрением только цилиндрической оболочки длиной 𝐿. Остается
вопрос о выборе граничных условий в месте стыка кольцевой пластины и цилиндрической части
конструкции. Эти условия носят упругий характер, которые могут быть любыми от шарнирного опирания

Γ6 : 𝑤 = 𝑀11 = 𝑇11 = 𝜗 = 0 (2.4)

до жесткого защемления

Γ1 : 𝑤 = 𝜃1 = 𝑢 = 𝜗 = 0. (2.5)

Для комбинаций из этих граничных условий на торцах цилиндрической оболочки в широкой области
изменения относительной длины 𝑧 из работы [2] следует, что зависимости критического параметра 𝜉∗

при 𝑧 ≥ 10 практически совпадают с пунктирными линиями на рис.1, полученными Н.А.Алфутовым на
основе полубезмоментной теории В.З.Власова. С учетом реальной жесткости стыка кривая, описывающая
зависимость критического параметра 𝜉∗ от относительной длины оболочки 𝑧, будет лежать между этими
линиями.

Рис. 1

Поведение кольцевой пластины со свободным внутренним краем от радиального сжатия по внешнему
краю слабо изучено, поэтому было проведено исследование устойчивости кольцевой пластины с двумя
вариантами граничных условий на внешнем краю

Γ2 : 𝑤 = 𝜃1 = 𝑇11 = 𝜗 = 0, (2.6)

Γ6 : 𝑤 = 𝑀11 = 𝑇11 = 𝜗 = 0. (2.7)

Величина критического усилия определялась по формуле

𝑇 = −𝜁∗ · 𝐸ℎ𝑛

(1 − 𝜈2)
·
(
𝑅

ℎ𝑛

)2

·
(
1 + 𝑟0

𝑅

)3
. (2.8)

Зависимости критического параметра 𝜁∗ в широкой области изменения внутренного радиуса для
различных значений волн в кольцевом направлении представлены на рис.2.(a).
В случае шарнирного закрепления (2.7) минимальное значение критической нагрузки получается при
осесимметричной потере устойчивости 𝑛 = 0, но при 𝑟0 → 𝑅, когда пластина может работать как кольцо,
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(a) (b)

Рис. 2

возможно иное значение критичиской нагрузки с неосесимметричной формой потери устойчивости 𝑛 > 0.
В этом случае необходимо вычислить критическую нагрузку для пластины по схеме кольца 𝑛 = 2

𝑇 = 2ℎ𝑛𝐸 ·
(
𝑅 − 𝑟0

𝑅 + 𝑟0

)3

(2.9)

и сравнить с полученными значениями из (2.8). Минимальное значение из них и определит истинную
величину расчётного критического усилия. При рассмотрении граничного условия (2.6) величина
параметра критической нагрузки значительно увеличивается, причём минимальные значения его
наблюдаются как при осесимметричной (𝑟0/𝑅 ≤ 0.5), так и при неосимметричной (𝑟0/𝑅 > 0.5) потере
устойчивости. В случае неосесимметричной потери устойчивости число волн в окружном направлении
растёт с увеличением 𝑟0/𝑅.

Результаты и Oбсуждения

В результате исследования устойчивости всей конструкции по разработанному методу получены
зависимости 𝜉∗, относящиеся к соответствующий геометрии кольцевой пластины (рис.3.(a)). На рис.3.(b)
приведены формы потери устойчивости элементов конструкции. Форма, отмеченная цифрой 1 на
рис.3.(b), показывает, что устойчивость теряет преимущественно пластина. В области геометрии, где
в потере устойчивости участвуют явным образом все элементы конструкции (форма 2 на рис.3.(b)),
величина критической нагрузки практический не изменяется, форма остается постоянной с образованием
13 волн в кольцевом направлении. Области критических значений 𝜉∗ практический совпадают со
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(a) (b)

Рис. 3

значениями этого параметра для цилиндра длиной 𝐿, у которого реализуется граничные условия (2.4)
и (2.5). Это подтверждает тот факт, что для исследования устойчивости рассматриваемой многосвязной
конструкции можно использовать результаты работы [2], которые представлены на рис.1, совместно с
формулой (2.2). В области параметров конструкции, где преимущественно теряет устойчивость пластина,
следует установить какой или какими зависимостями можно ограничиться в исследовании устойчивости
конструкции. Для этого выясним в какой связи находятся зависимости критических величин для
пластины (2.8) и (2.9)с критическим давлением для всей конструкции. Определим из решения задачи
прочности усилия приходящееся на внешний край пластины в зависимости от внешнего давления 𝑞 для
различной геометрии пластины. В результате проведения расчётов на рис.2.(b) приведены зависимости
параметра 𝜂, через который определяется действующее на пластину усилие

𝑇 = 𝜂𝑞𝑅 (2.10)

Теперь из рассмотрения конкретного критического давления, для которого из выражений (2.8) и
(2.9) с учетом (2.10) определяются критические значения усилия для пластины, следует, что значение
критического усилия совпадает с критическим усилием для пластины с граничными условиями (2.6) на
внешнем крае и определяется по формуле (2.8). Иными словами, цилиндрические оболочки при потере
устойчивости пластины не позволяют ей изгибаться на внешнем крае.
Таким образом, для анализа многосвязной осесимметричной конструкции (рис.3.(a)) достаточно иметь
зависимости параметров 𝜉∗, 𝜁∗ и 𝜂 от геометрии конструкции (рис.1, 2) и выражения (2.2), (2.8)
и (2.10). Минимальное значение нагрузки для всей конструкции будет меньшее из двух давлений,
соответствующих критическому внешнему давлению для цилиндра длиной 𝐿 с граничными условиями
(2.4) и (2.5), которое определяется по формуле (2.2) с учетом зависимости 𝜉∗ на рис.1, или внешнему
давлению, вызывающему потерю устойчивости пластины и обделяемому, согласно (2.8), выражением

𝑞 = −𝜁∗𝜂−1 · 𝐸

(1 − 𝜈2)
·
(
ℎ𝑛

𝑅

)3

·
(
1 + 𝑟0

𝑅

)3
, (2.11)

где 𝜁∗ берется с рис.2.(a) для граничного условия (2.6) на внешнем краю. Форма потери устойчивости
конструкции принимает вид кривой 1 или 2 на рис.3.(b) в зависимости от того какая часть конструкции
преимущественно теряет устойчивость.
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3. Заключение

Таким образом, в этой работе получены соотношения и зависимости, которые могут быть использованы
при анализе и проектировании подобных конструкций в довольно широкой области изменения
геометрических параметров конструкции. Полученные результаты позволяют сделать вывод о том, что
предложенные теоретические предпосылки с достаточной точностью моделируют динамику реальных
объектов. Разработанные методика, алгоритм и программа расчета обеспечивают получение решения
задачи с необходимой точностью.
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Study of Stability of Cylindrical Shells Connected to an Annular Plate
Sadullaeva Mavjuda, Salimov Shoolim Muzaffarovich, Mavlonov Tolkin

Abstract

The paper presents the statement and methods for solving dynamic problems of multiply connected structurally
inhomogeneous shell structures, which make it possible to reduce the problem of calculating a wide class of
engineering structures to computer-aided design tasks. On the basis of numerical experiments and multi-
parameter analysis of the system as a whole, a number of fundamentally important applied problems
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have been solved for calculating the dynamic characteristics of oscillations (frequencies, modes, determinant
resonant amplitudes and damping coefficients) of special structures depending on the parameters of structural
inhomogeneity. The stabilities of cylindrical shells connected to an annular plate under the action of dynamic
loads are also considered. A methodics for comprehensive assessment of deformation properties is proposed in
order to obtain the most rational mechanical and geometric characteristics based on mathematical modeling
of deformation and relaxation processes.
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Двухточечная краевая задача для системы
функционально-дифференциальных уравнений с

максимумами
Т. К. Юлдашев* , М. А. Тлеубергенова, А. К. Танкеева, А. Молыбайкызы

Аннотация
В данной статье рассматриваются вопросы краевой задачи с двухточечными граничными
условиями для системы обыкновенных дифференциальных уравнений первого порядка с
максимумами. Используется метод параметризации. Получены условия сходимости и построены
алгоритмы решения. Установлены необходимые и достаточные условия на коэффициенты
для корректности рассматриваемой задачи. В доказательстве однозначной разрешимости
функционально-интегральных уравнений в пространстве BD

(
[0, ω],Rn

)
используется метод

сжимающих отображений.

Ключевые слова: Краевая задача, система обыкновенных дифференциальных уравнений, метод параметризации,

необходимые и достаточные условия, существование и единственность решения.

Предметная классификацие AMS (2020): Основная: 34A30; 34A45; Дополнительная: 34B05; 34B10.

1. Введение. Постановка проблемы

Рассмотрим линейную двухточечную краевую задачу

d

dt
x(t) = A(t)x(t) +B(t)max

{
x(τ) : τ ∈ [t− h, t]

}
+ f(t), x ∈ Rn, t ∈ (0, T ), (1.1)

x(ξ) = ϕ(ξ), ξ ∈ [−h, 0], (1.2)

B0x(0) + C0x(T ) = D0, (1.3)

где 0 < h = const – запаздывание, A(t), B(t) и f(t) непрерывны на [0, T ], B0 и C0 – заданные (n× n)

матрицы, D0 – заданный n-мерный вектор, ϕ(t) ∈ C[−h, 0].
Обозначим через C

(
[0, T ],Rn

)
банахово пространство, состоящее из непрерывных вектор-функций x(t)

с нормой ∥∥x(t)∥∥
C[0,T ]

=

√√√√ n∑
j=1

max
t∈[0,T ]

∣∣xj(t)
∣∣.
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Мы используем линейное пространство BD ([0, T ],Rn), которое является банаховым пространством со
следующей нормой

∥x(t) ∥BD[0,T ] = ∥x(t) ∥C[0,T ] + h ∥x′(t) ∥C[0,T ] ,

где 0 < h = const.

Пусть X(t) – фундаментальная матрица дифференциального уравнения dX
dt = A(t)X. Тогда из

уравнения (1.1) получаем

x(t) =

t∫
0

X(t)X−1(s)
(
A(s)x(s) +B(s)max

{
x(τ) : τ ∈ [s− h, s]

}
+ f(s)

)
ds. (1.4)

Однозначную разрешимость уравнения (1.4) мы доказываем в пространстве BD ([0, T ],Rn).
Отметим, что решение задачи (1.1)–(1.3) – это функция x∗(t) ∈ C

(
[0, T ],Rn

)
, непрерывно

дифференцируемая на (0, T ) и удовлетворяющая дифференциальному уравнению (1.1) и граничному
условию (1.3).

Краевые задачи для дифференциальных уравнений имеют широкий спектр применений [1]–[19].
В работах [2]–[8], [10, 12] используются различные методы качественной теории дифференциальных
уравнений. На основе этих методов были установлены условия разрешимости краевых задач и
предложены практические способы их решения. В работах [9, 11] особое значение приобретают
приближенные и численные методы построения решений краевых задач для систем обыкновенных
дифференциальных уравнений.

Данная статья посвящена установлению критериев единственной разрешимости двухточечных краевых
задач для системы обыкновенных дифференциальных уравнений с максимумами и построению
методом параметризации приближенного решения задачи (1.1)–(1.3). Следует отметить, что метод
параметризации был разработан во многих работах Д. С. Джумабаева и его учеников (см., например,
[20]–[32]).

2. О разрешимости уравнения (1.4)

Воспользуемся следующей леммой.

Лемма 2.1 ([33]). Для разности двух функций с максимумами справедлива следующая оценка

∥max {x(τ) : τ ∈ [t− h, t]} −max {y(τ) : τ ∈ [t− h, t]}∥C ≤

≤ ∥x(t)− y(t) ∥C + h

∥∥∥∥ ∂

∂ t
[x(t)− y(t)]

∥∥∥∥
C

,

где 0 < h = const.

Для уравнения (1.4) рассмотрим следующий итерационный процесс:

x0(t) = g(t) ≡
t∫

0

X(t)X−1(s)f(s)ds, t ∈ [0, T ],

xk+1(t) = g(t) +

t∫
0

X(t)X−1(s)
(
A(s)xk(s) +B(s)max

{
xk(τ) : τ ∈ [s− h, s]

})
ds, (2.1)

где k = 0, 1, 2, ...
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Теорема 2.1. Пусть выполнены следующие условия

t∫
0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)max
{
∥A(s)∥C[0,T ]; ∥B(s)∥C[0,T ]

}
ds ≤ C1,

то функционально-интегральное уравнение (1.4) имеет единственное решение в классе BD
(
[0, T ],Rn

)
, где

0 < C1 = const < ∞, ∥g(t)∥ ≤ g0 < ∞, g0 = const и ρ = max
{
C2;C3

}
< 1, 0 < C2 и 0 < C3 определяются

формулами (2.5) ниже.

Доказательство. Мы используем итерационный процесс (2.1). Тогда получаем следующие оценки:

∥∥x0(t)
∥∥
C[0,T ]

≤ ∥g(t)∥C[0,T ] =

t∫
0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)∥f(t)∥C[0,T ]ds ≤ g0, (2.2)

∥∥xk+1(t)− xk(t)
∥∥
C[0,T ]

≤
t∫

0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)[∥A(s)∥C[0,T ]×

×
∥∥xk(s)− xk−1(s)

∥∥
C[0,T ]

+ ∥B(s)∥C[0,T ]

∥∥max
{
xk(τ) : τ ∈ [s− h, s]

}
−

−max
{
xk−1(τ) : τ ∈ [s− h, s]

}∥∥
C[0,T ]

]
ds ≤ C1

[∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+

+
∥∥max

{
xk(τ) : τ ∈ [t− h, t]

}
−max

{
xk−1(τ) : τ ∈ [t− h, t]

}∥∥
C[0,T ]

]
.

Применяя лемму 2.1 к последнему неравенству, получаем

∥∥xk+1(t)− xk(t)
∥∥
C[0,T ]

≤ C1

[
2
∥∥xk(t)− xk−1(t)

∥∥
C[0,T ]

+ h
∥∥∥ d

dt

(
xk(t)− xk−1(t)

)∥∥∥
C[0,T ]

]
. (2.3)

Аналогично, из уравнения (1.1) выводим∥∥∥ d

dt

(
xk+1(t)− xk(t)

)∥∥∥
C[0,T ]

≤
∥∥A(t)

∥∥
C[0,T ]

∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+

+
∥∥B(t)

∥∥
C[0,T ]

∥∥max
{
xk(τ) : τ ∈ [t− h, t]

}
−max

{
xk−1(τ) : τ ∈ [t− h, t]

}∥∥
C[0,T ]

≤

≤
(∥∥A(t)

∥∥+
∥∥B(t)

∥∥)∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+ h
∥∥B(t)

∥∥∥∥∥ d

dt

(
xk(t)− xk−1(t)

)∥∥∥
C[0,T ]

. (2.4)

Обозначим

C2 ≥ max
{
2C1;

∥∥A(t)
∥∥
C[0,T ]

+
∥∥B(t)

∥∥
C[0,T ]

}
, C3 ≥ max

{
hC1;h

∥∥B(t)
∥∥
C[0,T ]

}
. (2.5)

Тогда из оценок (2.3) и (2.4) получаем∥∥xk+1(t)− xk(t)
∥∥
BD[0,T ]

≤ ρ
∥∥xk(t)− xk−1(t)

∥∥
BD[0,T ]

, (2.6)

где ρ = max
{
C2;C3

}
. Из оценок (2.2) и (2.6) следует, что оператор в правой части уравнения (1.4)

является сжимающим отображением, и уравнение (1.4) имеет единственное решение в пространстве
BD[0, T ]. Теорема доказана.
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3. Практические способы нахождения единственного решения

Выберем некоторый шаг h0 > 0, такой что Nh0 = T (N ∈ N), и разобем интервал [0, T ) на
подынтервалы:

[0, T ) =

N⋃
r=1

[
(r − 1)h0, rh0

)
.

Обозначено через C
(
[0, T ], h0,RnN

)
банахово пространство непрерывных вектор-функций x(t) ∈ RnN с

нормой
∥x(t) ∥1 = max

r=1:N
sup

t∈
[
(r−1)h0,rh0

) ∥xr(t) ∥,

где lim
t→rh0−0

xr(t) для всех r = 1, N – конечно. Обозначим через xr(t) =
{
xr(t) = x(t), t ∈

[
(r −

1)h0, rh0

)
, r = 1, N

}
ограничение вектор-функции x(t) на r-й интервал

[
(r − 1)h0, rh0

)
и сведем задачу

(1.1)–(1.3) к эквивалентной многоточечной краевой задаче:

d

dt
xr(t) = A(t)xr +B(t)max

{
xr(τ) : τ ∈ [t− h, t]

}
+ f(t), t ∈

(
(r − 1)h0, rh0

)
, (3.1)

x(ξ) = ϕ(ξ), ξ ∈ [−h, 0], (3.2)

B0x1(0) + C0 lim
t→Nh0−0

xN (t) = D0, (3.3)

lim
t→lh0−0

xl(t) = xl+1(lh0), l = 1, (N − 1), (3.4)

где (3.4) – условия, связывающие решение задачи (1.1)–(1.3) во внутренних точках разбиения интервала
[0, T ]. Пусть λr – значение функции xr(t) в точке t = (r − 1)h0. Производя замену ur(t) = xr(t)− λr, r =

1, N на интервале
[
(r − 1)h0, rh0

)
, из (3.1)–(3.4) получаем многоточечную краевую задачу с параметрами:

d

dt
ur(t) =

(
A(t) +B(t)

)
λr+

+A(t)ur(t) +B(t)max
{
ur(τ) : τ ∈ [t− h, t]

}
+ f(t), t ∈

(
(r − 1)h0, rh0

)
, (3.5)

u0(ξ) = ϕ0(ξ), ξ ∈ [−h, 0], t ∈ [0, h0 − h], (3.6)

ur

(
(r − 1)h0

)
= 0, r = 2, N, (3.7)

B0λ1 + C0λN + C0 lim
t→Nh0−0

uN (t) = D0, (3.8)

λl + lim
t→lh0−0

ul(t) = λl+1, l = 1, N − 1. (3.9)

Пара
(
λ∗, u∗(t)

)
с элементами λ∗ ∈ RnN , u∗(t) ∈ C

(
[0, T ], h0,RnN

)
является решением задачи (3.5)–(3.9).

Здесь функция u∗
r(t) является решением задачи (3.5), (3.7) при λr = λ∗

r , r = 1, N. Для λ∗
r и lim

t→rh0−0
u∗
r(t),

r = 1, N выполняются равенства (3.8), (3.9).
Если x∗(t) является решением задачи (1.1)–(1.3), то пара (λ∗, u∗(t)) является решением задачи (3.5)–

(3.9). Наоборот, если пара
(
λ̃, ũ(t)

)
является решением задачи (3.5)–(3.9), то функция

x̃(t) = λ̃r + ũr(t), t ∈
[
(r − 1)h0, rh0

)
, r = 1, N

является решением задачи (1.1)–(1.3) и x̃(T ) = λ̃N + lim
t→Nh0−0

ũN (t).
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Для дальнейшего изложения используем следующие обозначения: пусть P (t) – произвольная
квадратная матрица, непрерывная на интервале

[
(r − 1)h0, rh0

)
и имеющая конечный предел

lim
t→rh0−0

P (t), r = 1, N. Возьмем число ν ∈ N и обозначим через Eν,r

(
A(·), P (·), t

)
сумму

t∫
(r−1)h0

P (s1)ds1 +

t∫
(r−1)h0

A(s1)

s2∫
(r−1)h0

P (s2)ds2ds1 + . . .+

+

t∫
(r−1)h0

A(s1) . . .

sν−2∫
(r−1)h0

A(sν−1)

sν−1∫
(r−1)h

P (sν)dsνdsν−1 . . . ds1, t ∈
[
(r − 1)h0, rh0

)
, r = 1, N.

Сумма Eν,r(A(·), P (·), t) непрерывна на
[
(r − 1)h0, rh0

)
и имеет конечный предел

lim
t→rh0−0

Eν,r(A(·), P (·), t) = Eν,r(A(·), P (·), rh0) для всех ν ∈ N, r = 1, N.

Очевидно, что E∗,r(A(·), P (·), t) = lim
ν→∞

Eν,r(A(·), P (·), t) является суммой равномерно сходящегося ряда

на [(r − 1)h0, rh0), и эта сумма непрерывна на интервале
[
(r − 1)h0, rh0

)
и имеет конечный предел

lim
t→rh0−0

E∗,r(A(·), P (·), t) = E∗,r(A(·), P (·), rh0), r = 1, N.

Для фиксированного значения параметра λr, r = 1, N , из уравнения (3.1) получаем интегральное
уравнение Вольтерры второго рода:

ur(t) =

t∫
(r−1)h0

[
A(s) +B(s)

]
λrds+

t∫
(r−1)h0

f(s)ds+

t∫
(r−1)h0

A(s)ur(s)ds+

+

t∫
(r−1)h0

B(s)max
{
ur(τ) : τ ∈ [s− h, s]

}
ds, t ∈

[
(r − 1)h0, rh0

)
, r = 1, N. (3.10)

Подставляя правую часть (3.10) в ur(s) в (3.10) и повторяя этот процесс ν (ν ∈ N) раз, получаем
следующее представление функции ur(t):

ur(t) = Fν,r(t)λr +Gν,r(ur, t) +Hν,r(ur, t) +Kν,r(t), t ∈
[
(r − 1)h0, rh0

)
, r = 1, N, (3.11)

где

Fν,r(t) = Eν,r(A(·), A(·) +B(·), t), Kν,r(t) = Eν,r(A(·), f(·), t), Hν,r(t) = Eν,r

(
A(·), B(·)max{ur(τ)}, t

)
,

и

Gν,r(ur, t) =

t∫
(r−1)h0

A(s1) . . .

sν−1∫
(r−1)h0

A(sν)ur(sν)dsν . . . ds1, t ∈
[
(r − 1)h0, rh0

)
, r = 1, N.

Определим lim
t→rh0−0

ur(t), r = 1, N из формулы (3.11). Подставляя соответствующие выражения в

(3.8), (3.9) и умножая (3.8) слева на h0 > 0 : Nh0 = T , получаем систему линейных алгебраических
уравнений относительно параметров:

Qν(h0)λ = −Kν(h0)−Gν(u, h0)−Hν(u, h0), λ ∈ RnN ,
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где Qν(h0) = 
h0B0 O O . . . O h0C0(I + Fν,N (Nh0))

I + Kν,1(h0) −I O . . . O O

O I + Kν,2(2h0) −I . . . O O

. . . . . . . . . . . . . . . . . .

O O O . . . −I O

O O O . . . I + Kν,N−1

(
(N − 1)h0

)
−I

,

I : Rn → Rn – единичная матрица, O : Rn → Rn – нулевая матрица,
Kν(h0) =

(
− h0D0 + h0C0Fν,N (Nh0), Kν,1(h0), . . . ,Kν,N−1((N − 1)h0)

)
∈ RnN ,

Gν(u, h0) =
(
h0C0Gν,N

(
uN , Nh0

)
, Gν,1

(
u1, h0

)
, · · · , Gν,N−1

(
uN−1, (N − 1)h0

))
.Hν(u, h0).

Мы находим решение (λ, u(t)) многоточечной краевой задачи с параметрами (3.1)–(3.5). Предположим,
что для заданных ν, h0 матрица Qν(h0) : RnN → RnN имеет обратную.
a) Найдем начальное приближение для параметра λ(0) =

(
λ
(0)
1 , λ

(0)
2 , . . ., λ

(0)
N

)
∈ RnN , решая систему

уравнений Qν(h0)λ = −Fν(h).
b) Определим компоненты системы функций u(0)(t) =

(
u
(0)
1 (t), u

(0)
2 (t), . . ., u(0)

N (t)
)

по формулам

u(0)
r (t) = Fν,r(t)λ

(0)
r +Kν,r(t), t ∈

[
(r − 1)h0, rh0

)
, r = 1, N.

c) Найдем следующее приближение параметра λ(1) =
(
λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
N

)
∈ RnN , решая систему

уравнений Qν(h0)λ = −Kν(h0)−Gν(u
(0), h0)−Hν

(
u(0), h0

)
.

d) Определим компоненты системы функций u(1)(t) =
(
u
(1)
1 (t), u

(1)
2 (t), . . . , u

(1)
N (t)

)
по формулам

u(1)
r (t) = Fν,r(t)λ

(1)
r +Kν,r(t) +Gν,r

(
u(0)
r , t

)
+Hν,r

(
u(0)
r

)
, t ∈

[
(r − 1)h0, rh0

)
, r = 1, N

и так далее. Продолжая этот процесс, на k-м шаге алгоритма мы получаем пару
(
λ(k), u(k)(t)

)
, k = 0, 1, . . ..

Ввиду эквивалентности задач (1.1)–(1.3) и (3.1)–(3.4) получаем, что справедлива следующая теорема:

Теорема 3.1. Краевая задача (1.1)–(1.3) имеет единственное решение тогда и только тогда, когда
для заданного h0 > 0 : Nh0 = T (N ∈ N), χ ∈ (0, 1] существует ν = ν(h0, χ) (ν ∈ N) такое, что матрица
Qν(h0) : RnN → RnN обратима, и выполнены условия теоремы 2.1.

Заключение

В работе исследованы существование и единственность решения системы обыкновенных диф-
ференциальных уравнений (1.1) с неизвестной функцией под знаком максимума. Система (1.1)
изучается при начальных (1.2) и краевых (1.3) условиях. Метод сжимающих отображений используется
для доказательства единственной разрешимости задачи (1.1)–(1.3) в пространстве BD ([0, ω],Rn).
Практический способ решения задачи (1.1)–(1.3) с помощью метода параметризации сводится к
исследованию разрешимости системы уравнений (3.1)–(3.4). Построен алгоритм решения задачи (3.1)–
(3.4).
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Two-point boundary value problem for a system of functional-differential
equations with maxima

T. K. Yuldashev* , M. A. Tleubergenova, A. K. Tankeyeva, A. Molybaikyzy

Abstract

This article considers the questions of two-point boundary value problem for a system of first-order ordinary
differential equations with maxima. The parametrization method is using. The convergence conditions are
obtained and the algorithms of solving are built. The necessary and sufficient coefficient conditions for the
well-posedness of considered problem are established. The method of contracted mapping is used in the proof
of unique solvability of functional-integral equations in the space BD

(
[0, ω],Rn

)
.
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Structure-preserving scheme for two-phase convection
reaction diffusionsystem
A.Elmurodov and A.Sotvoldiyev

Abstract
In this paper, we introduces a novel structure-preserving explicit numerical scheme for a two-
phase convection reaction diffusion system featuring a dynamically evolving interface. Hölder
norm a priori estimates are established for the free boundary and the solution. Uniqueness of the
solution is shown and qualitative properties of the solution are investigated. Furthermore, we
conduct a comparative analysis of three discretization strategies: the upwind implicit method,
the Crank Nicolson scheme, and the newly proposed explicit approach. Extensive numerical
experiments confirm the robustness of the method, even in regimes dominated by strong
advection and highly nonlinear reaction kinetics. The robustness and physical accuracy of the
scheme make it well suited for modeling complex interface phenomena occurring in a variety
of fields, including osteointegration around dental implants, biological invasion in ecological
systems, and the dynamics of sharp interface phase transitions.

Keywords: free boundary problem, advection, reaction, diffusion, structure-preserving method, stability, numerical simulation.
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1. Introduction

Convection reaction diffusion equations constitute a cornerstone in the mathematical modeling of diverse
and intricate processes across the natural physical, chemical, biological and engineering disciplines. In recent
years, they have been routinely used to describe species distribution in ecology [1, 2, 3, 4, 5], concentration
dynamics in chemical reactions [6, 7, 8], signal propagation in population biological tissues [9], aand more
recently, the evolution of tissues around biomedical implants [10, 11]. They have also been used to describe
other similar processes. Generally, in a one-dimensional space, the convection reaction diffusion equation with
a nonlinear term can be written in the following general form

𝜕𝑡𝑤 = ∇ ·
(
D∇𝑤

)
− c · ∇𝑤 + 𝑓 (𝑤)

where 𝑤 denotes the concentration or population density of the substance, 𝑐 the advection (mass flow) velocity,
𝐷 the diffusion tensor, and 𝑓 (𝑤) the nonlinear reaction term encoding the local kinetics.

This work focuses on a two-phase convection reaction diffusion system, where two distinct components
occupy complementary spatial domains separated by a moving interface 𝑠(𝑡). The full convection reaction
diffusion model reads as follows

𝑢𝑡 − 𝑢𝑥𝑥 − 𝑐1𝑢𝑥 = 𝑢(𝑎1 − 𝑏1𝑢), (𝑥, 𝑡) ∈ 𝐷1, (1.1)
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𝑣𝑡 − 𝑣𝑥𝑥 − 𝑐2𝑣𝑥 = 𝑣(𝑎2 − 𝑏2𝑣), (𝑥, 𝑡) ∈ 𝐷2, (1.2)

𝑢(𝑥, 0) = 𝑢0(𝑥), −ℓ ≤ 𝑥 ≤ 𝑠(0) = 0, 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑠(0) = 0 ≤ 𝑥 ≤ ℓ, (1.3)

𝑢(−ℓ, 𝑡) = 𝜑1(𝑡), 𝑢(𝑠(𝑡), 𝑡) = 𝑣(𝑠(𝑡), 𝑡) = 0, 𝑣(ℓ, 𝑡) = 𝜑2(𝑡), 0 ≤ 𝑡 ≤ 𝑇, (1.4)

¤𝑠(𝑡) = −𝛼𝑢𝑥 (𝑠(𝑡), 𝑡) + 𝛽𝑣𝑥 (𝑠(𝑡), 𝑡), 𝑠(0) = 0, 0 ≤ 𝑡 ≤ 𝑇, (1.5)

where the domains are defined as 𝐷1 = {(𝑥, 𝑡) : 0 < 𝑡 ≤ 𝑇,−ℓ < 𝑥 < 𝑠(𝑡)} and 𝐷2 = {(𝑥, 𝑡) : 0 < 𝑡 ≤ 𝑇, 𝑠(𝑡) <
𝑥 < ℓ}, with parameters satisfying 𝑎𝑖 , 𝑏𝑖 , 𝛼, 𝛽 > 0 and 𝑐𝑖 ∈ R. The boundary functions data 𝜑1, 𝜑2 belong to
𝐶1+𝛾/2( [0, 𝑇]) and remain strictly positive, while the initial profiles 𝑢0, 𝑣0 are assumed smooth and compatible
with the boundary conditions{

𝑢0(0) = 0, 𝑢0 ∈ 𝐶2+𝛾 ( [−ℓ, 0]),
𝑢0(𝑥) > 0, 𝑥 ∈ [−ℓ, 0), 𝑢0(−ℓ) = 𝜑1(0),

{
𝑣0(0) = 0, 𝑣0 ∈ 𝐶2+𝛾 ( [0, ℓ]),
𝑣0(𝑥) > 0, 𝑥 ∈ (0, ℓ], 𝑣0(ℓ) = 𝜑2(0).

Here, 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the concentrations of two substances or populations, such as invasive and
native species or interacting biological components. The parameters 𝑐1, 𝑐2 denote advection velocities, 𝑎1, 𝑎2

represent growth rates, 𝑏1, 𝑏2 indicate internal competition intensities, and 𝛼, 𝛽 are proportionality coefficients
in the Stefan condition. The initial functions 𝑢0(𝑥) and 𝑣0(𝑥) are smooth and positive, consistent with the
boundary conditions.

In practice, many physical and biological systems don’t unfold within a single uniform phase; instead, they
develop across distinct regions separated by an interface that shifts over time. Consider osseointegration around
dental implants—a case that keeps coming up in both clinical and modeling studies. Here, the titanium implant
behaves as a passive, non-reactive phase, whereas the adjacent bone tissue remains metabolically active and
dynamically responsive. The two never truly blend; all their interaction is confined to a moving front—the
interface—whose motion is steered by biophysical feedback mechanisms [10].

This kind of two-phase layout isn’t unique. It shows up again in tumor growth models, where malignant
tissue pushes against healthy surroundings [12], and even in textbook examples like water freezing into ice,
where phase change propagates along a sharp, evolving boundary [13].

Mathematically, these situations fall under the umbrella of free boundary problems—most classically, Stefan-
type models—where the speed of the interface isn’t prescribed but tied directly to the fluxes of the underlying
state variables. That coupling isn’t just a technical detail, it’s what encodes the actual physical or biological
driver behind the boundary’s motion, and without it, you’d struggle to capture how the system behaves over
time.

Yet, simulating such two-phase convection reaction diffusion systems numerically is far from straightforward.
For one, the free boundary has to be tracked—or recomputed—at every time step, which means your mesh
can’t stay fixed; it has to evolve along with the solution. Then there’s the issue of nonlinear reactions: take the
familiar logistic term 𝑤(𝑎 − 𝑏𝑤), for example. In many standard schemes, this very term can quietly erode
positivity, trigger unphysical wiggles, or even send the whole simulation off the rails [14]. And finally, even
though each phase follows its own PDE, they’re stitched together through nonlinear interface conditions, so
your numerical method needs to handle the whole domain in a coherent, globally consistent way.

It’s no surprise, then, that recent efforts have leaned heavily toward structure-preserving—or more
specifically, positivity-preserving—numerical approaches [15, 16, 19]. The idea isn’t just to get close to
the true solution, but to do so while honoring core physical constraints: non-negativity of concentrations,
natural bounds on population densities, and the tendency to settle into equilibrium when the driving forces
fade.

Finding an exact analytical solution for systems of this kind is rarely feasible—the moving boundary
alone introduces enough complexity to make closed-form expressions all but impossible. And yet, getting the
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interface motion right is absolutely essential, without it, any description of the system’s behavior quickly loses
credibility.

With that in mind, we adopt a front-tracking strategy that brings together three numerical approaches: the
upwind implicit scheme, the Crank–Nicolson method, and a new explicit scheme introduced here. The latter
is designed specifically to preserve positivity and respect the underlying structure of the model. Our main
goal isn’t just to build faster algorithms, but to develop schemes that remain faithful to the physics—robust,
efficient, and consistent with the core properties the continuous problem demands.

2. A priori estimates

In this section, we establish the Hölder norm a priori estimates that are essential for proving the global
solvability of the problem. In particular, the maximum principle, as discussed in [19], plays a key role in our
analysis.

One of the main difficulties in developing a nonlocal theory for nonlinear problems lies in obtaining suitable
bounds for the first derivatives of the solution with respect to the spatial variable. Various techniques have
been proposed in the literature to address this challenge.

In this study, we adopt the approach outlined in [6, 5, 19] to derive the necessary a priori bounds, and we
follow the notations and conventions introduced in [21, 22].

Lemma 2.1. Let the triplet (𝑠(𝑡), 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) be a classical solution to the system (1.1)–(1.5). Define the

positive constants 𝑁1 and 𝑁2 as 𝑁1 = max

{
sup

−ℓ≤𝑥≤0

(
𝑢0 (𝑥 )
−𝑥

)
,

𝑎2
1

𝑏1𝑐1

}
, 𝑁2 = max

{
sup

0≤𝑥≤ℓ

(
𝑣0 (𝑥 )
𝑥

)
,

𝑎2
2

𝑏2𝑐2

}
.

If the initial conditions satisfy 0 ≤ 𝑢0(𝑥) ≤ 𝑎1
𝑏1
, 0 ≤ 𝑣0(𝑥) ≤ 𝑎2

𝑏2
, then there exist positive constants

𝑀1 =
𝑎1
𝑏1

, 𝑀2 =
𝑎2
𝑏2

and 𝑀3 = 𝛼𝑁1 + 𝛽𝑁2, independent of 𝑇 , such that the following estimates hold

0 < 𝑢(𝑥, 𝑡) ≤ 𝑀1 in (𝑥, 𝑡) ∈ 𝐷1, 0 < 𝑣(𝑥, 𝑡) ≤ 𝑀2 in (𝑥, 𝑡) ∈ 𝐷2, 0 < ¤𝑠(𝑡) ≤ 𝑀3, 0 ≤ 𝑡 ≤ 𝑇.

Proof. We begin by applying the parabolic maximum principle to equations (1.1)–(1.2). The reaction
terms 𝑓1(𝑢) = 𝑢(𝑎1 − 𝑏1𝑢), 𝑓2(𝑣) = 𝑣(𝑎2 − 𝑏2𝑣) satisfy 𝑓𝑖 (0) = 0, and each 𝑓𝑖 is Lipschitz continuous.
Given that 𝑢0(𝑥), 𝑣0(𝑥) ≥ 0, and the boundary conditions 𝑢(𝑠(𝑡), 𝑡) = 𝑣(𝑠(𝑡), 𝑡) = 0, 𝑢(−ℓ, 𝑡) = 𝜑1(𝑡) ≥ 0,
𝑣(ℓ, 𝑡) = 𝜑2(𝑡) ≥ 0, it follows from the maximum principle (see, e.g., [19, Theorem 2]) that

𝑢(𝑥, 𝑡) ≥ 0 in 𝐷1, 𝑣(𝑥, 𝑡) ≥ 0 in 𝐷2.

If 𝑢0(0) = 𝑣0(0) = 0 and 𝑢0, 𝑣0 . 0, then by the strong maximum principle,

𝑢(𝑥, 𝑡) > 0 in 𝐷1, 𝑣(𝑥, 𝑡) > 0 in 𝐷2, 𝑡 > 0.

To derive the upper bounds, introduce the auxiliary function 𝜔(𝑥, 𝑡) =
{
𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝐷1,

𝑣(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝐷2,
for which

the reaction term takes the form 𝑓 (𝑥, 𝑡, 𝜔) = 𝜔(𝑎𝑖 − 𝑏𝑖𝜔) (𝑖 = 1, 2). Since 𝜔 = 0 and 𝜔 =
𝑎𝑖
𝑏𝑖

are sub- and
supersolutions, respectively, the maximum principle yields

0 < 𝑢(𝑥, 𝑡) ≤ 𝑎1

𝑏1
= 𝑀1, (𝑥, 𝑡) ∈ 𝐷1, 0 < 𝑣(𝑥, 𝑡) ≤ 𝑎2

𝑏2
= 𝑀2, (𝑥, 𝑡) ∈ 𝐷2.

Next, to estimate the gradients near the free boundary, consider the auxiliary function

𝑈 (𝑥, 𝑡) = 𝑁1
(
𝑠(𝑡) − 𝑥

)
− 𝑢(𝑥, 𝑡),
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where 𝑁1 > 0 is a constant to be determined. Then 𝑈 satisfies
𝑈𝑡 −𝑈𝑥𝑥 − 𝑐1𝑈𝑥 ≥ 𝑐1𝑁1 −

𝑎2
1

𝑏1
≥ 0,

𝑈 (𝑥, 0) = 𝑁1(−𝑥) − 𝑢0(𝑥) ≥ 0,

𝑈 (−ℓ, 𝑡) = 𝑁1(𝑠(𝑡) + ℓ) − 𝜑1(𝑡) ≥ 0,

𝑈 (𝑠(𝑡), 𝑡) = 0.

By the maximum principle
𝑈 (𝑥, 𝑡) ≥ 0 in 𝐷1

which implies 𝑢(𝑥, 𝑡) ≤ 𝑁1
(
𝑠(𝑡) − 𝑥

)
, −ℓ ≤ 𝑥 ≤ 𝑠(𝑡).

Hence, taking the left-hand derivative at 𝑥 = 𝑠(𝑡) yields

−𝑁1 ≤ 𝑢𝑥 (𝑠(𝑡), 𝑡) < 0.

A similar argument for the second phase gives 0 < 𝑣𝑥 (𝑠(𝑡), 𝑡) ≤ 𝑁2.

Finally, from the free boundary condition (1.5),

0 < ¤𝑠(𝑡) ≤ 𝛼𝑁1 + 𝛽𝑁2 = 𝑀3,

which completes the proof. □

To obtain upper bounds for 𝑢𝑥 , 𝑣𝑥 , and for the Hölder norms |𝑢 | (2+𝛾)
𝑄

and |𝑣 | (2+𝛾)
𝑄

, we first transform the
moving spatial domains into a fixed reference domain. Following the approach in [6, 19], we introduce the
change of variables

for 𝐷1 : 𝜏 = 𝑡, 𝑦 =
𝑥 + ℓ

ℓ + 𝑠(𝑡) , for 𝐷2 : 𝜏 = 𝑡, 𝑦 =
𝑥 − ℓ

ℓ − 𝑠(𝑡) .

This transformation maps both regions onto the fixed cylindrical domain 𝑄 = {(𝑦, 𝜏) : 0 < 𝑦 < 1, 0 < 𝜏 <

𝑇}.
Define the new dependent variables𝑈 (𝑦, 𝜏) = 𝑢(𝑥, 𝑡) and𝑉 (𝑦, 𝜏) = 𝑣(𝑥, 𝑡). Then𝑈 (𝑦, 𝜏) and𝑉 (𝑦, 𝜏) satisfy

the following boundary value problems:
𝑈𝜏 = 𝐴1𝑈𝑦𝑦 + 𝐹1(𝑈,𝑈𝑦), (𝑦, 𝜏) ∈ 𝑄,

𝑈 (𝑦, 0) = 𝑈0(𝑦), 0 ≤ 𝑦 ≤ 1,

𝑈 (1, 𝜏) = 0, 𝑈 (0, 𝜏) = 𝜑1(𝜏),

(2.1)


𝑉𝜏 = 𝐴2𝑉𝑦𝑦 + 𝐹2(𝑉,𝑉𝑦), (𝑦, 𝜏) ∈ 𝑄,

𝑉 (𝑦, 0) = 𝑉0(𝑦), 0 ≤ 𝑦 ≤ 1,

𝑉 (0, 𝜏) = 0, 𝑉 (1, 𝜏) = 𝜑2(𝜏).

(2.2)

Here, the transformed initial functions are 𝑈0(𝑦) = 𝑢0(𝑦(ℓ + 𝑠(𝑡)) − ℓ) , 𝑉0(𝑦) = 𝑣0(𝑦(ℓ − 𝑠(𝑡)) + ℓ) and
the coefficients are given by 𝐴1 = 4

(ℓ+𝑠 (𝜏 ) )2 , 𝐴2 = 4
(ℓ−𝑠 (𝜏 ) )2 , 𝐹1 =

[
2𝑐1 (ℓ+𝑠 (𝜏 ) )−2 ¤𝑠 (𝜏 ) (𝑥+ℓ )

(ℓ+𝑠 (𝜏 ) )2

]
𝑈𝑦 +𝑈 (𝑎1 −

𝑏1𝑈), 𝐹2 =

[
−2𝑐2 (ℓ−𝑠 (𝜏 ) )−2 ¤𝑠 (𝜏 ) (𝑥−ℓ )

(ℓ−𝑠)2

]
𝑉𝑦 +𝑉 (𝑎2 − 𝑏2𝑉).

By Lemma 2.1, we have 0 < 𝑢 ≤ 𝑀1, 0 < 𝑣 ≤ 𝑀2, 0 < ¤𝑠(𝑡) ≤ 𝑀3. Moreover, since 𝑠(𝑡) ∈ [0, 𝑠max) with
𝑠max < ℓ, the terms ℓ ± 𝑠(𝑡) are strictly positive.

Consequently, the coefficients 𝐴𝑖 and 𝐹𝑖 remain uniformly bounded in 𝑄. For any 𝛿 ∈ (0, 1), denote the
interior subdomain 𝑄 𝛿 = {(𝑦, 𝜏) : 𝛿 ≤ 𝑦 ≤ 1 − 𝛿, 𝛿 ≤ 𝜏 ≤ 𝑇}.
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Theorem 2.1. Assume that 𝑈 (𝑦, 𝜏) is a classical solution of (2.1). Then there exists a constant 𝑀4 =

𝑀4(𝑀1, 𝛿) > 0, independent of 𝑇 , such that

|𝑈𝑦 (𝑦, 𝜏) | ≤ 𝑀4, (𝑦, 𝜏) ∈ 𝑄 𝛿 .

If, in addition,𝑈 |𝜕𝑝𝑄 = 0 on the parabolic boundary 𝜕𝑝𝑄 = {𝜏 = 0} ∪ {𝑦 = 0} ∪ {𝑦 = 1}, then the estimate
holds throughout the entire domain 𝑄

|𝑈𝑦 (𝑦, 𝜏) | ≤ 𝑀4(𝑀1, 𝐴10), (𝑦, 𝜏) ∈ 𝑄,

where 𝐴10 = min
𝑄

{𝐴1} > 0.

Proof. Since 𝑈 (𝑦, 𝜏) is bounded by 𝑀1 and the coefficients 𝐴1, 𝐹1 are uniformly bounded in 𝑄, the interior
gradient estimate for quasi-linear parabolic equations (see, e.g., [22, Theorem 2.1]) implies

|𝑈𝑦 (𝑦, 𝜏) | ≤ 𝑀4, (𝑦, 𝜏) ∈ 𝑄 𝛿 .

To extend this bound to the boundary, define 𝑊 (𝑦, 𝜏) = 𝑈 (𝑦, 𝜏) −𝑈0(𝑦). Then 𝑊 satisfies{
𝑊𝜏 = 𝐴1𝑊𝑦𝑦 + 𝐺1(𝑊,𝑊𝑦),
𝑊 (𝑦, 0) = 0, 𝑊 (0, 𝜏) = 0, 𝑊 (1, 𝜏) = 0,

where 𝐺1 = 𝐹1(𝑈,𝑈𝑦) − 𝐴1(𝑈0)𝑦𝑦 .
Since 𝑈0(𝑦) ∈ 𝐶2+𝛾 ( [0, 1]), its second derivative (𝑈0)𝑦𝑦 is bounded, and thus 𝐺1 is also bounded in 𝑄.
By applying the global gradient estimate for parabolic equations ([22, Chapter III, Theorem 4.1]), we

conclude that 𝑈𝑦 is bounded in the entire domain 𝑄. The same argument applies to 𝑉 (𝑦, 𝜏). □

Returning to the original variables, the estimates for 𝑈𝑦 and 𝑉𝑦 yield

|𝑢𝑥 (𝑥, 𝑡) | ≤ 𝐶1𝑀4, |𝑣𝑥 (𝑥, 𝑡) | ≤ 𝐶2𝑀4,

for all (𝑥, 𝑡) in the interior subdomains 𝐷 𝛿
1 and 𝐷 𝛿

2 , which are separated from the initial time and fixed
boundaries 𝑥 = ±ℓ.

To derive the higher-order Höder estimates, consider, for example, the equation for 𝑣

𝑣𝑡 = 𝑣𝑥𝑥 + 𝑞(𝑣, 𝑣𝑥), 𝑞(𝑣, 𝑣𝑥) = 𝑣(𝑎2 − 𝑏2𝑣) + 𝑐2𝑣𝑥 .

From Lemma 2.1 and Theorem 2.1, we have |𝑣 | ≤ 𝑀2 and |𝑣𝑥 | ≤ 𝑀4. Hence, for some constant
𝑅 = 𝑅(𝑀2, 𝑐2) > 0,

|𝑞(𝑣, 𝑣𝑥) | ≤ 𝑅(𝑣2
𝑥 + 1).

Theorem 2.2. Suppose 𝑣 ∈ 𝐿2(𝐷2) and its weak derivatives satisfy 𝑣𝑥𝑥 , 𝑣𝑡 𝑥 ∈ 𝐿2(𝐷2). Then there exists a
constant 𝑀5 = 𝑀5(𝑀2, 𝑅) > 0 such that

|𝑣 | (1+𝛾/2, 1+𝛾)
𝐷𝛿

2
≤ 𝑀5.

Moreover, if the linearized equation

𝑎̃(𝑦, 𝜏)𝑤𝑦𝑦 + 𝑏̃(𝑦, 𝜏)𝑤𝑦 + 𝑐(𝑦, 𝜏)𝑤 − 𝑤𝜏 = 𝑓 (𝑦, 𝜏)

has Hölder-continuous coefficients satisfying

|𝑎̃ | (𝛾)
𝑄

+ |𝑏̃ | (𝛾)
𝑄

+ |𝑐 | (𝛾)
𝑄

+ | 𝑓 | (𝛾)
𝑄

< ∞, 𝑎̃ ≥ 𝑎0 > 0,

and if 𝑤 = 0 on the parabolic boundary, then (see [22, Theorem 5.3])

|𝑤 | (2+𝛾)
𝑄

≤ 𝐶

(
| 𝑓 | (𝛾)

𝑄
+ max

𝑄
|𝑤 |

)
= 𝑀7.
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Proof. Applying this result to 𝑈 (𝑦, 𝜏) and 𝑉 (𝑦, 𝜏) yields

|𝑈 | (2+𝛾)
𝑄

≤ 𝑀7, |𝑉 | (2+𝛾)
𝑄

≤ 𝑀7.

Transforming back to the original variables gives

|𝑢 | (2+𝛾)
𝐷1

≤ 𝐶𝑀7, |𝑣 | (2+𝛾)
𝐷2

≤ 𝐶𝑀7,

where 𝐶 depends only on ℓ, 𝑀3, and 𝛾, but not on 𝑇 . Thus, the required a priori estimates for 𝑢𝑥 , 𝑣𝑥 , and for
the Hölder norms |𝑢 | (2+𝛾) , |𝑣 | (2+𝛾) are fully established. □

3. Uniqueness of the solution

To establish the uniqueness of the classical solution for problem (1.1)–(1.5), we begin by considering the
following integral representation of the free boundary 𝑠(𝑡) (see [19]):

𝑠(𝑡) = 𝛽

ℓ∫
𝑠 (𝑡 )

𝑣(𝜉, 𝑡) 𝑑𝜉 − 𝛽

∬
𝐷2

𝑣(𝑎2 − 𝑏2𝑣) 𝑑𝜉𝑑𝜏 + 𝛼

𝑠 (𝑡 )∫
−ℓ

𝑢(𝜉, 𝑡) 𝑑𝜉 − 𝛼

0∫
−ℓ

𝑢0(𝜉) 𝑑𝜉

+𝛽
ℓ∫

0

𝑣0(𝜉) 𝑑𝜉 − 𝛼

∬
𝐷1

𝑢(𝑎1 − 𝑏1𝑢) 𝑑𝜉𝑑𝜏 − 𝛽𝑐2

𝑡∫
0

𝑣(ℓ, 𝜏) 𝑑𝜏 − 𝛼𝑐1

𝑡∫
0

𝑢(−ℓ, 𝜏) 𝑑𝜏.

(3.1)

Theorem 3.1. If the initial and boundary conditions are satisfied in the form specified above, and the
assumptions of Lemma 2.1 hold, then the classical solution to problem (1.1)–(1.5) is unique.

Proof. Assume that there exist two classical solutions (𝑠1(𝑡), 𝑢1(𝑥, 𝑡), 𝑣1(𝑥, 𝑡)) and (𝑠2(𝑡), 𝑢2(𝑥, 𝑡), 𝑣2(𝑥, 𝑡)).
Define the auxiliary functions 𝑦(𝑡) = min{𝑠1(𝑡), 𝑠2(𝑡)} and ℎ(𝑡) = max{𝑠1(𝑡), 𝑠2(𝑡)}.

Since both solutions satisfy (3.1), subtracting the corresponding identities yields the estimate

|𝑠1(𝑡) − 𝑠2(𝑡) | ≤ 𝛼

𝑦 (𝑡 )∫
−ℓ

|𝑢1(𝜉, 𝑡) − 𝑢2(𝜉, 𝑡) | 𝑑𝜉 + 𝛽

ℓ∫
𝑦 (𝑡 )

|𝑣1(𝜉, 𝑡) − 𝑣2(𝜉, 𝑡) | 𝑑𝜉+

+𝛼
𝑡∫

0

∫ 𝑦 (𝜏 )

−ℓ
|𝑢1(𝑎1 − 𝑏1𝑢1) − 𝑢2(𝑎1 − 𝑏1𝑢2) | 𝑑𝜉𝑑𝜏 + 𝛼

𝑡∫
0

ℎ (𝜏 )∫
𝑦 (𝜏 )

|𝑢𝑖 (𝑎1 − 𝑏1𝑢𝑖) | 𝑑𝜉𝑑𝜏+

+𝛽
𝑡∫

0

ℓ∫
𝑦 (𝜏 )

|𝑣1(𝑎2 − 𝑏2𝑣1) − 𝑣2(𝑎2 − 𝑏2𝑣2) | 𝑑𝜉𝑑𝜏 + 𝛽

𝑡∫
0

ℎ (𝜏 )∫
𝑦 (𝜏 )

|𝑣𝑖 (𝑎2 − 𝑏2𝑣𝑖) | 𝑑𝜉𝑑𝜏, (3.2)

where, in the intermediate region between 𝑦(𝑡) and ℎ(𝑡),

(𝑢𝑖 (𝑥, 𝑡), 𝑣𝑖 (𝑥, 𝑡)) =

(𝑢1(𝑥, 𝑡), 𝑣1(𝑥, 𝑡)), if 𝑠2(𝑡) < 𝑠1(𝑡),

(𝑢2(𝑥, 𝑡), 𝑣2(𝑥, 𝑡)), if 𝑠2(𝑡) > 𝑠1(𝑡)).

We next introduce the difference functions 𝑈 (𝑥, 𝑡) = 𝑢1(𝑥, 𝑡) − 𝑢2(𝑥, 𝑡), 𝑉 (𝑥, 𝑡) = 𝑣1(𝑥, 𝑡) − 𝑣2(𝑥, 𝑡).
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These functions satisfy the following boundary-value problems
𝑈𝑡 −𝑈𝑥𝑥 − 𝑐1𝑈𝑥 + 𝐴1(𝑥, 𝑡)𝑈 = 0, (𝑥, 𝑡) ∈ 𝐷∗

1,

𝑈 (𝑥, 0) = 0, −ℓ ≤ 𝑥 ≤ 0, 𝑈 (−ℓ, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,

|𝑈 (𝑦(𝑡), 𝑡) | ≤ 𝑀4 max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |, 0 ≤ 𝑡 ≤ 𝑇,

(3.3)


𝑉𝑡 −𝑉𝑥𝑥 − 𝑐2𝑉𝑥 + 𝐴2(𝑥, 𝑡)𝑉 = 0, (𝑥, 𝑡) ∈ 𝐷∗

2,

𝑉 (𝑥, 0) = 0, 0 ≤ 𝑥 ≤ ℓ, 𝑉 (ℓ, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,

|𝑉 (𝑦(𝑡), 𝑡) | ≤ 𝑀5 max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |, 0 ≤ 𝑡 ≤ 𝑇,

(3.4)

where 𝐴1(𝑥, 𝑡) = 𝑎1 − 𝑏1(𝑢1 + 𝑢2), 𝐴2(𝑥, 𝑡) = 𝑎2 − 𝑏2(𝑣1 + 𝑣2) and 𝑀4 = max
𝐷1

|𝑢𝑥 |, 𝑀5 = max
𝐷2

|𝑣𝑥 | are the
bounded constants obtained from Lemma 2.1 and Theorem 2.1.

Since the above equations are linear with bounded coefficients, the parabolic maximum principle (see [19])
ensures that

|𝑈 (𝑥, 𝑡) | ≤ 𝑁1 max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |, |𝑉 (𝑥, 𝑡) | ≤ 𝑁2 max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |, (3.5)

where 𝑁1 > 0, 𝑁2 > 0 depend only on the initial data and system parameters.
We now estimate the terms in (3.2) using (3.5). For example, the first integral satisfies

𝑦 (𝑡 )∫
−ℓ

|𝑈 (𝜉, 𝑡) | 𝑑𝜉 ≤ 𝑁1(ℓ + 𝑦(𝑡)) max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) | ≤ 2ℓ𝑁1 max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |.

Similarly, each remaining term in (3.2) is proportional to max
0≤𝜏≤𝑡

|𝑠1(𝜏) − 𝑠2(𝜏) |. Consequently, we obtain the
integral inequality

|𝑠1(𝑡) − 𝑠2(𝑡) | ≤ 𝑁3

𝑡∫
0

max
0≤𝜏≤𝜎

|𝑠1(𝜏) − 𝑠2(𝜏) | 𝑑𝜎,

where 𝑁3 > 0 is independent of $T.
Applying Gronwall’s lemma gives max0≤𝑡≤𝑇 |𝑠1(𝑡) − 𝑠2(𝑡) | = 0 which implies 𝑠1(𝑡) ≡ 𝑠2(𝑡). Substituting

this into (3.3)–(3.4) yields homogeneous boundary conditions, and by the maximum principle once more, we
conclude that 𝑈 ≡ and 𝑉 ≡ 0.

Hence, the two classical solutions coincide completely, and the solution to problem (1.1)–(1.5) is unique.
This proof follows the methodological framework used in [5, 19]. □

4. Existence of a solution

To establish the existence of a classical solution for problem (1.1)–(1.5), we build upon the a priori
estimates derived in the previous sections. By applying a suitable transformation of variables, the moving
boundary is mapped onto a fixed domain, leading to the reformulated systems (2.1)–(2.2).

Theorem 4.1. Assume that the a priori estimates stated in Lemma 2.1 and Theorem 2.2 hold. Then the problem
(1.1)–(1.5) admits a classical solution satisfying

𝑢 ∈ 𝐶2+𝛾, 1+𝛾/2(𝐷1), 𝑣 ∈ 𝐶2+𝛾, 1+𝛾/2(𝐷2), 𝑠 ∈ 𝐶1+𝛾/2( [0, 𝑇]).
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Proof. The proof is based on an iterative construction. We begin with an initial approximation of the free
boundary, taking 𝑠 (0) (𝑡) ≡ 0. For each 𝑘 ≥ 0, suppose that 𝑠 (𝑘 ) (𝑡) is known. We then solve problems (2.1)–
(2.2) for 𝑈 (𝑘+1) and 𝑉 (𝑘+1) under the boundary conditions corresponding to 𝑠 (𝑘 ) (𝑡). Next, we update the free
boundary as

¤𝑠 (𝑘+1) (𝑡) = −𝛼𝑈 (𝑘+1)
𝑦 (1, 𝑡) + 𝛽𝑉

(𝑘+1)
𝑦 (−1, 𝑡), 𝑠 (𝑘+1) (0) = 0.

From Lemma 2.1 and Theorem 2.2, the sequences 𝑈 (𝑘 ) , 𝑉 (𝑘 ) , and 𝑠 (𝑘 ) are uniformly bounded in Hölder
norms. In particular, there exists a constant 𝑁𝑖 > 0 (𝑖 = 4, 5, 6), independent of 𝑘 and 𝑇 , such that

|𝑈 (𝑘 ) | (2+𝛾)
𝑄

≤ 𝑁4, |𝑉 (𝑘 ) | (2+𝛾)
𝑄

≤ 𝑁5, |𝑠 (𝑘 ) | (1+𝛾/2)
[0,𝑇 ] ≤ 𝑁6.

Here, the constant 𝑁𝑖 depends only on the initial data and fixed parameters ℓ, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝛼, 𝛽, 𝛾, but not on
the iteration index 𝑘 or the time interval 𝑇 .

By the Arzelà–Ascoli theorem and the compactness of embeddings in Hölder spaces, one can extract
convergent subsequences {𝑈 (𝑘 ) }, {𝑉 (𝑘 ) } and {𝑠 (𝑘 ) } such that

𝑈 (𝑘 ) → 𝑈, 𝑉 (𝑘 ) → 𝑉, 𝑠 (𝑘 ) → 𝑠

uniformly on compact subsets. Passing to the limit in the equations and boundary conditions is justified by
standard arguments of functional analysis (see, e.g., [22, Chapter V]).

Thus, the limiting functions (𝑈,𝑉, 𝑠) constitute a classical solution of the transformed problem. The original
variables are recovered by inverse transformation, yielding a classical solution (𝑢, 𝑣, 𝑠) to the initial free
boundary problem (1.1)–(1.5).

Finally, since all the a priori estimates are uniform with respect to 𝑇 , the solution can be extended step by
step in time, thereby ensuring global existence for any 𝑇 > 0.

Because the obtained a priori bounds are independent of 𝑇 , the solution is not only locally existent and
unique, but also globally extendable to arbitrary time intervals. Hence, the free boundary system (1.1)–(1.5)
admits a global classical solution. This result provides a rigorous mathematical foundation for the numerical
simulations developed later, since the physical relevance of numerical results is guaranteed only when a
well-posed (i.e., existent and unique) solution is ensured. □

5. Numerical methods

The two-phase advection–reaction–diffusion system (1.1)–(1.5) is highly nonlinear and involves a moving
free boundary. Therefore, numerical approximation requires special attention to mesh dynamics, interfacial
coupling between phases, and nonlinear reaction terms. In this section, we construct two stable and widely
used schemes— the upwind implicit scheme and the Crank–Nicolson scheme— both of which incorporate a
dynamic update of the free boundary 𝑠(𝑡) at each time step.

The computational domain is defined as [−ℓ, ℓ] × [0, 𝑇]. We introduce the spatial step ℎ = Δ𝑥 = 2ℓ
𝑀

and the
time step 𝑘 = Δ𝑡 = 𝑇

𝑁
. The discrete grid points are given by

𝑥𝑖 = −ℓ + 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑀, 𝑡𝑛 = 𝑛𝑘, 𝑛 = 0, 1, . . . , 𝑁.

The approximate solutions are denoted as

𝑢𝑛𝑖 ≈ 𝑢(𝑡𝑛, 𝑥𝑖), for 𝑥𝑖 < 𝑠𝑛, 𝑣𝑛𝑖 ≈ 𝑣(𝑡𝑛, 𝑥𝑖), for 𝑥𝑖 > 𝑠𝑛, 𝑠𝑛 ≈ 𝑠(𝑡𝑛),

where 𝑠𝑛 represents the approximate location of the moving interface. We assume that 𝑥𝑖𝑠 ≤ 𝑠𝑛 < 𝑥𝑖𝑠+1.
According to the boundary condition (1.4), the interface values are determined via linear interpolation:

𝑢(𝑠𝑛, 𝑡𝑛) = 0 ⇒ 𝑢𝑛𝑖𝑠 + 𝜃
(
𝑢𝑛
𝑖𝑠+1 − 𝑢𝑛𝑖𝑠

)
= 0, 𝜃 =

ℎ

𝑠𝑛 − 𝑥𝑖𝑠
,
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and similarly for 𝑣(𝑠𝑛, 𝑡𝑛) = 0. In practice, it is often sufficient to enforce only the left-phase condition 𝑢𝑛
𝑖𝑠
= 0,

since the right phase is treated as an inert medium.

5.1. The upwind implicit scheme

The presence of advection terms may cause artificial oscillations or numerical diffusion. To mitigate such
instabilities, we apply an upwind discretization that follows the direction of the flow

𝑐 · ∇𝑤 ≈

𝑐

ℎ
(𝑤𝑖 − 𝑤𝑖−1), 𝑐 > 0,

𝑐

ℎ
(𝑤𝑖+1 − 𝑤𝑖), 𝑐 < 0.

Assuming 𝑐1 > 0 (flow directed rightward in the left phase) and 𝑐2 < 0 (flow directed leftward in the right
phase), the corresponding schemes can be written as follows.

For the left phase (𝑥𝑖 < 𝑠𝑛+1)

𝑢𝑛+1
𝑖

− 𝑢𝑛
𝑖

𝑘
−
𝑢𝑛+1
𝑖+1 − 2𝑢𝑛+1

𝑖
+ 𝑢𝑛+1

𝑖−1

ℎ2 − 𝑐1
𝑢𝑛+1
𝑖

− 𝑢𝑛+1
𝑖−1

ℎ
= 𝑢𝑛+1

𝑖 (𝑎1 − 𝑏1𝑢
𝑛+1
𝑖 ), 𝑖 = 1, . . . , 𝑖𝑠 − 1; (5.1)

For the right phase (𝑥𝑖 > 𝑠𝑛+1)

𝑣𝑛+1
𝑖

− 𝑣𝑛
𝑖

𝑘
−
𝑣𝑛+1
𝑖+1 − 2𝑣𝑛+1

𝑖
+ 𝑣𝑛+1

𝑖−1

ℎ2 − 𝑐2
𝑣𝑛+1
𝑖+1 − 𝑣𝑛+1

𝑖

ℎ
= 𝑣𝑛+1

𝑖 (𝑎2 − 𝑏2𝑣
𝑛+1
𝑖 ), 𝑖 = 𝑖𝑠 + 2, . . . , 𝑀 − 1. (5.2)

The boundary conditions are given by

𝑢𝑛+1
0 = 𝜑1(𝑡𝑛+1), 𝑣𝑛+1

𝑀 = 𝜑2(𝑡𝑛+1), 𝑢𝑛+1
𝑖𝑠

= 0. (5.3)

Equations (5.1)–(5.3) form a nonlinear algebraic system, which can be solved using Newton’s method or the
Picard iteration. The scheme is implicit, providing unconditional stability even for large time steps. Moreover,
the resulting matrix is diagonally dominant, ensuring the existence and stability of the numerical solution.

5.2. The Crank Nicolson scheme

The Crank Nicolson scheme provides second-order accuracy in time by averaging diffusion and advection
terms at the mid-time level 𝑡𝑛+1/2. It is particularly effective in diffusion-dominated regimes, offering both
high accuracy and energy conservation.

For the left phase (𝑥𝑖 < 𝑠𝑛+1)

𝑢𝑛+1
𝑖

− 𝑢𝑛
𝑖

𝑘
− 1

2

[
𝑢𝑛+1
𝑖+1 − 2𝑢𝑛+1

𝑖
+ 𝑢𝑛+1

𝑖−1

ℎ2 +
𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖
+ 𝑢𝑛

𝑖−1

ℎ2

]
− 𝑐1

2

[
𝑢𝑛+1
𝑖

− 𝑢𝑛+1
𝑖−1

ℎ
+
𝑢𝑛
𝑖
− 𝑢𝑛

𝑖−1

ℎ

]
=

1
2
[
𝑢𝑛+1
𝑖 (𝑎1 − 𝑏1𝑢

𝑛+1
𝑖 ) + 𝑢𝑛𝑖 (𝑎1 − 𝑏1𝑢

𝑛
𝑖 )
]
, 𝑖 = 1, . . . , 𝑖𝑠 − 1.

(5.4)

For the right phase (𝑥𝑖 > 𝑠𝑛+1)

𝑣𝑛+1
𝑖

− 𝑣𝑛
𝑖

𝑘
− 1

2

[
𝑣𝑛+1
𝑖+1 − 2𝑣𝑛+1

𝑖
+ 𝑣𝑛+1

𝑖−1

ℎ2 +
𝑣𝑛
𝑖+1 − 2𝑣𝑛

𝑖
+ 𝑣𝑛

𝑖−1

ℎ2

]
− 𝑐2

2

[
𝑣𝑛+1
𝑖+1 − 𝑣𝑛+1

𝑖

ℎ
+
𝑣𝑛
𝑖+1 − 𝑣𝑛

𝑖

ℎ

]
=

1
2
[
𝑣𝑛+1
𝑖 (𝑎2 − 𝑏2𝑣

𝑛+1
𝑖 ) + 𝑣𝑛𝑖 (𝑎2 − 𝑏2𝑣

𝑛
𝑖 )
]
, 𝑖 = 𝑖𝑠 + 2, . . . , 𝑀 − 1.

(5.5)
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Boundary conditions are the same as in (5.3). Although the Crank Nicolson scheme also yields a nonlinear
system, it achieves higher temporal accuracy compared to the upwind scheme. However, in advection-
dominated cases (|𝑐𝑖 | ≫ 1), spurious oscillations may occur, highlighting the robustness of the upwind
approach.

Accurate evaluation of spatial gradients is crucial for updating the moving boundary 𝑠𝑛+1. Since the interface
typically lies between grid nodes (𝑥𝑖 ≤ 𝑠𝑛 < 𝑥𝑖+1), we employ Lagrange extrapolation. If 𝑥𝑖 ≤ 𝑠𝑛 < 𝑥𝑖+1, a
symmetric point 𝑥𝑖−1 = 2𝑠𝑛 − 𝑥𝑖−1 is introduced, and the value 𝑢(𝑥𝑖−1, 𝑡

𝑛) is estimated using a three-point
Lagrange polynomial. The gradient is then computed as

𝑢𝑥 (𝑠𝑛, 𝑡𝑛) ≈
2(1 + 𝑑)

ℎ

[
𝑃𝐿 (𝑥𝑖−1) − 𝑢𝑛

𝑖−1

]
, 𝑑 =

ℎ

𝑠𝑛 − 𝑥𝑖
.

A similar procedure is applied to compute 𝑣𝑥 (𝑠𝑛, 𝑡𝑛). The updated interface position is obtained from the
Stefan condition:

𝑠𝑛+1 = 𝑠𝑛 + 𝑘
[
−𝛼 𝑢𝑥 (𝑠𝑛, 𝑡𝑛) + 𝛽 𝑣𝑥 (𝑠𝑛, 𝑡𝑛)

]
. (5.6)

If the new interface 𝑠𝑛+1 crosses into a new spatial interval, the corresponding index 𝑖𝑠 is updated, and
boundary conditions (5.3) are recalculated accordingly. This process is repeated at each time step, producing a
dynamically adaptive computational mesh. The resulting algorithm provides a stable and consistent framework
for solving the two-phase free boundary problem numerically.

6. Proposed Numerical Scheme

Classical numerical methods, such as the upwind and Crank Nicolson schemes, often encounter difficulties
when applied to nonlinear reaction systems with free boundaries. In such settings, these schemes may produce
unphysical results, including negative concentrations or spurious oscillations, which undermine the reliability of
the computed solution. This issue becomes particularly critical in biological and biomedical models, where the
positivity of solutions carries essential physical meaning. Therefore, the development of structure-preserving
or positivity-preserving numerical schemes is of fundamental importance.

In this section, we propose a new explicit structure-preserving numerical scheme for the two-phase
advection–reaction–diffusion system with a moving boundary, inspired by the approach of Chen, Charpentier,
and Kojouharov [23]. The proposed scheme naturally preserves the fundamental physical properties of the
model

0 ≤ 𝑢 ≤ 𝑎1

𝑏1
, 0 ≤ 𝑣 ≤ 𝑎2

𝑏2
,

ensuring that the solution remains positive and bounded at all time steps. Moreover, the scheme converges
correctly to the steady states and, due to its explicit formulation, offers high computational efficiency.

The key idea is to reformulate part of the nonlinear reaction term into the denominator, which guarantees
positivity even in an explicit setting. This allows the diffusion and advection terms to be treated explicitly,
while the nonlinear reaction term is handled in a semi-rational form—its linear part treated additively and the
nonlinear part incorporated in the denominator. This balance preserves the physical structure of the underlying
equations without sacrificing computational simplicity.

For the left domain (𝑥𝑖 < 𝑠𝑛+1), the proposed scheme is given by

𝑢𝑛+1
𝑖 =

𝑢𝑛
𝑖
+ 𝑘

[
𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖
+ 𝑢𝑛

𝑖−1

ℎ2 + 𝑐1
𝑢𝑛
𝑖
− 𝑢𝑛

𝑖−1

ℎ
+ 𝑎1𝑢

𝑛
𝑖

]
1 + 𝑘𝑏1𝑢

𝑛
𝑖

, 𝑖 = 1, . . . , 𝑖𝑠 − 1. (6.1)
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Similarly, for the right domain (𝑥𝑖 > 𝑠𝑛+1),

𝑣𝑛+1
𝑖 =

𝑣𝑛
𝑖
+ 𝑘

[
𝑣𝑛
𝑖+1 − 2𝑣𝑛

𝑖
+ 𝑣𝑛

𝑖−1

ℎ2 + 𝑐2
𝑣𝑛
𝑖+1 − 𝑣𝑛

𝑖

ℎ
+ 𝑎2𝑣

𝑛
𝑖

]
1 + 𝑘𝑏2𝑣

𝑛
𝑖

, 𝑖 = 𝑖𝑠 + 2, . . . , 𝑀 − 1. (6.2)

The boundary conditions are imposed as

𝑢𝑛+1
0 = 𝜑1(𝑡𝑛+1), 𝑣𝑛+1

𝑀 = 𝜑2(𝑡𝑛+1), 𝑢𝑛+1
𝑖𝑠

= 𝑣𝑛+1
𝑖𝑠+1 = 0. (6.3)

Since the functions 𝑢 and 𝑣 are discontinuous across the free boundary 𝑥 = 𝑠𝑛+1, the conditions
𝑢𝑛+1
𝑖𝑠

= 𝑣𝑛+1
𝑖𝑠+1 = 0 are imposed to reflect the physical separation between the two phases. The free boundary

itself is updated according to the general Stefan-type condition given in (5.6).
The following theorem establishes the consistency of the proposed scheme with the continuous differential

model.

Theorem 6.1. Assume that 𝑢(𝑥, 𝑡) is a sufficiently smooth solution of equation (1.1), such that 𝑢 ∈ 𝐶2,1. Then,
the numerical scheme (6.1) is first-order accurate in time and second-order accurate in space. In particular,
if 𝑘 = O(ℎ2), the total truncation error satisfies O(ℎ2)

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑐1𝑢𝑥 + 𝑎1𝑢 − 𝑏1𝑢
2 + O(𝑘) + O(ℎ2).

Proof. To analyze the truncation error, we expand the discrete terms in (6.1) using Taylor series:

𝑢𝑛+1
𝑖 = 𝑢𝑛𝑖 + 𝑘𝑢𝑡 +

𝑘2

2
𝑢𝑡𝑡 + · · · , 𝑢𝑛

𝑖±1 = 𝑢𝑛𝑖 ± ℎ𝑢𝑥 +
ℎ2

2
𝑢𝑥𝑥 ±

ℎ3

6
𝑢𝑥𝑥𝑥 + · · · .

Substituting these expansions into the right-hand side of (6.1) and expanding the denominator as
1 + 𝑘𝑏1𝑢

𝑛
𝑖
= 1 + 𝑘𝑏1𝑢

𝑛
𝑖
+ O(𝑘2), we obtain, in the limit 𝑘 , ℎ → 0,

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑐1𝑢𝑥 + 𝑎1𝑢 − 𝑏1𝑢
2 + O(𝑘) + O(ℎ2),

which recovers the original continuous equation. Thus, the scheme achieves first-order accuracy in time
and second-order accuracy in space—consistent with classical parabolic finite-difference formulations. The
influence of boundary terms is neglected in this local analysis, and stability was verified numerically in
subsequent experiments. □

In this section, we analyze the stability and positivity-preserving properties of the proposed explicit scheme.
While many classical schemes require restrictive conditions on the time and spatial steps to maintain

numerical stability, the present method remains stable and physically consistent for all practical discretizations.
The stability is verified through the standard von Neumann analysis, and the preservation of positivity is

shown by direct induction.

Theorem 6.2. The proposed numerical scheme (6.1)–(6.2) is unconditionally stable; that is, the stability
condition holds for all 𝑘 → 0 and ℎ → 0.

Proof. To examine the stability, we linearize the advection–reaction–diffusion system around its steady state.
Let

𝑢𝑛𝑖 ≈ 𝑢̄ + 𝜖𝑛𝑖 ,

where 𝑢̄ =
𝑎1
𝑏1

denotes the equilibrium point, and 𝜖𝑛
𝑖

represents a small perturbation. Substituting this into (6.1)
and neglecting nonlinear perturbation terms gives the linearized scheme

𝜖𝑛+1
𝑖 =

𝜖𝑛
𝑖
+ 𝑘

[
𝜖𝑛
𝑖+1 − 2𝜖𝑛

𝑖
+ 𝜖𝑛

𝑖−1

ℎ2 + 𝑐1
𝜖𝑛
𝑖
− 𝜖𝑛

𝑖−1

ℎ
+ (𝑎1 − 2𝑏1𝑢̄)𝜖𝑛𝑖

]
1 + 𝑘𝑏1𝑢̄

.
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Since 𝑎1 − 2𝑏1𝑢̄ = −𝑎1 < 0, the reaction term contributes a damping effect. An analogous analysis applies
to the right-hand domain with 𝑣̄ =

𝑎2
𝑏2

.
We now assume a Fourier mode of the form 𝜖𝑛

𝑖
= 𝜉𝑛𝑒i𝜃𝑖ℎ, and obtain the corresponding amplification factor:

|𝜉 | =

��������
1 + 𝑘

[
− 4
ℎ2 sin2

(
𝜃ℎ
2

)
− i𝑐1

sin(𝜃ℎ)
ℎ

+ (𝑎1 − 2𝑏1𝑢̄)
]

1 + 𝑘𝑏1𝑢̄

�������� .
Since the magnitude of the numerator is always less than or equal to that of the denominator, it follows

that |𝜉 | ≤ 1 for all 𝑘 > 0 and ℎ > 0. Therefore, the scheme is unconditionally stable and preserves numerical
monotonicity even for relatively large time steps. □

Theorem 6.3. Let the initial conditions satisfy 𝑢0
𝑖
≥ 0 and 𝑣0

𝑖
≥ 0, and assume the boundary conditions

𝜑1(𝑡) ≥ 0 and 𝜑2(𝑡) ≥ 0. Then, the approximate solutions obtained from the scheme (6.1)–(6.3) remain non-
negative for all spatial indices 𝑖 and time levels 𝑛:

𝑢𝑛𝑖 ≥ 0, 𝑣𝑛𝑖 ≥ 0.

Proof. The proof proceeds by mathematical induction. Assume that 𝑢𝑛
𝑖
≥ 0 at some time level 𝑡𝑛. From (6.1),

it is evident that
𝑢𝑛+1
𝑖 =

𝑢𝑛
𝑖
+ 𝑘 (non-negative terms)

1 + 𝑘𝑏1𝑢
𝑛
𝑖

.

Because the denominator satisfies 1 + 𝑘𝑏1𝑢
𝑛
𝑖
> 0 and all terms in the numerator are non-negative, we

conclude that 𝑢𝑛+1
𝑖

≥ 0. A similar argument applies to 𝑣𝑛+1
𝑖

. Hence, the scheme preserves positivity at every time
step. This property ensures that the computed solution maintains its physical meaning, preventing unphysical
negative concentrations in biological or chemical applications. □

Remark. It is worth noting that, although von Neumann analysis provides a formal verification of stability,
the unconditional positivity of the scheme offers an even stronger guarantee of practical robustness. Because
the method is explicit and structure-preserving, it maintains both numerical stability and physical consistency
without the need for any additional restrictions on the discretization parameters. Such positivity-preserving
explicit schemes have become a modern standard in the numerical treatment of nonlinear diffusion–reaction
systems (see, for example, [23]).

7. Numerical example

In this section, we present numerical experiments to demonstrate the accuracy, stability, and efficiency
of the proposed structure-preserving explicit scheme. The considered test problem models a two-phase
advection–reaction–diffusion system that describes the process of osteointegration around a dental implant. In
this framework, the left region corresponds to the bone tissue, the right region represents the implant, and the
moving interface denotes the boundary of interaction between the two media.

The computational domain is chosen as the spatial interval [−ℓ, ℓ] = [−1, 1] and the temporal interval [0, 𝑇]
with 𝑇 = 2. The physical and model parameters are taken as follows:
𝑎1 = 𝑎2 = 1 growth rate, 𝑏1 = 𝑏2 = 1 intraspecific competition coefficient, 𝑐1 = 0.5 rightward advection,

𝑐2 = −0.3 leftward advection, 𝛼 = 𝛽 = 0.1 free-boundary velocity coefficients, 𝜑1(𝑡) = 𝜑2(𝑡) = 1 dirichlet
boundary conditions.
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The initial conditions are defined as

𝑢0(𝑥) =
{

1 − 𝑥2, −1 ≤ 𝑥 ≤ 0,

0, 𝑥 > 0,
𝑣0(𝑥) =

{
0, 𝑥 < 0,

1 − 𝑥2, 0 ≤ 𝑥 ≤ 1.

These initial profiles satisfy both the continuity condition at the interface (𝑢(0, 0) = 𝑣(0, 0) = 0) and the
positivity requirement (𝑢0, 𝑣0 > 0 inside their respective domains).

The computational mesh consists of 𝑀 = 200 spatial nodes and 𝑁 = 400 time steps, corresponding to
ℎ = 0.01 and 𝑘 = 0.005. For comparison, three numerical schemes were tested: (i) the upwind implicit scheme
(5.1)–(5.3), (ii) the Crank–Nicolson scheme (5.4)–(5.6), and (iii) the proposed structure-preserving explicit
scheme (6.1)–(6.2).

The proposed method successfully preserved nonnegativity at all time steps, i.e., 𝑢𝑛
𝑖
≥ 0 and 𝑣𝑛

𝑖
≥ 0.

The free boundary 𝑠(𝑡) evolved smoothly and monotonically, reaching approximately 𝑠(2) ≈ 0.38 at the final
time.

The upwind implicit scheme also maintained positivity but was computationally slower, yielding 𝑠(2) ≈ 0.37.
In contrast, the Crank Nicolson scheme produced small negative oscillations for 𝑡 ≳ 1.2, with a minimum

value 𝑢min ≈ −0.03, which violates the physical interpretation of the model. As a result, the interface velocity
in that scheme exhibited non-monotonic behavior over time.

Figure 1 shows the evolution of the moving boundary 𝑠(𝑡) for all three schemes. Only the proposed structure-
preserving method consistently maintained positivity and monotonic interface propagation throughout the
entire simulation.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

𝑡

𝑠
(𝑡)

Proposed explicit scheme Upwind implicit scheme Crank–Nicolson scheme

Figure 1. Time evolution of the free boundary 𝑠 (𝑡 ) for different numerical schemes.

The obtained results are in full agreement with the physical interpretation of the process: the interface always
moves toward the implant region, indicating continuous tissue growth ( ¤𝑠(𝑡) > 0).

The proposed explicit scheme demonstrates high computational efficiency and excellent stability while
preserving both the physical and biological consistency of the solution.

To evaluate the accuracy of the proposed scheme, a highly resolved numerical solution with 𝑀 = 800
grid points was used as a reference benchmark. The performance comparison among different schemes is
summarized in Table 1.
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Table 1. Comparison of numerical schemes in terms of computational cost and accuracy.

Scheme Computation time (s) Average error (𝐿∞)
Proposed explicit 1.2 2.1 × 10−3

Upwind implicit 8.7 1.8 × 10−3

Crank–Nicolson 6.5 1.5 × 10−3

Remark. The proposed scheme demonstrates the fastest computational performance due to its fully explicit
formulation. In contrast, both the upwind implicit and Crank Nicolson methods require solving a nonlinear
system at each time step (typically using Newton iterations), which significantly increases the computational
cost.

Additional numerical experiments confirm the robustness of the proposed scheme under various parameter
settings. When the advection intensities were increased (𝑐1 = 2, 𝑐2 = −1.5), the upwind method remained
conditionally stable, whereas the Crank–Nicolson scheme produced strong oscillations and eventually lost
physical consistency. The proposed structure-preserving method, however, maintained stability and accuracy
under all tested conditions.

Similarly, when the nonlinear reaction terms were intensified (𝑏1 = 𝑏2 = 5), only the proposed method
successfully converged to the correct equilibrium value (𝑢 → 0.2), while other schemes exhibited spurious
overshoots.

Figure 2 illustrates the time evolution of 𝑢(𝑥, 𝑡). The proposed scheme preserves the logistic upper bound
(𝑢 ≤ 1), ensures smoothness near the moving interface 𝑥 = 𝑠(𝑡), and avoids artificial oscillations. In contrast,
the Crank–Nicolson method generated nonphysical negative values after 𝑡 ≈ 1.2 (𝑢min ≈ −0.03), violating
the positivity constraint, while the upwind scheme, though stable, exhibited slower propagation and loss of
resolution.

The numerical experiments clearly demonstrate that the proposed structure-preserving scheme
unconditionally maintains positivity, delivers physically realistic results, and remains computationally efficient
due to its explicit nature. Even under strong advection (𝑐1 = 2, 𝑐2 = −1.5) or intensified nonlinear reaction
terms, it remains free from unphysical oscillations and instability.

In contrast, the Crank Nicolson scheme produces excessive oscillations with |𝑢 | > 1.2, violating physical
constraints, while the upwind method, though stable, significantly underestimates the interface dynamics.
These results confirm that the proposed approach provides a robust and efficient numerical tool for simulating
realistic biological and physical processes, such as osteointegration near dental implants, ecological invasion,
and phase transition phenomena.

8. Conclusion

In this study, we have developed mathematically rigorous and computationally efficient numerical methods
for a two-phase advection–reaction–diffusion system with a free boundary. By establishing a priori estimates,
we have demonstrated the boundedness and positivity of the solution, as well as derived upper and lower bounds
for the velocity of the moving interface. These results provided a solid theoretical foundation for proving the
existence and uniqueness of a classical solution to the problem.

In the subsequent analysis, three numerical approaches were examined in detail. Although the classical
upwind implicit and Crank Nicolson schemes offer certain advantages in terms of accuracy and stability, they
exhibit several limitations when applied to nonlinear reaction systems with free boundaries—such as the loss
of positivity, excessive computational cost, and the appearance of artificial oscillations.
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Comparison of 𝑢 and 𝑣 profiles for three numerical schemes

Proposed explicit Crank Nicolson Upwind implicit

Figure 2. Comparison of 𝑢 and 𝑣 profiles obtained by different numerical schemes. The proposed explicit scheme (red) maintains smoothness and positivity across the
moving interface 𝑥 = 𝑠 (𝑡 ) , while Crank–Nicolson (green) shows oscillations and Upwind (blue) is more diffusive.

To overcome these shortcomings, a new structure-preserving explicit scheme was proposed. The scheme
unconditionally preserves positivity, converges correctly to the equilibrium states, and maintains stability even
in the presence of strong advection or nonlinear reaction effects. Due to its explicit formulation, it is also
computationally efficient. Numerical simulations confirmed the robustness and reliability of the proposed
method, showing that it produces physically meaningful and biologically realistic results. In particular, the
scheme was successfully applied to simulate osseointegration around dental implants, ecological invasion
fronts, and phase transition dynamics.

Future research will focus on extending the proposed scheme to multidimensional cases, incorporating
spatially variable coefficients and stochastic effects, as well as implementing adaptive mesh refinement
techniques. Furthermore, the approach may be effectively adapted for other nonlinear systems such as the
Brusselator and Fitz Hugh Nagumo models.

Overall, this work demonstrates the importance of structure-preserving approaches for free boundary
problems governed by nonlinear parabolic systems. The proposed method provides a reliable and efficient
computational tool that can be applied to a wide range of modern scientific and practical problems.
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Asymptotic Properties of the Wilcoxon-Mann-Whitney
Statistics

Shomurodov Nozmbek ∗ To’rayev Alimardon

Abstract
Random variables seen in many practical problems of statistical physics, quantum field theory,
and reliability theory are associated connected random variables. This article focuses on
nonparametric estimates for statistics constructed by associated random variables. It proves a
theorem for a sequence of stationary associated random variables with two identical marginal
distributions.
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1. INTRODUCTION

It is well-known that independent random variables have been extensively studied in science. However, in
nature and technology, random variables are often dependent. Therefore, the study of dependent random
variables, specifically associated random variables, under certain conditions, and demonstrating their
applications in practical problems has been the focus of many prominent experts. In this field, renowned
mathematicians such as Newman, Prakasa Rao, Harris, Fortuin, Lebowitz, Hoeffding, Wilcoxon, Mann,
Whitney, and their students have achieved fundamental results. Currently, with the development of several
directions in mathematical statistics, the importance of the theory of associated random variables has
significantly increased, which is well-known among specialists. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.

Definition 1.1. Let (𝑋,𝑌 ) be a random vector with 𝐸 [𝑋2] < ∞ and 𝐸 [𝑌2] < ∞. Define

𝐻 (𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) − 𝑃(𝑋 ≤ 𝑥)𝑃(𝑌 ≤ 𝑦).

Recall the Hoeffding identity:

cov(𝑋,𝑌 ) =
∫
R2

𝐻 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.[8]]

This identity was extended to the multivariate case by Block and Fang (1988) using the concept of cumulants
for random vectors. Yu (1993) generalized Newman’s (1984) earlier work by extending the covariance identity to
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absolutely continuous functions of the components of the random vector 𝑋 . Cuesta-Molina (1992) generalized
the Hoeffding identity to semi-monotonic functions 𝐾 (·) in the following form:

𝐾 (𝑥′, 𝑦′) − 𝐾 (𝑥, 𝑦′) − 𝐾 (𝑥′, 𝑦) + 𝐾 (𝑥, 𝑦) ≥ 0 [9]]

for all 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′. This was proven as:

𝐸 [𝐾 (𝑋,𝑌 )] − 𝐸 [𝐾 (𝑋∗, 𝑌 ∗)] =
∫
R2
𝐻 (𝑥, 𝑦)𝐾 (𝑑𝑥, 𝑑𝑦),

where 𝑋∗ and 𝑌 ∗ are independent random variables with the same marginal distributions as 𝑋 and 𝑌 ,
respectively. These results were further generalized by Yu (1993), Cuesta-Molina (1992), and Prakasa Rao
(1998) to the multivariate case. Cuadras (2002) showed that if 𝛼(𝑥) and 𝛽(𝑦) are functions with finite variation,
then:

cov(𝛼(𝑋), 𝛽(𝑌 )) =
∫
R2
𝐻 (𝑥, 𝑦)𝛼(𝑑𝑥)𝛽(𝑑𝑦).

This result is a special case of (1.2.4). From this, we can see that cov(𝑋1, 𝑋𝑛) → 0 as 𝑛→ ∞. In particular,
we have:

sup
𝑛

|cov(𝑋1, 𝑋𝑛) | < ∞.

Using the association property of 𝑋1, . . . , 𝑋𝑛, we observe that cov(𝑋1, 𝑋𝑛) > 0 and obtain:

0 ≤ cov(𝑋1, 𝑋 𝑗) = [cov(𝑋1, 𝑋 𝑗)]2/3 [cov(𝑋1, 𝑋 𝑗)]1/3 ≤ [sup cov(𝑋1, 𝑋𝑛)]2/3 [cov(𝑋1, 𝑋 𝑗)]1/3.

Therefore,
𝑛∑︁
𝑗=2

cov(𝑋1, 𝑋 𝑗) ≤ [sup cov(𝑋1, 𝑋𝑛)]2/3
𝑛∑︁
𝑗=2

[cov(𝑋1, 𝑋 𝑗)]1/3 < ∞.

Let 𝑅1, 𝑅2, . . . , 𝑅𝑛 be the ranks of 𝑋1, 𝑋2, . . . , 𝑋𝑛. The Wilcoxon signed-rank statistic is defined as...

1.1. Preliminaries

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of stationary random variables. We can express 𝑇 as a linear combination of
two U-statistics (Hettmansperger (1984)):

𝑇 = 𝑛𝑈
(1)
𝑛 +

(
𝑛

2

)
𝑈

(2)
𝑛 , (8)

where

𝑛𝑈
(1)
𝑛 =

𝑛∑︁
𝑖=1

𝜙(𝑋𝑖),(
𝑛

2

)
𝑈

(2)
𝑛 =

∑︁
1≤𝑖< 𝑗≤𝑛

𝜓(𝑋𝑖 , 𝑋 𝑗), (9)

and

𝜓(𝑥, 𝑦) = 𝐼 (𝑥 + 𝑦 > 0). (10)

For a stationary sequence {𝑋𝑛, 𝑛 ≥ 1}, we have:
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𝐸 (𝑈 (2)
𝑛 ) = 1(𝑛

2
) ∑︁

1≤𝑖< 𝑗≤𝑛
𝑃𝑖 𝑗 =

1(𝑛
2
) 𝑛∑︁

𝑗=2

(𝑛 − 𝑗 + 1)𝑝1, 𝑗 , (11)

where 𝑝𝑖 𝑗 = 𝑃[𝑋𝑖 + 𝑋 𝑗 > 0]. Define:

𝜃 =

∫ ∞

−∞

∫ ∞

−∞
𝜓(𝑥, 𝑦)𝑑𝐹 (𝑥)𝑑𝐹 (𝑦),

𝜃 =

∫ ∞

−∞

∫ ∞

−∞
𝜓(𝑥, 𝑦)𝑑𝐹 (𝑥)𝑑𝐹 (𝑦) = 1 −

∫ ∞

−∞
𝐹 (−𝑥)𝑑𝐹 (𝑥), (12)

𝜓1(𝑥1) = 𝐸 (𝜓(𝑥1, 𝑥2)) =
∫ ∞

−∞
𝜓(𝑥1, 𝑥2)𝑑𝐹 (𝑥2) = 1 − 𝐹 (−𝑥1). (13)

Then,

ℎ (1) (𝑥1) = 𝜓1(𝑥1) − 𝜃, (14)

and

ℎ (2) (𝑥1, 𝑥2) = 𝜓(𝑥1, 𝑥2) − 𝜓1(𝑥1) − 𝜓1(𝑥2) + 𝜃 = 𝜓(𝑥1, 𝑥2) + 𝐹 (−𝑥1) + 𝐹 (−𝑥2) − 2 + 𝜃. (15)

The Hoeffding decomposition (H-decomposition) for𝑈 (2)
𝑛 is given by (Lee (1990)):

𝑈
(2)
𝑛 = 𝜃 + 2𝐻 (1)

𝑛 + 𝐻 (2)
𝑛 , (16)

where 𝐻 ( 𝑗 )
𝑛 is the 𝑗-th degree U-statistic based on the kernel ℎ ( 𝑗 ) , 𝑗 = 1, 2:

𝐻
( 𝑗 )
𝑛 =

1(𝑛
𝑗

) ∑︁ ℎ ( 𝑗 ) (𝑋𝑖1 , . . . , 𝑋𝑖 𝑗 ), (17)

with the sum taken over all subsets 1 ≤ 𝑖1 < . . . < 𝑖 𝑗 ≤ 𝑛 of {1, . . . , 𝑛}.

1.2. Variance Decomposition

Here, the sum is taken over all subsets {1, . . . , 𝑛} for 1 ≤ 𝑖1 < . . . < 𝑖 𝑗 ≤ 𝑛. Considering the H-decomposition,
we obtain the following:

Var
(
𝑈

(2)
𝑛

)
= 4Var

(
𝐻

(1)
𝑛

)
+ Var

(
𝐻

(2)
𝑛

)
+ 4Cov

(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
. (18)

Now, consider the following equality (Dewan and Prakasa Rao (2001)):

Var
(
𝐻

(1)
𝑛

)
=

1
𝑛

©­«𝜎2
1 + 2

∞∑︁
𝑗=2

𝜎2
1 𝑗
ª®¬ + 𝑜

(
1
𝑛

)
, (19)

where

𝜎2
1 = Var (𝐹 (−𝑋1)) ,

𝜎2
1 𝑗 = Cov

(
𝐹 (−𝑋1), 𝐹 (−𝑋1+ 𝑗)

)
. (20)

Using Newman’s inequality and (2.1.5), we can write:
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∞∑︁
𝑗=2

𝜎2
1 𝑗 =

∞∑︁
𝑗=2

Cov
(
𝐹 (−𝑋1), 𝐹 (−𝑋1+ 𝑗)

)
< ∞. (21)

Additionally,

Var
(
𝐻

(2)
𝑛

)
=

(
𝑛

2

)−2 ∑︁
1≤𝑖< 𝑗≤𝑛

∑︁
1≤𝑘<𝑙≤𝑛

Cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}
, (22)

where

Cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}
= Cov

{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

}
+

+Cov
{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (−𝑋𝑘)

}
+ Cov

{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (−𝑋𝑙)

}
+

+Cov {𝜓(𝑋𝑘 , 𝑋𝑙), 𝐹 (−𝑋𝑘)} + Cov {𝜓(𝑋𝑘 , 𝑋𝑙), 𝐹 (−𝑋𝑙)} +

+Cov {𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)} + Cov {𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)} . (23)

Using Newman’s (1980) inequality, we obtain: Using Newman’s (1980) inequality, we obtain:

|Cov (𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)) | ≤ sup
𝑥

( 𝑓 (𝑥))2 Cov (𝑋𝑘 , 𝑋𝑙) . (24)

Due to the boundedness of the density function, the following result from Bagai and Prakasa Rao (1991)
holds: ��Cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

) �� =
=
��𝑃 [

𝑋𝑖 + 𝑋 𝑗 > 0, 𝑋𝑘 + 𝑋𝑙 > 0
]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 > 0

]
𝑃 [𝑋𝑘 + 𝑋𝑙 > 0]

�� ≤
≤ 𝐶

[
Cov

(
𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘 + 𝑋𝑙

) ]1/3
=

= 𝐶
[
Cov (𝑋𝑖 , 𝑋𝑘) + Cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ Cov (𝑋𝑖 , 𝑋𝑙) + Cov

(
𝑋 𝑗 , 𝑋𝑙

) ]1/3
. (25)

Let 𝑍 = 𝑋𝑖 + 𝑋 𝑗 . Then, 𝜓(𝑋𝑖 , 𝑋 𝑗) = 𝐼 (𝑋𝑖 + 𝑋 𝑗 > 0) = 𝐼 (𝑍 > 0). Note that this function has a jump at 𝑧 = 0.
From equation (5), we can conclude that:��Cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (𝑋𝑘)

) �� =
=

����∫ ∞

−∞

(
𝑃
[
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

)
𝑑𝐹 (𝑥)

���� ≤
≤
∫ ∞

−∞
|𝑃[𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥] − 𝑃[𝑋𝑖 + 𝑋 𝑗 ≤ 0]𝑃[𝑋𝑘 ≤ 𝑥] |𝑑𝐹 (𝑥) ≤

≤ 𝐶
∫ ∞

−∞
[cov(𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘)]1/3𝑑𝐹 (𝑥) = 𝐶 [cov(𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘)]1/3 =

= 𝐶 [cov(𝑋𝑖 , 𝑋𝑘) + cov(𝑋 𝑗 , 𝑋𝑘)]1/3.
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Using equations (24), (25), and (26) in equation (23), we obtain the following:���cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}��� ≤
≤ 𝐶

[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

) ] 1
3 +

[
cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+ [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3 +

+ cov (𝑋𝑖 , 𝑋𝑘) + cov
(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

)
≤

≤ 𝐶
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+ [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3 +

= 𝐶
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

= [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3

𝑟 = ( |𝑖 − 𝑘 |]) + 𝑟 ( | 𝑗 − 𝑘 |]) + 𝑟 ( |𝑖 − 𝑙 |]) + 𝑟 [| 𝑗 − 𝑙 |∑
𝑟 (𝑘) < ∞. (28)
Therefore, from Serfling’s (1968) theorem, we obtain as 𝑛→ ∞

var
(
𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (29)

Using the Cauchy-Schwarz inequality, the following follows

cov
(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (30)

Using equations (18), (19), (29), and (30), we can write

var
(
𝑈

(2)
𝑛

)
= 4

𝜎2
1 + 2

∞∑︁
𝑗=1

𝜎2
1 𝑗

 + 𝑜
(

1
𝑛

)
. (31)

To obtain the limit distribution of the U-statistic, we introduce the following theorem.

Theorem 1.1. Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of associated random variables. Suppose

∞∑︁
𝑘=1

𝑟 (𝑘) < ∞ holds. Then, as 𝑛→ ∞,

𝑛1/2
(
𝑈

(2)
𝑛 − 𝜃

)
𝑒−→ 𝑁 (0, 1) (32)
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where 𝜎2
𝑈
= 𝜎2

1 + 2
∑∞

𝑗=1 𝜎
2
1 𝑗 . **Proof.** Here, we also use relations (12)–(23), and make appropriate

modifications in the remaining relations: Using Newman’s (1980) inequality, we obtain

|cov (𝐹 (−𝑋𝑖), 𝐹 (−𝑋𝑘)) | ≤ sup
𝑥

( 𝑓 (𝑥))2 cov(𝑋𝑖 , 𝑋𝑘). (33)

Due to the boundedness of the density function, the following result follows from Bagai and Prakasa Rao’s
(1991) theorem: ��cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

) �� =
=
��𝑃 [

𝑋𝑖 + 𝑋 𝑗 > 0, 𝑋𝑖 + 𝑋𝑘 > 0
]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 > 0

]
𝑃 [𝑋𝑖 + 𝑋𝑘 > 0]

�� ≤
≤ 𝐶𝑟 ( |𝑖 − 𝑙 |) .

Let 𝑍 = 𝑋𝑖 + 𝑋 𝑗 . Note that the function 𝜓(𝑋𝑖 , 𝑋 𝑗) = 𝐼 (𝑋𝑖 + 𝑋 𝑗 > 0) = 𝐼 (𝑧 > 0) has a discontinuity at 𝑧 = 0.
Now, from equation (5), it follows that ��cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (𝑋𝑘)

) �� =
=

����∫ ∞

−∞

(
𝑃
[
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

)
𝑑𝐹 (𝑥)

���� ≤
≤
∫ ∞

−∞

��𝑃 [
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

�� 𝑑𝐹 (𝑥) ≤
= 𝐶 [𝑟 ( |𝑖 − 𝑘 |) + 𝑟 ( | 𝑗 − 𝑘 |)] . (34)

Using equations (33) and (34) in equation (23), we obtain���cov
(
ℎ (2)

(
𝑋𝑖 , 𝑋 𝑗

)
, ℎ (2) (𝑋𝑘 , 𝑋𝑙)

)��� ≤
= 𝑟 ( |𝑖 − 𝑘 |) + 𝑟 ( | 𝑗 − 𝑘 |) + 𝑟 ( |𝑖 − 𝑙 |) + 𝑟 ( | 𝑗 − 𝑙 |) . (35)

∞∑︁
𝑘=1

𝑟 (𝑘) < ∞.

From this and Serfling’s (1968) theorem, we obtain as 𝑛→ ∞

var
(
𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (36)

Using the Cauchy-Schwarz inequality, the following follows

cov
(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (37)

Using equations (18), (19), (29), and (30), we can write

var
(
𝑈

(2)
𝑛

)
= 4

𝜎2
1 + 2

∞∑︁
𝑗=1

𝜎2
1 𝑗

 + 𝑜
(

1
𝑛

)
. (38)
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2. Conclusion

It is well-known that independent random variables have been sufficiently studied in science. However, in
nature and technology, random variables are often dependent. Therefore, the study of dependent variables,
specifically associated random variables, under certain conditions, and demonstrating their applications in
practical problems has been the focus of many prominent experts. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.
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Задача со свободной границей для уравнения
нелинейной диффузии
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Аннотация
В данной работе рассматривается задача типа Стефана с двумя свободными границами для
нелинейного уравнения теплопроводности в одномерном случае. Исследование нелинейных
задач со свободными границами методом, основанным на построении априорных оценок.
В связи с этим сначала устанавливаются некоторые начальные априорные оценки для
решения рассматриваемой задачи. Затем задача сводится к задаче с фиксированной границей
через замену переменных. Полученная задача имеет зависящие от времени и положения в
пространстве коэффициенты с нелинейными слагаемыми. Далее построены априорных оценок
типа Шаудера для решения уравнения с нелинейными слагаемыми и закрепленной границей.
На основе полученных оценок установлена разрешимость исходной задачи.

Ключевые слова: квазилинейное параболическое уравнение; свободная граница; априорные оценки; теорема существования

и единственности.

Предметная классификацие AMS (2020): 35K20, 35K59, 35R35

1. Введение

Уравнения нелинейной диффузии с условиями свободной границы представляют собой важный класс
математических моделей, широко используемых для описания процессов в физике, биологии, химии
и технике. Эти уравнения характеризуются нелинейной зависимостью потока от градиента искомой
величины, а свободная граница добавляет дополнительную сложность, связанную с динамическим
изменением области, в которой происходит диффузия. Такие задачи возникают, например, при
моделировании распространения тепла в средах с фазовыми переходами, фильтрации жидкостей в
пористых средах, распространения биологических популяций или химических реакций с подвижными
границами.

В настоящее время изучение задач со свободной границей интенсивно ведется с различных сторон
(экспериментальных, численных и теоретических), предмет постоянно находит новые основания для
приложений, продолжают возникать новые фундаментальные теоретические вопросы. Эти разработки,
в частности, требуют новых аналитических и численных методов, а также усовершенствования
существующих алгоритмов и инструментов для решения чрезвычайно сложных задач [7, 13, 14, 21].
В работах широко изучались новые классы задач Стефана, которые возникают при моделировании
природных процессов, включающие уравнения нелинейной диффузии с двумя подвижными границами
[5, 6, 9, 15, 16, 19].

Received : 8–май–2025, Accepted : 20–ноябрь–2025
* Corresponding author

 https://doi.org/10.56143/ujmcs.v1i2.10\ 


Расулов М.С. & Умирхонов М.Т.

Во многих исследованиях термин диффузия является линейным [3, 4, 8]. Однако в целом на диффузию
также влияет плотность компонентов, что, в свою очередь, приводит к нелинейной диффузии [1, 2, 22, 20].
Например, в работе [18] авторы исследовали задачу со свободной границей для уравнения реакция-
диффузия с нелинейным членом диффузии.

В этой работе рассмотрим краевую задачу для квазилинейного параболического уравнения с двумя
неизвестными границами:

a (u)ut = (d(u)ux)x , (t, x) ∈ D, (1.1)

u (0, x) = u0 (x) , h(0) ≤ x ≤ s(0), (1.2)

u (t, s (t)) = 0, 0 ≤ t ≤ T, (1.3)

u (t, h (t)) = 0, 0 ≤ t ≤ T, (1.4)

s′ (t) = −µux (t, s (t)) , 0 ≤ t ≤ T, (1.5)

h′ (t) = −µux (t, h (t)) , 0 ≤ t ≤ T, (1.6)

где D = {(t, x) : 0 < t ≤ T, h (t) < x < s (t)}; x = h (t) и x = s (t)−свободные (неизвестные) границы,
которые определяются вместе с функцией u (t, x).

Относительно данных задачи предполагаются выполненными следующие условия:
a). функции a (u) и a′ (u) определены для любого значения аргумента и ограничены на любом

замкнутом множестве аргумента, причем a (u) ≥ a0 > 0;

b). d(u) ∈ C1+α(D), 0 < α < 1, d (u) ≥ d0 > 0, d0 = const;

c). s0, µ – положительные постоянные;
d). u0 (x) > 0, h0 < x < s0; h (0) = h0 = −s0, s (0) = s0; u′

0 (h0) > 0, u0 (h0) = 0, u′
0 (s0) < 0, u0 (s0) = 0;

lim
x→s0

u0(x)
s0−x = 0, lim

x→h0

u0(x)
x−h0

= 0.

2. Априорные оценки

В этом разделе установим некоторые априорные оценки шаудеровского типа, которые будут
использованы при доказательстве глобальной разрешимости задачи.

Сначала с помощью метода, основанного на построения априорных оценок определим ограничении
на параметры задачи, при которых она глобально разрешима. Первая, основополагающая оценка, дает
ту начальную информацию, отправляясь от которой можно получать шаг за шагом, двигаясь вверх по
шкале банаховых пространств, все более полные и точные сведения об изучаемом решении.

Теорема 2.1. Пусть выполнены условия а)-d). Тогда для решения u (t, x), h (t), s (t) задачи (1.1)-(1.6)
справедливы оценки

0 < u (t, x) ≤ M1, (t, x) ∈ D, (2.1)

0 < s′ (t) , 0 < −h′ (t) , 0 ≤ t ≤ T. (2.2)

Кроме того d
dxd (u) > 0, то

s′ (t) ≤ M2, 0 ≤ t ≤ T. (2.3)

−h′ (t) ≤ M3, 0 ≤ t ≤ T. (2.4)

Доказательство. Из задачи (1.1)-(1.6) по принципу максимума получим оценка (2.1).
Область D условно разделим на две части

D1 = {(t, x) : 0 < t ≤ T, 0 < x < s (t)} , D2 = {(t, x) : 0 < t ≤ T, h (t) < x < 0} .
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Рассмотрим задачу для u (t, x) в области D1
a (u)ut = (d(u)ux)x , (t, x) ∈ D1,

u (0, x) = u0 (x) , 0 ≤ x ≤ s0,

u (t, 0) > 0, 0 ≤ t ≤ T,

u (t, s (t)) = 0, 0 ≤ t ≤ T.

(2.5)

С учетом условий (1.3) и положительности функции u (t, x) в области D, находим ux (t, s (t)) ≤ 0.
Следовательно, из (1.5) получим s′ (t) > 0.

Теперь оценим снизу ux (t, s (t)). Для этого в задаче (2.5) произведя замену

v (t, x) = u (t, x) +N1 (x− s (t))

и получим 
a (v) vt − d(v)vxx −

(
d
dxd (u)

)
vx = −

(
a (v) s′ (t) + d

dxd (u)
)
N1, (t, x) ∈ D1,

v (0, x) = u0 (x) +N1 (x− s0) , 0 ≤ x ≤ s0,

v (t, 0) = u (t, 0)−N1s (t) , 0 ≤ t ≤ T,

v (t, s (t)) = 0, 0 ≤ t ≤ T.

За счет выбора N1 ≥
{
max

x

u0(x)
s0−x ,

M1

s0

}
всюду в D1 имеем v (t, x) ≤ 0. Отсюда

u (t, x) ≤ N1 (s (t)− x) , 0 ≤ x ≤ s (t) .

Следовательно, vx (t, s (t)) = ux (t, s (t)) +N1 ≥ 0. Тогда из условия Стефана (1.5) имеем s′ (t) ≤ µN1 ≡ M3

в 0 ≤ t ≤ T .
А теперь докажем неравенство (2.4). Рассматривается задача

a (u)ut = (d(u)ux)x , (t, x) ∈ D2,

u (0, x) = u0 (x) , h0 ≤ x ≤ 0,

u (t, 0) > 0, 0 ≤ t ≤ T,

u (t, h (t)) = 0, 0 ≤ t ≤ T.

C учетом условий u (t, h (t)) = 0 и u (t, x) > 0, находим ux (t, h (t)) > 0. Осталось показать, что h′ (t) ≥
−M3 для 0 ≤ t ≤ T . Для этого введя функцию

w (t, x) = u (t, x)−N2 (x− h (t)) (2.6)

получим задачу
a (w) vt − d(w)wxx −

(
d
dxd (u)

)
wx =

(
a (w)h′ (t) + d

dxd (u)
)
N2, (t, x) ∈ D2,

w (0, x) = u0 (x)−N2 (x− h0) , h0 ≤ x ≤ 0,

w (t, 0) = u (t, 0) +N2h (t) , 0 ≤ t ≤ T,

w (t, h (t)) = 0, 0 ≤ t ≤ T.

Так как h′ (t) < 0, то a (w)wt − d(w)wxx −
(

d
dxd (u)

)
wx < 0 в D2. Тем самым функция w (t, x) не

может достигать положительного максимума внутри области D2. Если N2 ≥ max
{
max

x

u0(x)
x−h0

, M1

−h0

}
, то

легко добиться неположительности w (t, x) на левой границе и в начальной момент времени. Таким
образом, w (t, x) неположительна в D2. Но тогда wx (t, h (t)) ≤ 0. Следовательно, с учетом (2.6) находим
ux (t, x) ≤ N2, что эквивалентно h′ (t) ≥ −µN2 ≡ M3.
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Чтобы оценить |ux (t, x)| преобразуем независимые переменные

t = t, y =
2s0x

s (t)− h (t)
− s (t) + h (t)

s (t)− h (t)
s0.

Тогда области D соответствует область Q = {(t, y) : 0 < t < T,−s0 < y < s0}, а ограниченная функция
v (t, y) = u (t, x) является решением задачи

vt = A (t, y, v) vyy +B (t, y, v, vy) , (t, y) ∈ Q, (2.7)

v (0, y) = v0 (y) , −s0 ≤ y ≤ s0, (2.8)

v (t, s0) = 0, 0 ≤ t ≤ T, (2.9)

v (t,−s0) = 0, 0 ≤ t ≤ T, (2.10)

где A (t, y, v) = d(v)
a(v)ρ (t), B (t, y, v, vy) = φ (t) vy +

d′(v)
a(v) ρ (t) v

2
y, ρ (t) =

4s20
(s(t)−h(t))2

,

φ (t) =
s′ (t)− h′ (t)

s (t)− h (t)

(
y +

s (t) + h (t)

s (t)− h (t)

)
+

s′ (t)h (t) + s (t)h′ (t)

(s (t)− h (t))
2 2s0,

s′ (t) = − 2s0µ

s (t)− h (t)
vy (t, s0) , h′ (t) = − 2s0µ

s (t)− h (t)
vy (t,−s0) .

При условии d). без ограничений общности можно предполагать, что v0 (x) = 0.

Теорема 2.2. Пусть непрерывная в Q функция v (t, y) удовлетворяет условиям задачи (2.7)-(2.10).
Предположим, что ограниченные функции A (t, y, v), B (t, y, v, vy) для (t, y) ∈ Q, |v| ≤ M1 и произвольных
vy удовлетворяют условиям

|B (t, y, v, vy)|
A (t, y, v)

≤ K
(
v2y + 1

)
, K > 0. (2.11)

Тогда
|vy (t, y)| ≤ M4 (M1, A0, δ) , (t, y) ∈ Qδ. (2.12)

Кроме того, если A (t, y, v) ≤ A1 в области {(t, y) ∈ Q, |v| ≤ M1, |vy| ≤ M4} то

|v|Q
δ

2
3

≤ M5 (M1, A1,K, δ) . (2.13)

Пусть v (t, y) обладает обобщенными производными vty, vyy ∈ L2 (Q), то

|v|Q
δ

1+γ ≤ M6 (M1, A1,K, δ) , 0 < γ < 1, (2.14)

Если v|Г(t=0,y=±s0)
= 0, то оценки (2.12)-(2.14) справедливы и в Q. где A0 = min

Q̄
A, Qδ =

{(t, y) : 0 < δ ≤ t ≤ T, δ − s0 ≤ y ≤ δ + s0}, Γ (t = 0, y = ±s0)−параболическая граница.

Доказательство. Внутренние оценки в области Qδ устанавливаются как и в [10].
Теперь перейдем оценки вплоть до границ. Так как v |y=±s0 = 0, поэтому продолжим функцию v (t, y)

через боковые стороны прямоугольника Q по правилу

v (t, y) = ω (t, 2s0 + y) , −3s0 ≤ y ≤ −s0, (2.15)

v (t, y) = ω (t, y − 2s0) , s0 ≤ y ≤ 3s0. (2.16)

Предполагаем, что коэффициенты уравнения (2.7) продолжены по y по закону (2.15), (2.16).
Новая функция (сохраним за ней обозначение u (t, y) во всех точках прямоугольников R± =
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{
(t, y) : 0 ≤ t ≤ T,

∣∣y ± 3
2s0

∣∣ ≤ 3
2s0

}
имеет непрерывную производную и удовлетворяет продолженному

уравнению вида (2.7) т.е

ωt = A (t, 2s0 + y, ω, ωy)ωyy +B (t, 2s0 + y, ω, ωy) ,−3s0 < y < −s0,

и
ωt = A (t, y − 2s0, ω, ωy)ωyy +B(t, y − 2s0, ω, ωy), s0 < y < 3s0

с теми же самыми свойствами, что и в условиях теоремы 2. Используя результаты работы [10], получим
оценку для |vy| в прямоугольниках, объединение которых содержит Q. Так как получение внутренних
оценок основано на принципе максимума, то утверждения теоремы полностью сохраняются, когда
функция v (t, y) непрерывна в Q, имеет непрерывную производную vy (t, y) и удовлетворяет уравнению
(2.7) в Q всюду за исключением точек конечного числа прямых y = const.

Переходим теперь к доказательству оценки |v (t, y)|Q1+γ . После того как оценены нормы |vy|Qγ уравнение
(2.7) можно рассматривать как линейное уравнение

vt = A (t, y) vyy +B (t, y)

с ограниченными и непрерывными по Гельдеру коэффициентами и использовать для оценок и прочих
качественных исследований его решений соответствующие теоремы по линейным уравнениям о линейных
уравнениях.

Чтобы получить оценку вплоть до границы, как и выше, продолжим v (t, y) по правилу (2.15), (2.16).
Далее, для решения продолженного уравнения имеют место внутренние априорные оценки вида (2.14),
в прямоугольниках, охватывающих прямоугольник Q. При этом применяются результаты работы ([10]
теорема 3) по Гельдеровости обобщенного решения. Следовательно, получаем оценку (2.14) в Q.

А оценки для старших производных получим по результатам для линейных уравнений [11, 12].

Теорема 2.3. Пусть коэффициенты уравнения

ã (t, y) vyy + b̃ (t, y) vy + c̃ (t, y) v − vt = f̃ (t, y) , (t, y) ∈ Q, (2.17)

удовлетворяют условиям Гельдера

|ã|Qγ + |b̃|Qγ + |c̃|Qγ + |f̃ |Qγ < ∞, ã (t, y) ≥ a0 > 0.

Пусть v (t, y) есть решения уравнения (2.17) с v|Г(t=0,y=±s0)
= 0, |v|Q2+γ < +∞ и M = max

Q
= |v (t, y) |. Тогда

|v|Q2+γ ≤ C
(
|f̃ |Qγ +M

)
≡ M7. (2.18)

3. Единственность и существования решения

Для доказательства единственности решения используем идеи работы [17].
Выводим интегральное представление эквивалентное к (1.1). Перепишем (1.1) в виде

(φ (u))t = (d(u)ux)x (3.1)

где φ (u) =
∫ u

0
a (ξ) dξ.

Интегрируя уравнение (3.1) по области D с учетом условий (1.2)-(1.6) имеем

s (t)− h (t) = 2s0 +
µ

d(0)

s0∫
−s0

φ (u0 (ξ)) dξ −
µ

d(0)

s(t)∫
h(t)

φ (u (t, ξ)) dξ. (3.2)
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Теорема 3.1. Если справедливы оценки (2.1)-(2.4), (2.18). Тогда решение задачи (1.1)-(1.6) единственно.

Доказательство. Пусть (h1 (t) , s1 (t) , u1 (t, x)) и (h2 (t) , s2 (t) , u2 (t, x)) являются решениями задачи (1.1)-
(1.6) и, кроме того,

y1 (t) = min (s1 (t) , s2 (t)) , z1 (t) = min (h1 (t) , h2 (t)) ,

y2 (t) = max (s1 (t) , s2 (t)) , z2 (t) = max (h1 (t) , h2 (t)) .

Тогда, с учетом (3.2), имеем

|s1 (t)− s2 (t)|+ |h1 (t)− h2 (t)| ≤
µ

d(0)

z2(t)∫
z1(t)

|φ (ui)| dξ +
µ

d(0)

y2(t)∫
y1(t)

|φ (ui)| dξ+

µ

d(0)

y1(t)∫
z2(t)

|φ (u1)− φ (u2)| dξ (3.3)

где ui (i = 1, 2)− решения между y1 (t) и y2 (t) (соответственно z1 (t) и z2 (t)).
По теореме 1 получаем

|u1 (t, y1 (t))− u2 (t, y1 (t))| ≤ N1 |s1 (t)− s2 (t)|

и
|u1 (t, z1 (t))− u2 (t, z1 (t))| ≤ N2 |h1 (t)− h2 (t)| .

Рассмотрим функцию U (t, x) = u1 (t, x)− u2 (t, x). Тогда для U (t, x) получим уравнение с
ограниченными коэффициентами и задачу

b1(t, x)Ut = b2 (t, x)Uxx + b3 (t, x)Ux + b4 (t, x)U, (t, x) ∈ D,

U (0, x) = 0, −s0 ≤ x ≤ s0,

U (t, y1 (t)) ≤ N1 max
0≤η≤t

|s1 (η)− s2 (η)| , t ≥ 0,

U (t, z1 (t)) ≤ N2 max
0≤η≤t

|h1 (η)− h2 (η)| , t ≥ 0,

где коэффициенты уравнения непрерывные и ограниченные функции.
Отсюда по принципу максимума

|U (t, x)| ≤ N1 max
0≤η≤t

|s1 (η)− s2 (η)|+N2 max
0≤η≤t

|h1 (η)− h2 (η)| .

В силу ограниченности функций u (t, x), a (u), a′ (u) оценим составляющие формулы (3.3):

I1 =
µ

d(0)

z2(t)∫
z1(t)

|φ (ui)| dξ ≤ M7 |z2 (t)− z1 (t)| max
0≤η≤t

|h1 (η)− h2 (η)| ≤ M7 max
0≤η≤t

|h1 (η)− h2 (η)|2 ,

I2 =
µ

d(0)

y2(t)∫
y1(t)

|φ (ui)| dξ ≤ M8 |y2 (t)− y1 (t)| max
0≤η≤t

|s1 (η)− s2 (η)| ≤ M8 max
0≤η≤t

|s1 (η)− s2 (η)|2 ,

I3 =
µ

d(0)

y1(t)∫
z2(t)

|φ (u1)− φ (u2)| dξ.

Далее, используя идеи и результат [9, 18], доказательство теоремы завершается.
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Задача со свободной границей...

Существование решения.

Теорема 3.2. Пусть выполнены условия теоремы 3. Тогда существует в D решение u (t, x) ∈ C2+γ(D),
s (t) ∈ C1+γ ([0, T ]), h (t) ∈ C1+γ ([0, T ]) задачи (1.1)-(1.6).

Доказательство. Для доказательства разрешимости нелинейной задачи можно воспользоваться
различными теоремами из теории нелинейных уравнений, помня, что для нее справедлива теорема
единственности классического решения. Воспользуемся принципом Лере-Шаудера [12], установленным по
априорным оценкам | · |1+α для всех возможных решений нелинейных задач, и теоремой о разрешимости
в классах Гёльдера для линейных задач.

Более подробное изложение методики можно найти, например, в (Раздел VI, [11]; Раздел VII, [12]).
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Free Boundary Problem for a Nonlinear Diffusion Equation
Rasulov Mirojiddin Sobirjonovich and Umirkhonov Masudkhon Turakhon ugli

Abstract

In this paper, a Stefan-type problem with two free boundaries for a nonlinear heat equation in the one-
dimensional case is considered. The study of nonlinear problems with free boundaries is carried out using
a method based on constructing a priori estimates. In this regard, some initial a priori estimates are first
established for solving the problem under consideration. Then, the problem is reduced to a problem with
a fixed boundary through a change of variables. The resulting problem has time- and position-dependent
coefficients with nonlinear terms. Next, a priori estimates of the Schauder type are constructed for solving the
equation with nonlinear terms and a fixed boundary. Based on the estimates obtained, the solvability of the
original problem is established.
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Abstract
This paper investigates the problem of local bifurcations in the vicinity of spatially homogeneous
equilibrium states of reaction-diffusion systems in a bounded domain with homogeneous
Neumann boundary conditions. The main results focus on studying Turing bifurcation and
Andronov-Hopf bifurcation under conditions of multiple degeneracy in the linearized system.
In the considered case the codimension of the bifurcation does not match the multiplicity
of eigenvalues of the corresponding linear operators, which significantly complicates the
analysis. The paper provides a detailed examination of cases leading to multiple bifurcations,
establishes conditions for multiple degeneracy, and develops approaches for studying stability
and bifurcations near equilibrium states under these conditions. The key result consists of the
investigation and characterization of the solution manifold structure arising from bifurcations
in reaction-diffusion systems. Potential directions for extending these results of the study of
multiple bifurcations are also discussed.

Keywords: reaction-diffusion, equilibrium state, stability, bifurcation, Turing, Andronov-Hopf
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1. Introduction and Problem Statement

A large portion of works is usually devoted to the study of reaction-diffusion systems due to their wide range
of applications (see, for example, [1]-[3] and the bibliography therein). One of the most important research
directions for such systems is the study of critical phenomena and associated bifurcations leading to the
emergence of dissipative structures (Turing bifurcation) and autowave processes (Andronov-Hopf bifurcation)
in the vicinity of equilibrium positions. The emergence of such solutions is related to the fact that the
eigenvalues of the corresponding linearized system cross the imaginary axis: through the value 𝜆 = 0 for
dissipative structures and through 𝜆 = 𝑖𝜔 (where 𝜔 ≠ 0) for autowaves.

The wavenumbers corresponding to these bifurcations often result in the linear operator having eigenvalues
whose multiplicity does not coincide with the bifurcation’s codimension. Appearance of such situations
significantly complicates the application of standard bifurcation analysis methods. Typically, known works
on bifurcations in reaction-diffusion systems focus on cases where the multiplicity of eigenvalues and the
codimension of bifurcations coincide [4]-[10]. The study of situations where the multiplicity of eigenvalues
and the bifurcation codimension differ remains a poorly explored topic. This work discusses some aspects of
Turing and Andronov-Hopf bifurcations in such situations.
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The main object of study is the reaction-diffusion system (see, for example, [2]-[10]), described by the
differential equation

𝑑𝑤

𝑑𝑡
= 𝐴(𝜇)𝑤 + 𝐷Δ𝑤 + ℎ(𝑤), 𝑤 ∈ 𝑅𝑁 , (1.1)

where 𝐴(𝜇) is the Jacobian matrix smoothly depending on the parameter 𝜇, 𝐷 is a non-zero diffusion matrix

with non-negative elements, Δ is the Laplace operator: Δ =
𝜕2

𝜕𝑥2
1

+ . . . + 𝜕2

𝜕𝑥2
𝑚

, and the nonlinearity ℎ(𝑤)

satisfies the relation: ∥ℎ(𝑤)∥ = 𝑜(∥𝑤∥) as 𝑤 → 0 . Equation (1.1) is studied in the parallelepiped

Ω = {𝑥 : 0 ⩽ 𝑥1 ⩽ 𝜋, 0 ⩽ 𝑥2 ⩽ 𝜋, . . . , 0 ⩽ 𝑥𝑚 ⩽ 𝜋} .

Neumann boundary conditions are considered:

𝜕𝑤

𝜕n

����
𝜕Ω

= 0 . (1.2)

The system (1.1)-(1.2) has a stationary zero solution 𝑤 = 0; it is a solution to the boundary value problem

𝐴(𝜇)𝑤 + 𝐷Δ𝑤 + ℎ(𝑤) = 0,
𝜕𝑤

𝜕𝑛

����
𝜕Ω

= 0 . (1.3)

2. Basic Concepts and Notation

Let 𝐿2(Ω) denote the Hilbert space of functions 𝑣(𝑥) defined on Ω, and𝑊2
2 (Ω) the Sobolev space with the

norm

∥𝑣(𝑥)∥𝑊2
2
=

(∫
Ω

Σ
|𝛼 |⩽2

∥𝐷𝛼𝑣∥2 𝑑𝑥

)1/2

;

here 𝐷𝛼 is the differentiation operator: 𝐷𝛼 =
𝜕 |𝛼 |

𝜕𝑥1𝛼1𝜕𝑥2𝛼2 ...𝜕𝑥𝑚
𝛼𝑚
, |𝛼 | = 𝛼1 + 𝛼2 + ... + 𝛼𝑚 , ∥ · ∥ is

the Euclidean norm in 𝑅𝑛. Let 𝐶 (Ω) and 𝐶2(Ω) denote the spaces of continuous and twice continuously
differentiable functions, respectively. Define also the set

𝐶2
0 (Ω) =

{
𝑣 ∈ 𝐶2 :

𝜕𝑣

𝜕𝑛

����
𝜕Ω

= 0
}
.

The Laplace operator Δ =
𝜕2

𝜕𝑥2
1

+ . . . + 𝜕2

𝜕𝑥2
𝑚

: 𝐶2
0 → 𝐶 can be (see, for example, [5]) extended to a closed self-

adjoint operator Δ : 𝐿2 → 𝐿2 with the domain𝐺0, formed by the closure of 𝐶2
0 (Ω) in𝑊2

2 . The spectrum of the
operator Δ consists of isolated eigenvalues 𝜆 = −𝑘2

1 + 𝑘
2
2 + · · · + 𝑘2

𝑚 of finite multiplicity (𝑘𝑖 are non-negative
integers).

Solutions of the system (1.1)-(1.2) are functions 𝑤(𝑥, 𝑡) that:
– for each fixed value of 𝑡 are elements of the space𝑊2

2 (Ω);
– for each fixed value of 𝑥 ∈ Ω are continuously differentiable functions of 𝑡;
– satisfy equation (1.1) and boundary conditions (1.2) for all 𝑡 ⩾ 0 and 𝑥 ∈ Ω.

An equilibrium point 𝑤 = 𝑣0(𝑥) of the system (1.1)-(1.2) is called (see, for example, [3]-[4]) Lyapunov
stable if for every 𝜀 > 0 there exists 𝛿 > 0 such that if ∥𝑢0(𝑥) − 𝑣0(𝑥)∥𝑊2

2
< 𝛿, then the solution 𝑤(𝑥, 𝑡) of

the system (1.1)-(1.2) satisfies the inequality ∥𝑤(𝑥, 𝑡) − 𝑣0(𝑥)∥𝑊2
2
< 𝜀 for all 𝑡 > 0; here 𝑤(𝑥, 𝑡) is the solution
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of the Cauchy problem for the system (1.1)-(1.2) with the initial condition 𝑤(𝑥, 0) = 𝑢0(𝑥). If, in addition,
∥𝑤(𝑥, 𝑡) − 𝑣0(𝑥)∥𝑊2

2
→ 0 as 𝑡 → ∞, then the equilibrium point 𝑤 = 𝑣0(𝑥) is called asymptotically stable.

The stability of the zero equilibrium point 𝑤 = 0 of the system (1.1)-(1.2) is determined by the properties of
the spectrum of the linear operator

𝑆(𝜇) = 𝐴(𝜇) + 𝐷Δ : 𝐿2(Ω) → 𝐿2(Ω) , (2.1)

with a domain 𝐺0 dense in 𝐿2(Ω). The operator (2.1) is closed, its spectrum is discrete, consisting of isolated
eigenvalues of finite multiplicity (see, for example, [11]). If all eigenvalues of the operator (2.1) have negative
real parts, then the equilibrium point 𝑤 = 0 of the system (1.1)-(1.2) is asymptotically stable. If this operator
has an eigenvalue with a positive real part, then the equilibrium point 𝑤 = 0 will be unstable. Accordingly, if
the operator (2.1) for some 𝜇 = 𝜇0 has an eigenvalue with a zero real part, then 𝜇0 will be a bifurcation point.

We say that the value 𝜇 = 𝜇0 is a Turing bifurcation point of the system (1.1)-(1.2) if the operator 𝑆(𝜇0) has
an eigenvalue 𝜆 = 0, while its other eigenvalues have negative real parts.

We say that the value 𝜇 = 𝜇0 is an Andronov-Hopf bifurcation point of the system (1.1)-(1.2) if the operator
𝑆(𝜇0) has a pair of purely imaginary eigenvalues 𝜆1,2 = ±𝑖𝜔0, while its other eigenvalues have negative real
parts.
Remark 2.1. The requirement that the other eigenvalues of the operator 𝑆(𝜇0) have negative real parts is related
to the following circumstance. If we allow the operator 𝑆(𝜇0) to have an eigenvalue with a positive real part,
then the dissipative structures or autowaves arising from the bifurcation will be inherently unstable. Note, in
particular, that a necessary condition for both types of bifurcations is the requirement that the matrix 𝐴(𝜇0)
be stable. A discussion of these issues is given in [6, 11].

Note the validity of the following statements (see, for example, [9, 10]).

Lemma 2.1. The Turing bifurcation for the system (1.1)-(1.2) is possible only for 𝑁 ⩾ 2.

Lemma 2.2. The Andronov-Hopf bifurcation for the system (1.1)-(1.2) is possible only for 𝑁 ⩾ 3.

3. Auxiliary Matrices

Below, a real square matrix 𝐵 will be called stable if all its eigenvalues have negative real parts.
The set of eigenvalues of the operator (2.1) coincides with the set of eigenvalues of the matrices

𝐵𝑘 (𝜇) = 𝐴(𝜇) −
(
𝑘2

1 + 𝑘
2
2 + . . . + 𝑘

2
𝑚

)
𝐷 , (3.1)

where 𝑘 𝑗 are non-negative integers, and 𝑘 denotes the multi-index 𝑘 = 𝑘1, 𝑘2, . . . , 𝑘𝑚. If all these matrices are
stable, then the equilibrium point 𝑤 = 0 will be an asymptotically stable solution of the system (1.1)-(1.2). If
at least one of the matrices (3.1) has an eigenvalue with a positive real part, then the equilibrium point 𝑤 = 0
will be unstable.

The concepts of Turing and Andronov-Hopf bifurcations can be reformulated using the matrices (3.1). Define
the numbers

𝜌𝑘 = 𝑘2
1 + 𝑘

2
2 + . . . + 𝑘

2
𝑚. (3.2)

We say that the value 𝜇 = 𝜇0 is a Turing bifurcation point of the system (1.1)-(1.2) if:

T1) for some multi-index 𝑘0 = 𝑘1, 𝑘2, . . . , 𝑘𝑚, the matrix 𝐵0 = 𝐵𝑘0 (𝜇0) has an eigenvalue 𝜆 = 0, while the
other eigenvalues of the matrix 𝐵0 have negative real parts;

T2) the matrices 𝐵𝑘 (𝜇0) for 𝑘 ≠ 𝑘0 are stable.
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We say that the value 𝜇 = 𝜇0 is an Andronov-Hopf bifurcation point of the system (1.1)-(1.2) if:

H1) for some multi-index 𝑘0 = 𝑘1, 𝑘2, . . . , 𝑘𝑚, the matrix 𝐵0 = 𝐵𝑘0 (𝜇0) has a pair of purely imaginary
eigenvalues 𝜆1,2 = ±𝑖𝜔0, while the other eigenvalues of the matrix 𝐵0 have negative real parts;

H2) the matrices 𝐵𝑘 (𝜇0) for 𝑘 ≠ 𝑘0 are stable.

The Turing bifurcation scenario is associated with the fact that as the parameter 𝜇 passes through 𝜇0, non-
zero spatially inhomogeneous equilibrium points 𝑤 = 𝑤(𝑥, 𝜇) arise in the system (1.1) in the vicinity of the
equilibrium point 𝑤 = 0. Correspondingly, the Andronov-Hopf bifurcation scenario is associated with the fact
that as the parameter 𝜇 passes through 𝜇0, non-stationary periodic solutions 𝑤 = 𝑤(𝑥, 𝑡, 𝜇) arise in the system
(1.1) in the vicinity of the equilibrium point 𝑤 = 0.

4. Properties of the Set of Numbers (3.2)

Comparing the above definitions of bifurcation points, based on the properties of the operator 𝑆(𝜇) defined
by (2.1) and the matrices 𝐵𝑘 (𝜇) defined by (3.1), leads to the following question. Let 𝜆0 be an eigenvalue of the
matrix 𝐵𝑘0 (𝜇0) for some multi-index 𝑘0 = 𝑘1, 𝑘2, . . . , 𝑘𝑚. Then 𝜆0 will also be an eigenvalue of the operator
𝑆(𝜇0). But will the multiplicity of this eigenvalue be the same for both operators?

To discuss this question, we introduce the following notations:
– 𝑍+ is the set of non-negative integers;
– 𝑍0(𝑚) is the set of numbers of the form (3.2);
– 𝑍1(𝑚) is the set of numbers 𝜌 ∈ 𝑍0(𝑚) for which there exists a unique multi-index 𝑘 = 𝑘1, 𝑘2, . . . , 𝑘𝑚

such that 𝜌 = 𝑘2
1 + 𝑘

2
2 + . . . + 𝑘

2
𝑚;

– 𝑍2(𝑚) is the set of numbers 𝜌 ∈ 𝑍0(𝑚) for which there exist two or more multi-indices 𝑘 = 𝑘1, 𝑘2, . . . , 𝑘𝑚

such that 𝜌 = 𝑘2
1 + 𝑘

2
2 + . . . + 𝑘

2
𝑚;

– 𝑍 (𝑚) = {𝜌 : 𝜌 = 𝑚 𝑗2 , 𝑗 = 0, 1, 2, . . .}.
By construction, we have:

𝑍1(𝑚) ∪ 𝑍2(𝑚) = 𝑍+ , 𝑍1(𝑚) ∩ 𝑍2(𝑚) = ∅ , 𝑍 (𝑚) ⊂ 𝑍0(𝑚) .

The following inclusions hold:
𝑍1(𝑚) ⊂ 𝑍 (𝑚) , (4.1)

𝑍0(𝑚) ≠ 𝑍+ for 1 ⩽ 𝑚 ⩽ 3 , 𝑍0(𝑚) = 𝑍+ for 𝑚 ⩾ 4 . (4.2)

The equality in (4.2) follows from Lagrange’s theorem on the representability of any natural number as a sum
of four squares.

Let us discuss the properties of the sets 𝑍1(𝑚) and 𝑍2(𝑚) for various 𝑚. We have:

𝑚 = 1 ⇒ 𝑍1(𝑚) = 𝑍 (𝑚) = {0, 1, 4, 9, . . . , 𝑘2, . . .} , 𝑍2(𝑚) = ∅ ;

𝑚 = 2 ⇒ 𝑍1(𝑚) = {0, 2, 8, 18, 32, 72, 98, 128, 162, . . .} , 𝑍2(𝑚) = {1, 3, 4, 5, . . .} ;

𝑚 = 3 ⇒ 𝑍1(𝑚) = {0, 3, 12, . . .} , 𝑍2(𝑚) = {1, 2, 4, 5, . . .} ;

𝑚 ⩾ 4 ⇒ 𝑍1(𝑚) = {0} ; 𝑍2(𝑚) = 𝑍+/{0} = {1, 2, 3, 4, . . . } .

The properties of the sets 𝑍1(𝑚) and 𝑍2(𝑚) show that if the matrix 𝐵𝑘0 (𝜇0) has an eigenvalue of multiplicity
𝑙, and the other matrices 𝐵𝑘 (𝜇0) for 𝑘 ≠ 𝑘0 do not have the eigenvalue 𝜆0, then the operator 𝑆(𝜇0) also has the
eigenvalue 𝜆0,whose multiplicity coincides with 𝑙 (or 𝑟𝑙), if 𝜌 ∈ 𝑍1(𝑚) (or if 𝜌 ∈ 𝑍2(𝑚) and 𝜌 is representable
in 𝑟 different ways).

From this, the following statements follow:
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Lemma 4.1. Let 𝜌0 ∈ 𝑍1(𝑚) and let 𝑘0 be the corresponding unique multi-index. Let 𝜆0 be an eigenvalue
of the matrix (3.1) for the multi-index 𝑘0. Let, finally, the matrices (3.1) for other multi-indices not have the
eigenvalue 𝜆0. Then the operator (2.1) has the eigenvalue 𝜆0 with the same algebraic and geometric multiplicity
as the matrix (3.1) for the multi-index 𝑘0.

Lemma 4.2. Let 𝜌0 ∈ 𝑍2(𝑚) and let it correspond to exactly two different multi-indices 𝑘0 and 𝑙0. Let 𝜆0 be an
eigenvalue of the matrix (3.1) for the multi-index 𝑘0 (or, equivalently, for the multi-index 𝑙0), with algebraic and
geometric multiplicities 𝜈 and 𝜘, respectively. Let, finally, the matrices (3.1) for other multi-indices not have
the eigenvalue 𝜆0. Then the operator (2.1) has the eigenvalue 𝜆0 with algebraic and geometric multiplicities
2𝜈 and 2𝜘, respectively.

Similar statements hold in situations where the number 𝜌0 ∈ 𝑍2(𝑚) corresponds to more than two different
multi-indices.

By Lemmas 4.1 and 4.2, in the bifurcation problem, the multiplicity of the eigenvalues of the operator
(2.1) and the codimension of the corresponding bifurcations may not coincide for 𝑚 ⩾ 2. To illustrate this
fact, consider the case 𝑚 = 2. Suppose that for some multi-index 𝑘0 = 𝑘1, 𝑘2 such that 𝑘1 ≠ 𝑘2 (then the
corresponding 𝜌 = 𝑘2

1 + 𝑘
2
2 ∈ 𝑍2(𝑚)), the matrix 𝐵0 = 𝐵𝑘0 (𝜇0) has a simple eigenvalue 𝜆 = 0. Let the other

eigenvalues of the matrix 𝐵0 and all other matrices 𝐵𝑘 (𝜇0) for 𝑘 ≠ 𝑘0 and |𝑘 | ≠ 𝑘2
1 + 𝑘

2
2 have negative real

parts. Then 𝜇0 is a Turing bifurcation point of the system (1.1)-(1.2). In this case, the codimension of the
bifurcation is one. However, the multiplicity of the eigenvalue 𝜆 = 0 of the operator 𝑆(𝜇0) will be greater than
or equal to two.

Note that for 𝑚 = 1, the multiplicity of the eigenvalues of the operator (2.1) and the codimension of the
corresponding bifurcations coincide.

5. Main Result

Let us discuss the bifurcation problem in the system (1.1)-(1.2) in the case when the multiplicity of the
eigenvalues of the operator 𝑆(𝜇0) and the codimension of the bifurcation do not coincide. We will limit
ourselves to considering the Turing bifurcation problem. For the Andronov-Hopf bifurcation problem, the
reasoning is similar. For simplicity, let 𝑚 = 2.

Let 𝜇0 be a Turing bifurcation point of the system (1.1)-(1.2), i.e., the following conditions hold:

P1 The matrix 𝐵0 = 𝐵𝑘0 (𝜇0) for some multi-index 𝑘0 = 𝑘0, 𝑙0 has a simple eigenvalue 𝜆 = 0, with
𝜌 = 𝑘2

0 + 𝑙
2
0 ∈ 𝑍2(𝑚), 𝑘0 ≠ 𝑙0, and the number 𝜌 corresponds to exactly two different multi-indices

𝑘0 = (𝑘0, 𝑙0) and 𝑙0 = (𝑙0, 𝑘0). Let the other eigenvalues of the matrix 𝐵0 and all other matrices 𝐵𝑘 (𝜇0)
for 𝑘 ≠ 𝑘0 and 𝑘 ≠ 𝑙0 have negative real parts.

Then the operator 𝑆(𝜇0) has an eigenvalue 𝜆 = 0 of multiplicity 2. Let 𝑒0 and 𝑒∗0 be the eigenvectors of
the matrix 𝐵𝑘0 (𝜇0) and the transposed matrix 𝐵∗

𝑘0 (𝜇0), respectively. The corresponding eigenvectors of the
operator 𝑆(𝜇0) and the adjoint operator 𝑆∗(𝜇0) will be the functions{

𝑢0 = 𝑒0 cos 𝑘0𝑥 cos 𝑙0𝑦; 𝑢∗0 = 𝑒∗0 cos 𝑘0𝑥 cos 𝑙0𝑦;
𝑣0 = 𝑒0 cos 𝑙0𝑥 cos 𝑘0𝑦; 𝑣∗0 = 𝑒∗0 cos 𝑙0𝑥 cos 𝑘0𝑦.

(5.1)

We can assume that 𝜇0 = 0. Let 𝐸𝑐 denote the two-dimensional subspace in 𝐿2(Ω) whose basis consists of
the functions 𝑢0 and 𝑣0.

Along with (1.1), we will also consider the extended system{
𝑤′
𝑡 = 𝐴(𝜇)𝑤 + 𝐷Δ𝑤 + ℎ(𝑤) ,

𝜇′𝑡 = 0 ,
(5.2)
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Let Λ denote the one-dimensional subspace of the parameter 𝜇. Define two linear spaces

𝐻 = {(𝑤, 𝜇) : 𝑤 ∈ 𝐿2 , 𝜇 ∈ Λ } , 𝐸𝑐
𝜇 = {(𝑤, 𝜇) : 𝑤 ∈ 𝐸𝑐 , 𝜇 ∈ Λ};

𝐸𝑐
𝜇 is a three-dimensional subspace of the space 𝐻.
According to the central manifold theorem (see, for example, [12]), under condition P1, the system (5.2) in

the space 𝐻 has a three-dimensional smooth manifold𝑈 with the properties:
1) The manifold𝑈 contains the point (0, 𝜇0).
2) The manifold𝑈 is tangent to the subspace 𝐸𝑐

𝜇 at the point (0, 𝜇0).
3) The manifold 𝑈 contains all equilibrium points and periodic orbits of the system (5.2), provided their
trajectories lie in a small neighborhood of the point (0, 𝜇0). The manifold 𝑈 is called the central manifold of
the system (5.2).

The bifurcation solutions of the system (1.1) arising under condition P1 form (locally in the neighborhood
of the point (0, 𝜇0)) a two-dimensional smooth manifold 𝑈𝑐 located on the manifold 𝑈. The manifold 𝑈𝑐 can
be represented as a family of continuous branches of bifurcation solutions of the system (1.1), which can be
described by the following parametrically defined functions{

𝑤 = 𝑤∗(𝜀) = 𝜀𝑒1(𝑥, 𝑦) + 𝜀2𝑒2(𝑥, 𝑦) + . . . ,
𝜇 = 𝜇(𝜀) = 𝜇0 + 𝜀𝜇1 + 𝜀2𝜇2 + . . . ,

(5.3)

where 𝜀 is an auxiliary small parameter. The function 𝑒1(𝑥, 𝑦) can be any function from 𝐸𝑐 of the form

𝑒1(𝑥, 𝑦) = (𝐶1 cos 𝑘0𝑥 cos 𝑙0𝑦 + 𝐶2 cos 𝑙0𝑥 cos 𝑘0𝑦)𝑒0 , (5.4)

where the constants𝐶1 and𝐶2 are chosen such that ∥𝐶1 cos 𝑘0𝑥 cos 𝑙0𝑦 + 𝐶2 cos 𝑙0𝑥 cos 𝑘0𝑦∥𝐿2 = 1. The other
coefficients in (5.3) can be uniquely determined from the function (5.4). The scheme for constructing these
coefficients will be indicated below.

Theorem 5.1. Let condition P1 be satisfied. Suppose the system (1.1) has a continuous branch of bifurcation
solutions (5.3), where 𝑒1(𝑥, 𝑦) is the function (5.4). Then the system (1.1) has a family of continuous branches
of bifurcation solutions of the form{

𝑤 = 𝑤∗(𝜀) = 𝜀𝑒̃1(𝑥, 𝑦) + 𝜀2𝑒̃2(𝑥, 𝑦) + . . . ,
𝜇 = 𝜇(𝜀) = 𝜇0 + 𝜀𝜇1 + 𝜀2𝜇2 + . . . ,

(5.5)

where
𝑒̃1(𝑥, 𝑦) = 𝑒1(𝑥, 𝑦) = (𝐶1 cos 𝑙0𝑥 cos 𝑘0𝑦 + 𝐶2 cos 𝑘0𝑥 cos 𝑙0𝑦)𝑒0 ,

and the other coefficients of the function 𝑤∗(𝜀) can be obtained by a symmetric transformation of the
corresponding coefficients of the function 𝑤∗(𝜀) (namely, by permuting the numbers 𝑘0 and 𝑙0 in them).

The validity of this statement follows from the constructions given below.
Note that in (5.3) and (5.5), the second functions coincide.
Thus, to construct the two-dimensional manifold𝑈𝑐 of bifurcation solutions of the system (5.2), it is sufficient

to construct one continuous branch of solutions of the form (5.3). We will indicate a method for constructing
such a branch of solutions.

The Turing bifurcation problem for the system (1.1)-(1.2) leads to the need to study the problem (1.3). Since
the matrix 𝐷 is invertible, the problem (1.3) is equivalent to the nonlinear Neumann problem

Δ𝑤 = −𝐷−1 [𝐴(𝜇)𝑤 + ℎ(𝑤)] , 𝜕𝑤

𝜕n

����
𝜕Ω

= 0 , (5.6)
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which, in turn, is equivalent to the operator equation

𝑤 = 𝑇 (𝜇)𝑤 + 𝑏(𝑤, 𝜇) , (5.7)

where
𝑇 (𝜇)𝑤(𝑥) =

∫
Ω

𝐺 (𝑥, 𝑦)𝐾 (𝜇)𝑤(𝑦) 𝑑𝑦 , 𝑏(𝑤(𝑥)) =
∫
Ω

𝐺 (𝑥, 𝑦)𝐷−1ℎ(𝑤(𝑦)) 𝑑𝑦 ; (5.8)

here 𝐾 (𝜇) = 𝐷−1𝐴(𝜇), and 𝐺 (𝑥, 𝑦) is the Green’s function of the Neumann problem (5.6).
The operators (5.8) act and are completely continuous in the space 𝐿2, with the following properties:
– The linear operator 𝑇 (𝜇0) has an eigenvalue 𝜆 = 1 of multiplicity 2;
– The nonlinear operator 𝑏(𝑤(𝑥)) satisfies the relation ∥𝑏(𝑤(𝑥))∥𝐿2 = 𝑂 (∥𝑤(𝑥)∥2

𝐿2
) as ∥𝑤(𝑥)∥𝐿2 → 0.

By construction, the bifurcation problem for the operator equation (5.7) has the peculiarity that the
codimension of the bifurcation is one, while the multiplicity of the eigenvalue 𝜆 = 0 of the operator 𝑇 (𝜇0) is
two. Therefore, standard bifurcation analysis methods do not apply here. The following scheme is proposed for
constructing bifurcation solutions of equation (5.7). Introduce an additional parameter 𝜈 into equation (1.3),
i.e., consider the equation

𝐴(𝜇)𝑤 + 𝜈𝐷Δ𝑤 + ℎ(𝑤) = 0 ,
𝜕𝑤

𝜕n

����
𝜕Ω

= 0 . (5.9)

For 𝜈 = 𝜈0 = 1, equation (5.9) coincides with equation (1.3). Then equation (5.7) takes the form

𝑤 = 𝑇 (𝜇, 𝜈)𝑤 + 𝑏(𝑤, 𝜇) , (5.10)

where
𝑇 (𝜇, 𝜈)𝑤(𝑥) =

∫
Ω

𝐺 (𝑥, 𝑦)𝐾 (𝜇, 𝜈)𝑤(𝑦) 𝑑𝑦 ,

here 𝐾 (𝜇, 𝜈) = 1
𝜈
𝐷−1𝐴(𝜇). To study this equation, one can use the methods for investigating multiparameter

bifurcations [13, 14]. In this case, any function (5.4) can be chosen as the bifurcation direction. Then, according
to the scheme described in [13, 14], a continuous branch of bifurcation solutions of the system is uniquely
determined: 

𝑤 = 𝑤∗(𝜀) = 𝜀𝑒1(𝑥, 𝑦) + 𝜀2𝑒2(𝑥, 𝑦) + . . . ,
𝜇 = 𝜇(𝜀) = 𝜇0 + 𝜀𝜇1 + 𝜀2𝜇2 + . . . ,
𝜈 = 𝜈(𝜀) = 𝜈0 + 𝜀𝜈1 + 𝜀2𝜈2 + . . . ,

where 𝜀 is an auxiliary small parameter. In this branch, the coefficients of the functions 𝜇(𝜀) and 𝜈(𝜀) are
uniquely determined by the chosen function (5.4). It can be shown that the function (5.4) can be chosen
such that any finite number of coefficients 𝜈1, 𝜈2 . . . of the function 𝜈(𝜀) are zeroed, which is sufficient for
constructing a continuous branch of bifurcation solutions (5.3) of the original system (1.1) with the required
accuracy.

Acknowledgements

We would like to thank ...

Funding

This work is supported by ...

ujmcs.tstu.uz 96

http://ujmcs.tstu.uz


Y. Marat, G. Robert

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Svirezhev, Yu. M.: Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology. Nauka, Moscow (1987).
[2] Murray, J. D.: Mathematical Biology. Volume 1: An Introduction, Regular and Chaotic Dynamics. Izhevsk (2009).
[3] Bratus, A. S., Novozhilov, A. S., Platonov, A. P.: Dynamical Systems and Models in Biology. Fizmatlit, Moscow (2010).
[4] Magnitskii, N. A.: Theory of Dynamical Chaos. URSS, Moscow (2011).
[5] Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Mir, Moscow (1985).
[6] Yumagulov, M. G., Vasenina, N. A., Gabdrakhmanov, R. I.: Operator Methods for Studying Stability and Bifurcations in Reaction-Diffusion

Systems and Their Applications. Differ. Equ. 61 (4), 545–562 (2025).
[7] Abushahmina, G. R., Gusarova, N. I., Yumagulov, M. G.: Lyapunov Quantities for the Andronov-Hopf Bifurcation Problem in Reaction-Diffusion

Systems. Lobachevskii J. Math. 42 (15), 3567–3573 (2021). https://doi.org/10.1134/S1995080222030027
[8] Yumagulov, M. G., Sidelnikova, N. A.: Reaction-Diffusion Systems: Stability and Bifurcation Criteria. Bull. Bashkir Univ. 28 (4), 303–309 (2023).

https://doi.org/10.33184/bulletin-bsu-2023.4.1
[9] Borina, M. Yu., Polezhaev, A. A.: Diffusion Instability in a Three-Component Reaction-Diffusion Model. Comput. Res. Model. 3 (2), 135–146

(2011).
[10] Kuznetsov, M. B.: Study of Turing Pattern Formation Under the Influence of Wave Instability. Comput. Res. Model. 11 (3), 397–412 (2019).

https://doi.org/10.20537/2076-7633-2019-11-3-397-412
[11] Yumagulov, M. G., Vasenina, N. A.: Spectral Properties of Reaction-Diffusion System Operators and Bifurcation Criteria. Perm Univ. Bull. Math.

Mech. Inform. 65 (2), 17–25 (2024). https://doi.org/10.17072/1993-0550-2024-2-17-25
[12] Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., Chua, L. O.: Methods of Qualitative Theory in Nonlinear Dynamics. Part 2, Institute of Computer

Science, Moscow-Izhevsk (2009).
[13] Yumagulov, M. G.: Operator Method for Studying Regular Bifurcations in Multiparameter Systems. Dokl. Akad. Nauk 423 (5), 1–4 (2008).

https://doi.org/10.1134/S1064562409010128
[14] Vyshinskii, A. A., Ibragimova, L. S., Murtazina, S. A., Yumagulov, M. G.: Operator Method for Approximate Study of Regular Bifurcations in

Multiparameter Dynamical Systems. Ufa Math. J. 2 (4), 3–26 (2010).

Affiliations

Yumagulov Marat Gayazovich
Address: Ufa University of Science and Technology, Department of Differential Equations, 450076, Ufa-
Russia.
e-mail: yum_mg@mail.ru
ORCID ID:0000-0002-6482-4258

Gabdrakhmanov Robert Ilgizovich
Address: Ufa University of Science and Technology, Department of Differential Equations, 450076, Ufa-
Russia.
e-mail: gabdrahmanov.robert@gmail.com
ORCID ID:0000-0002-3454-241X

97 ujmcs.tstu.uz

http://ujmcs.tstu.uz


Uzbekistan Journal of Mathematics and Computer Science
Volume 1 No. 2 Page 98–104 (2025)
DOI: https://doi.org/10.56143/ujmcs.v1i2.12/
Research article

Idempotent probability measures spaces on Π-complete
spaces and maps
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Abstract
In the present paper we establish that for a Tychonoff map 𝑔 : 𝑋 → 𝑌 the induced map
𝐼 𝑓 (𝑔) : 𝐼 𝑓 (𝑋) → 𝐼 𝑓 (𝑌 ) is Π-complete if and only if the given map 𝑔 : 𝑋 → 𝑌 is Π-complete.
From here one can conclude that the functor 𝐼 𝑓 admits lifting to the category of Π-complete
space and their Π-complete maps.

Keywords: idempotent measure, Π-complete space, Tychonoff map.
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1. Introduction

In the present paper by a space we mean a topological 𝑇1-space, by a compact a Hausdorff compact space
and by a map a continuous map.

A collection of subsets of a set 𝑋 is said to be star-countable (respectively, star-finite) if each element of it
intersects at most a countable (respectively, finite) set of elements of it. A collection 𝜔 of subsets of a set 𝑋
refines a collection Ω of subsets of 𝑋 if for each element 𝐴 ∈ 𝜔 there is an element 𝐵 ∈ Ω such that 𝐴 ⊂ 𝐵. It is
also said that𝜔 is a refinement ofΩ. For an element 𝑥 ∈ 𝑋 and a natural number 𝑛 the inequality 𝐾𝑝 (𝑥, 𝜔) ≤ 𝑛
means that no more than 𝑛 elements of 𝜔 contain 𝑥 [2, p. 270]. We write 𝐾𝑝 𝜔 ≤ 𝑛 if 𝐾𝑝 (𝑥, 𝜔) ≤ 𝑛 for every
𝑥 ∈ 𝑋 .

A finite sequence of subsets 𝑀0, . . . , 𝑀𝑠 of a set 𝑋 is [4] a chain in 𝑋 connecting sets 𝑀0 and 𝑀𝑠, if
𝑀𝑖−1 ∩ 𝑀𝑖 ≠ ∅ for 𝑖 = 1, . . . , 𝑠. A collection of subsets of a set 𝑋 is said to be connected if for any pair of sets
𝑀, 𝑀 ′ ⊂ 𝑋 there exists a chain in 𝑋 connecting 𝑀 and 𝑀 ′. The maximal connected subcollections of 𝜔 are
called components of 𝜔.
A star-finite open cover of a space 𝑋 is said to be a finite-component cover if the number of elements of each
component is finite.

For a collection 𝜔 = {𝑂𝛼 : 𝛼 ∈ 𝐴} of subsets of a space 𝑋 we put

[𝜔] = [𝜔]𝑋 = {[𝑂𝛼]𝑋 : 𝛼 ∈ 𝐴}.
For a space 𝑋 , its subspace 𝑊 and a point 𝑥 ∈ 𝑋 \𝑊 , an open in 𝑊 cover 𝜔 of the space 𝑊 pricks out the

point 𝑥 in 𝑋 if 𝑥 ∉
⋃[𝜔]𝑋 [4].

For a Tychonoff space 𝑋 let 𝛽𝑋 be its Stone–Čech compactification (i. e. the maximal compact extension).
Definition 1.1. [4] A Tychonoff space 𝑋 is said to be Π-complete if for every point 𝑥 ∈ 𝛽𝑋 \ 𝑋 there exists a
finite-component cover of 𝑋 pricking out the point 𝑥 in 𝛽𝑋 (i. e., 𝑥 ∉

⋃[𝜔]𝛽 𝑋).
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Recall the notion of a perfect compactification. For a topological space 𝑋 and its subset 𝐴, a set

Fr𝑋 𝐴 = [𝐴]𝑋 ∩ [𝑋 \ 𝐴]𝑋 = [𝐴]𝑋 \ Int𝑋 𝐴

is called a boundary of 𝐴. Let 𝜐𝑋 be a compact extension of a Tychonoff space 𝑋 . If 𝐻 ⊂ 𝑋 is an open
set in 𝑋 , then by 𝑂 (𝐻) (or by 𝑂𝜐𝑋 (𝐻)) we denote the maximal (by inclusion) open set in 𝜐𝑋 satisfying
𝑂𝜐𝑋 (𝐻) ∩ 𝑋 = 𝐻. It is easy to see that

𝑂𝜐𝑋 (𝐻) =
⋃

Γ∈𝜏𝜐𝑋 ,
Γ∩𝑋=𝐻

Γ

where 𝜏𝜐𝑋 is the topology of the space 𝜐𝑋 .
A compactification 𝜐𝑋 of a Tychonoff space 𝑋 is called perfect with respect to an open set 𝐻 in 𝑋 if the

equality [𝐹𝑟𝑋𝐻]𝜐𝑋 = 𝐹𝑟𝜐𝑋𝑂𝜐𝑋 (𝐻) holds. If 𝜐𝑋 is perfect for every open set in 𝑋 , then it is called a perfect
compactification of the space 𝑋 ([2], p. 232).

A compactification 𝜐𝑋 of space 𝑋 is perfect if and only if for any two disjoint open sets𝑈1 and𝑈2 in 𝑋 the
equality

𝑂 (𝑈1 ∪𝑈2) = 𝑂 (𝑈1) ∪𝑂 (𝑈2)

holds [2]. The Stone-Čech compactification 𝛽𝑋 of a Tychonoff space 𝑋 is a perfect compactification of 𝑋 . The
equality 𝑂 (𝑈1 ∪𝑈2) = 𝑂 (𝑈1) ∪𝑂 (𝑈2) holds for every pair of open sets 𝑈1 and 𝑈2 in 𝑋 if and only if 𝑋 is
normal, and the compactification 𝜐𝑋 coincides with the Stone-Čech compactification 𝛽𝑋 , i. e. 𝜐𝑋 � 𝛽𝑋 .

The following criterion plays a key role in investigating the class of Π-complete spaces [4, Theorem 1.1,
pp. 16–17].

Theorem 1.1. [3] A Tychonoff space 𝑋 is Π-complete if and only if for every 𝑥 ∈ 𝑏𝑋 \ 𝑋 of an arbitrary
perfect compactification 𝑏𝑋 there exists an open cover 𝜔 of 𝑋 with 𝐾𝑝 𝜔 = 1, pricking out 𝑥 in 𝑏𝑋 (i. e.
𝑥 ∉ ∪[𝜔]𝑏𝑋).

Since the Stone-Čech compactification 𝛽𝑋 of a Tychonoff space 𝑋 is a perfect compactification of 𝑋 , then
Theorem 1.1 implies the following assertion.

Corollary 1.1. A Tychonoff space 𝑋 is Π-complete if and only if for every 𝑥 ∈ 𝛽𝑋 \ 𝑋 there exists a cover 𝜔
of 𝑋 with 𝐾𝑝 𝜔 = 1, pricking out 𝑥 in 𝛽𝑋 .

Note that every compact Hausdorff space is a Π-complete space. The square of the Sorgenfrey line (that
is the set of real numbers equipped with the topology generated by sets [𝑎, 𝑏), here −∞ < 𝑎 < 𝑏 < +∞) is
Π-complete, but it is not a paracompact space (hence, it is not a compact Hausdorff space). The space 𝑇 (𝜔1) of
all ordinal numbers less than the first uncountable ordinal number𝜔1 is a normal space but it is not Π-complete.

Let us list some known properties of Π-complete spaces.

1. A closed subset of a Π-complete space is Π-complete ([4], p. 19).

2. If 𝑓 : 𝑋 → 𝑌 is a perfect map in a Π-complete space 𝑌 then 𝑋 is also Π-complete ([4], p. 26).

The author of [5] observed the functor 𝐼 : ℭ𝑜𝑚𝑝 → ℭ𝑜𝑚𝑝 and showed that it is normal. Then in [7] using
the construction suggested by A.Ch. Chigogidze [6], it was obtained an extension 𝐼𝛽 : 𝔗𝑦𝑐ℎ → 𝔗𝑦𝑐ℎ. Here,
the sign ℭ𝑜𝑚𝑝 means the category of compact Hausdorff spaces and their continuous maps, and 𝔗𝑦𝑐ℎ the
category of Tychonoff spaces and their continuous maps.

For a compact Hausdorff space 𝑋 an idempotent probability measure on 𝑋 is defined [5] as a functional
𝜇 : 𝐶 (𝑋) → R that satisfies the following conditions:

1) 𝜇(𝑐𝑋) = 𝑐 for every constant function 𝑐𝑋 : 𝑋 → R, 𝑐 ∈ R. Here 𝑐𝑋 (𝑥) = 𝑐;
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2) 𝜇(𝑐 ⊙ 𝜑) = 𝑐 ⊙ 𝜇(𝜑), 𝑐 ∈ R, 𝜑 ∈ 𝐶 (𝑋). Here 𝑐 ⊙ 𝜑 = 𝑐 + 𝜑;
3) 𝜇(𝜑 ⊕ 𝜓) = 𝜇(𝜑) ⊕ 𝜇(𝜓), 𝜑, 𝜓 ∈ 𝐶 (𝑋). Here 𝜑 ⊕ 𝜓 = max{𝜑, 𝜓}.
A set of all idempotent probability measures on 𝑋 is denoted by 𝐼 (𝑋). It is endowed with the topology 𝜏𝑝

of pointwise convergence. For 𝜇 ∈ 𝐼 (𝑋) sets

⟨𝜇; 𝜑1, . . . , 𝜑𝑛; 𝜃⟩ = {𝜈 ∈ 𝐼 (𝑋) : |𝜈(𝜑𝑖) − 𝜇(𝜑𝑖) | < 𝜃, 𝑖 = 1, . . . , 𝑛}

forms a base of the pointwise convergence topology in 𝐼 (𝑋) at 𝜇. Here 𝜑, . . . , 𝜑𝑛 ∈ 𝐶 (𝑋), 𝜃 > 0.
Note that a function 𝑓 : 𝑋 → [−∞, +∞) is said to be an upper semi-continuous if for each 𝑥 ∈ 𝑋 and for

every real number 𝑟 that satisfies 𝑓 (𝑥) < 𝑟, there exists an open neighborhood𝑈 ⊂ 𝑋 of 𝑥 such that 𝑓 (𝑥′) < 𝑟
for all 𝑥′ ∈ 𝑈.

Now we consider a compact Hausdorff space 𝑋 , and put

𝑈𝑆𝐶0(𝑋) =
{
𝑓 : 𝑋 → [−∞, 0]

��� 𝑓 is an upper semi-continuous function such that

there exists 𝑥 ∈ 𝑋 with 𝑓 (𝑥) = 0
}
.

For every idempotent probability measure 𝜈 ∈ 𝐼 (𝑋) there exists [1] a unique upper semi-continuous function
𝜆 ∈ 𝑈𝑆𝐶0(𝑋) such that 𝜈 = ⊕

𝑥∈𝑋
𝜆(𝑥) ⊙ 𝛿𝑥 .

Consequently [8],

𝐼 (𝑋) =
{
⊕

𝑥∈𝑋
𝜆(𝑥) ⊙ 𝛿𝑥 : 𝜆 ∈ 𝑈𝑆𝐶0(𝑋)

}
.

A set

supp 𝜇 = {𝑥 ∈ 𝑋 : 𝜆(𝑥) > −∞}

is called [8] the support of an idempotent probability measure 𝜇 = ⊕
𝑥∈𝑋

𝜆(𝑥) ⊙ 𝛿𝑥 .

2. On a perfect compactification of the space of idempotent probability spaces

For a Tychonoff space 𝑋 put [7]

𝐼𝛽 (𝑋) = {𝜇 ∈ 𝐼 (𝑋) : supp 𝜇 ⊂ 𝑋}.

It is clear that 𝐼𝛽 (𝑋) ⊂ 𝐼 (𝑋). Consider the set 𝐼𝛽 (𝑋) as a subspace of the space 𝐼 (𝑋). For a Tychonoff space
𝑋 the space 𝐼𝛽 (𝑋) is also a Tychonoff space with respect to the induced topology.

For a continuous map 𝑓 : 𝑋 → 𝑌 of Tychonoff spaces we put

𝐼𝛽 ( 𝑓 ) = 𝐼 ( 𝑓 ) |𝐼𝛽 (𝑋) ,

where 𝛽 𝑓 : 𝛽𝑋 → 𝛽𝑌 is the Stone-Čech compactification of 𝑓 (it is unique).
For a compact Hausdorff space 𝑋 we put

𝐼 𝑓 (𝑋) =
{
𝜇 =

𝑛
⊕
𝑖=1
𝜒𝜇 (𝑥𝑖) ⊙ 𝛿𝑥𝑖 ∈ 𝐼𝜔 (𝑋) :

there exists a point 𝑥𝑖0 ∈ supp 𝜇 = {𝑥1, . . . , 𝑥𝑛}

such that 𝜒𝜇 (𝑥𝑖0) = 0 and 𝜒𝜇 (𝑥𝑖) ≤ − 𝑛
𝑛+1 at 𝑖 ≠ 𝑖0

}
.
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For a Tychonoff space 𝑋 we put
𝐼 𝑓 (𝑋) = 𝐼𝛽 (𝑋) ∩ 𝐼 𝑓 (𝛽 𝑋).

For a point 𝑥 ∈ 𝑋 let us define the following set

𝐼 𝑥𝑓 (𝑋) =
{
𝜇 =

𝑛
⊕
𝑖=1
𝜒𝜇 (𝑥𝑖) ⊙ 𝛿𝑥𝑖 ∈ 𝐼 𝑓 (𝑋) : 𝑥 ∈ supp 𝜇 and 𝜒𝜇 (𝑥) = 0

}
.

It is easy see that for a compact Hausdorff space 𝑋:
a) 𝐼 𝑥

𝑓
(𝑋) ∩ 𝐼 𝑦

𝑓
(𝑋) = ∅ if and only if 𝑥 ≠ 𝑦 for each pair of points 𝑥, 𝑦 ∈ 𝑋;

b) 𝐼 𝑓 (𝑋) = ∪
𝑥∈𝑋

𝐼 𝑥
𝑓
(𝑋).

Consider a subset 𝑀 ⊂ 𝑋 and put

⟨𝑀⟩ =
{
𝜇 ∈ 𝐼 𝑓 (𝑋) : there is a point 𝑥 ∈ 𝑀 such that 𝜇 ∈ 𝐼 𝑥𝑓 (𝑋)

}
.

Prof. [11] Let 𝑀 be a nonempty subset of a Hausdorff compact space 𝑋 . Then 𝐼 𝑥
𝑓
(𝑋) ⊂ ⟨𝑀⟩ if and only if

𝑥 ∈ 𝑀 .
Prof. [11] For any couple 𝑀 and 𝑁 of nonempty subsets of a Hausdorff compact space 𝑋 we have

⟨𝑀⟩ ∩ ⟨𝑁⟩ ≠ ∅ if and if 𝑀 ∩ 𝑁 ≠ ∅.

Theorem 2.1. [11] Let 𝑀 be a nonempty subset of a Hausdorff compact space 𝑋 . Then ⟨𝑀⟩ is open in 𝐼 𝑓 (𝑋)
if and only if 𝑀 is open in 𝑋 . Similarly, ⟨𝑀⟩ is closed in 𝐼 𝑓 (𝑋) if and only if 𝑀 is closed in 𝑋 .

It is easy to see that for a Tychonoff space 𝑋 the set 𝐼 𝑓 (𝑋) is everywhere dense in 𝐼 𝑓 (𝛽 𝑋), i. e. 𝐼 𝑓 (𝛽 𝑋) is a
compactification of the space 𝐼 𝑓 (𝑋). Here we make a more precise statement. The following states shows that
the functor 𝐼𝛽 : 𝔗𝑦𝑐ℎ → 𝔗𝑦𝑐ℎ transforms disjoint open covers into disjoint open covers.

Theorem 2.2. [11] For a Tychonoff space 𝑋 the space 𝐼 𝑓 (𝛽𝑋) is a perfect compactification of the space
𝐼 𝑓 (𝑋).

Lemma 2.1. [11] Let 𝜐 be an open cover of a Tychonoff space 𝑋 with 𝐾𝑝𝜐 = 1. Then the family

𝐼𝛽 (𝜐) = {⟨𝑈⟩ : 𝑈 ∈ 𝜐}

is an open cover of the space 𝐼𝛽 (𝑋) with 𝐾𝑝 (𝐼𝛽 (𝜐)) = 1.

Thus, we get the following remarkable achievement.

Theorem 2.3. [9] For a Tychonoff space 𝑋 its hyperspace 𝐼𝛽 (𝑋) is Π-complete if and only if 𝑋 is Π-complete.

3. Π-completeness of the map 𝐼 ( 𝑓 )

For a map 𝑓 : 𝑋 → 𝑌 and a subset 𝐻 ⊂ 𝑌 the preimage 𝑓 −1𝐻 is called a tube (above 𝐻).
Remind, a continuous map 𝑓 : 𝑋 → 𝑌 is called [2] a 𝑇0-map, if for each pair of distinct points 𝑥, 𝑥′ ∈ 𝑋 ,

such that 𝑓 (𝑥) = 𝑓 (𝑥′), at least one of these points has an open neighbourhood in 𝑋 which does not contain
the other point.

A continuous map 𝑓 : 𝑋 → 𝑌 is called totally regular, if for each point 𝑥 ∈ 𝑋 and every closed set 𝐹 ⊂ 𝑋

not containing 𝑥 there exists an open neighbourhood 𝑂 of 𝑓 (𝑥) such that in the tube 𝑓 −1𝑂 the sets {𝑥} and 𝐹
are functionally separable. A totally regular 𝑇0-map is said to be a Tychonoff map.
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Obviously, each continuous map 𝑓 : 𝑋 → 𝑌 of a Tychonoff space 𝑋 into a topological space𝑌 is a Tychonoff
map. In this case, for every Tychonoff space 𝑋 , owing to the fact that the set 𝐼 (𝑋) is a Tychonoff space with
respect to the topology of pointwise convergence, the map

𝐼𝛽 ( 𝑓 ) : 𝐼𝛽 (𝑋) → 𝐼𝛽 (𝑌 )

is a Tychonoff map.
A continuous, closed map 𝑓 : 𝑋 → 𝑌 is said to be compact if the preimage 𝑓 −1(𝑦) of each point 𝑦 ∈ 𝑌 is

compact. A continuous map 𝑓 : 𝑋 → 𝑌 is compact if and only if for each point 𝑦 ∈ 𝑌 and every cover of the
fibre 𝑓 −1(𝑦), consisting of open sets in 𝑋 , there is an open neighbourhood𝑂 of 𝑦 in 𝑌 such that the tube 𝑓 −1𝑂

can be covered with a finite subfamily of that cover.
A compact map 𝑏 𝑓 : 𝑏 𝑓 𝑋 → 𝑌 is said to be a compactification of a continuous map 𝑓 : 𝑋 → 𝑌 if 𝑋 is

everywhere dense in 𝑏 𝑓 𝑋 and 𝑏 𝑓 |𝑋 = 𝑓 . On the set of all compactifications of a given map 𝑓 one can introduce
a partial order: for the compactifications 𝑏1 𝑓 : 𝑏1𝑋 → 𝑌 and 𝑏2 𝑓 : 𝑏2𝑋 → 𝑌 of 𝑓 we put 𝑏1 𝑓 ≤ 𝑏2 𝑓 if there
is a natural map of 𝑏2𝑋 onto 𝑏1𝑋 . B. A. Pasynkov showed that for each Tychonoff map 𝑓 : 𝑋 → 𝑌 there
exists its maximal compactification 𝑔 : 𝑍 → 𝑌 , which he denoted by 𝛽 𝑓 , and the space 𝑍 where this maximal
compactification is defined by 𝛽 𝑓 (𝑋).
Remark 3.1. Note that the maps 𝑏1 𝑓 , 𝑏2 𝑓 , 𝛽 𝑓 are compactifications of the map 𝑓 . The spaces 𝑏1𝑋 , 𝑏2𝑋 , 𝛽 𝑓 𝑋

are some extensions of 𝑋 but they are not obliged to be compactifications of 𝑋 itself.
A Tychonoff map 𝑓 : 𝑋 → 𝑌 is said to be Π-complete, if for every point 𝑥 ∈ 𝛽 𝑓 𝑋 \ 𝑋 there exists a disjoint

clopen (�closed-open) cover of 𝑋 pricking out 𝑥 in 𝛽 𝑓 𝑋 [4, pp. 120–121].
We consider the following notion.

Definition 3.1 ([10]). A compactification 𝑏 𝑓 : 𝑏 𝑋 → 𝑌 of a Tychonoff map 𝑓 : 𝑋 → 𝑌 is said to be a perfect
compactification of 𝑓 if for each point 𝑦 ∈ 𝑌 and for every disjoint open sets 𝑈1 and 𝑈2 in 𝑋 there exists an
open neighborhood 𝑂 ⊂ 𝑌 of 𝑦 such that the equality

𝑂𝛽𝑋 (𝑈1 ∪𝑈2) ∩ (𝛽 𝑓 )−1𝑂 =
(
𝑂𝛽𝑋 (𝑈1) ∪𝑂𝛽𝑋 (𝑈2)

)
∩ (𝛽 𝑓 )−1𝑂

holds.

Let 𝑓 : 𝑋 → 𝑌 be a continuous map of a Tychonoff space 𝑋 into a space 𝑌 . It is well known there exists
a compactification 𝜈𝑋 of 𝑋 such that 𝑓 has a continuous extension 𝜈 𝑓 : 𝜈𝑋 → 𝑌 . It is clear, 𝜈 𝑓 is a perfect
compactification of 𝑓 .

The following result is an analog of Theorem 1.1 for the case of maps.

Theorem 3.1. Let 𝑏 𝑓 : 𝑏 𝑓 𝑋 → 𝑌 be a perfect compactification of a Tychonoff map 𝑓 : 𝑋 → 𝑌 . The map 𝑓 is
Π-complete if and only if for every point 𝑥 ∈ 𝑏 𝑓 𝑋 \ 𝑋 there exists a disjoint clopen cover of 𝑋 pricking out 𝑥
in 𝑏 𝑓 𝑋 .

Proof. The proof is carried out similar to the proof of Theorem 1.1 from [2]. □

The following result is a variant of Theorem 2.1 for the case of maps.

Theorem 3.2. Let 𝑔 : 𝑋 → 𝑌 be a Tychonoff map. Then

𝐼 𝑓 (𝛽 𝑔) : 𝐼 𝑓 (𝛽𝑔𝑋) → 𝐼 𝑓 (𝑌 )

is a perfect compactification of
𝐼 𝑓 (𝑔) : 𝐼 𝑓 (𝑋) → 𝐼 𝑓 (𝑌 ).
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Proof. The proof is similar to the proof of Theorem 2.1. Here the equality

(𝐼𝛽 (𝛽 𝑔))−1⟨𝑈⟩ = ⟨(𝛽 𝑔)−1(𝑈))⟩

is used. □

The following statement is the main result of this section.

Theorem 3.3. The Tychonoff map 𝐼 𝑓 (𝑔) : 𝐼 𝑓 (𝑋) → 𝐼 𝑓 (𝑌 ) is Π-complete if and only if the map 𝑔 : 𝑋 → 𝑌 is
Π-complete.

Proof. Let 𝐼 𝑓 (𝑔) : 𝐼 𝑓 (𝑋) → 𝐼 𝑓 (𝑌 ) be a Π-complete map. It implies that 𝑔 : 𝑋 → 𝑌 is a Π-complete map
since 𝑋 = {{𝑥} : 𝑥 ∈ 𝑋} ⊂ 𝐼 𝑓 (𝑋) is a closed set.

Let now 𝑔 : 𝑋 → 𝑌 be a Π-complete map. We consider an arbitrary point 𝜇 ∈ 𝐼 𝑓 (𝛽𝑔𝑋) \ 𝐼 𝑓 (𝑋) and using
Theorems 3.1 and 3.2 show that there exists a disjoint clopen cover of 𝐼 𝑓 (𝑋) pricking out the point 𝜇 in 𝐼 𝑓 (𝑋).

By definition, for every point 𝑥 ∈ supp 𝜇 \ 𝑋 ⊂ 𝛽 𝑓 𝑋 \ 𝑋 there exists a disjoint clopen cover𝜔𝑥 of 𝑋 pricking
out 𝑥 in 𝛽 𝑓 𝑋 . Fix a point 𝑥0 ∈ supp 𝜇 \ 𝑋 . Then 𝑥0 ∉

⋃ [
𝜔𝑥0

]
𝛽 𝑓 𝑋

in 𝛽 𝑓 𝑋 . Hence

supp 𝜇 ⊄ [𝑈]𝛽 𝑓 𝑋, for all𝑈 ∈ 𝜔𝑥0 .

Consequently,
𝜇 ∉ [⟨𝑈⟩] 𝐼 𝑓 (𝛽𝑔𝑋) , for every 𝑈 ∈ 𝜔𝑥0 .

Owing to (2.1), applying Lemma 2.3 one more time, we conclude that 𝐼 𝑓 (𝜔𝑥0) is a disjoint clopen cover of
𝐼 𝑓 (𝑋) pricking out the considered point 𝜇 in 𝐼 𝑓 (𝛽𝑔𝑋). □

Corollary 3.1. The functor 𝐼 lifts onto the category of Π-complete spaces and their continuous maps.
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Определение оптимального состава портфеля с
помощью математической модели финансового

портфеля
Эшкабилов Aлишер,* Рауфов Хумоюн,* Шамсиева Угилой

Аннотация
В статье представлена информация о портфеле Марковица, финансовом портфеле инвестора и
построена математическая модель финансового портфеля. На примере финансового портфеля
известного бизнесмена Илона Маска с помощью математической модели финансового портфеля
была определена оптимальная структура портфеля. При определении оптимальной структуры
финансового портфеля использовалась программа, созданная на языке программирования
Python.

Ключевые слова: финансовый портфель, портфель Марковица, математическая модель финансового портфеля,

оптимальная структура финансового портфеля, доходность финансового портфеля, риск финансового портфеля.

Предметная классификацие AMS (2020): Основная: 00A00 ; Дополнительная: 00B00; 00C00; 00D00; 00E00; 00F00.

В настоящее время существуют различные подходы и методы анализа привлечения инвестиций в
ценные бумаги. Построение таких аналитических методов и математических моделей, а также теория
использования коэффициентов не дают четкого ответа на вопрос о предварительном определении
рискованности инвестиций для инвесторов, однако позволяют достаточно объективно оценить тенденции
некоторых действий на фондовом рынке. Рассмотрим два таких метода.

Портфель Марковица
Основоположник современной теории портфеля Марковиц (1952) писал в своих научных трудах о

необходимости формирования портфеля путем проверки корреляционной зависимости между каждой
акцией. До Марковица классическое направление оценки стоимости акций основывалось на модели
дисконтированной стоимости, разработанной Джоном Бёрром Уильямсом (1937). Марковиц утверждает,
что риск в этой модели не учитывается, и предлагает свою собственную модель.Выдающийся экономист
своего времени Милтон Фридман подвергал критике исследования Марковица, утверждая, что они
не обладают существенным экономическим значением. Тем не менее, на сегодняшний день теория
портфеля, а также вопросы его оптимизации и диверсификации продолжают развиваться в трудах
многих экономистов, опирающихся на научные исследования Марковица (Markowitz, 1952).

Данная формула представляет математическое ожидание дохода как взвешенную сумму возможных
доходов с учетом вероятностей их возникновения.

Ei =

n∑
j=1

Ri · Pij
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Ri-отдельно возможный доход,
Pij-вероятность появления.

В 1966 году Уильям Шарп впервые разработал показатель эффективности, измеряющий соотношение
средней премии за риск к среднему отклонению портфеля. Этот показатель был предложен в его
статье «Эффективность взаимных фондов», опубликованной в журнале «The Journal of Business», и
впоследствии получил название коэффициент Шарпа.

Коэффициент Шарпа был разработан в процессе дальнейшего развития теории портфеля Г. Марковица
и представляет собой отношение доходности к уровню риска. Данный показатель позволяет оценить
степень устойчивости ожидаемой прибыли. Формула расчёта коэффициента Шарпа представляется
следующим образом:

Sharpratio =
rp − rf

σp

где
rp-ожидаемая доходность портфеля,
rf -безрисковая ставка доходности,
σp-стандартное отклонение доходности портфеля (мера риска).

На основе данного коэффициента разработан критерий оценки эффективности инвестиций,
представленный в следующей таблице.

В Узбекистане, как и в других странах, существуют аналитические агентства, описывающие
финансовые инструменты различных эмитентов (Emitent (англ. issuer) - организация, выпускающая
(эмиссирующая) ценные бумаги для развития и финансирования своей деятельности), однако
коэффициенты, которые важны для принятия инвестиционных решений в Узбекистане, на практике
еще не работают.

Для получения объективных показателей необходимо реализовать идею Шарпа по расчету кодировок
корпоративных ценных бумаг на фондовых биржах на основе временных рядов. Коэффициент
Шарпа ставит доход на единицу риска, точнее, изменчивость, выше ставки без риска. Стабильность
инвестиционного портфеля периодически реализуется в различных вибрационных формах. Это может
одновременно привести к снижению риска инвестирования инвестора или к полному отсутствию
убытков, что называется диверсификацией инвестиционного портфеля на рынке ценных бумаг. Успешные
инвестиции основаны на двух основных принципах - во-первых, использование методов портфельных
инвестиций в этой работе позволяет, в первую очередь, снизить риски и держать их под контролем. Во-
вторых, по принципу выбора высококачественных активов, для облигаций в первую очередь учитываются
надежность и устойчивость эмитента, а для акций - базовая стоимость ценных бумаг, а также дальнейшие
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перспективы и потенциал роста. Чтобы снизить зависимость портфеля, состоящего из одного вида
финансовых активов, от изменения рыночной стоимости, необходимо инвестировать в разные виды
активов.

Подход Г.Марковица начинается с предположения, что у инвестора сейчас есть определенная сумма
средств для инвестирования. Эти деньги инвестируются на определенный срок, который называется
периодом удержания. В конце срока хранения инвестор продает ценные бумаги, купленные в начале
периода, через некоторое время. Формирование задачи поиска оптимального портфеля ценных бумаг
является одной из возможностей теории оптимального портфеля, исследованной Марковицем. Марковиц
предложил описать вероятность отклонения величины доходности портфеля от его математического
ожидания нормальным распределением. Доход портфеля - ожидаемый доход за определенный уровень
риска или минимальный уровень определенного риска. Нет единого оптимального портфеля, может быть
более оптимальный, более эффективный портфель по сравнению с другими.

Наиболее сложная процедура в процессе реализации марковиц-модели - это сбор расчетов,
необходимых для оценки наличия или отсутствия риска, какое-то изменение цен различных акций
или облигаций по отношению к ценам других акций или облигаций. Кроме того, этот подход ниже
других моделей из-за отсутствия связи с рынком, то есть более рискован. Уильям Шарп использовал
результаты исследования Г. Марковица в качестве отправной точки для дальнейших исследований, в ходе
которых он определил влияние модели Марковица на стоимость финансовых активов. Теперь составим
математическую модель портфеля инвестора. Данная формула используется для расчета относительной
доходности каждого выбранного актива и играет важную роль в принятии инвестиционных решений.

ri =
K(ai)p −K(ai)0

K(ai)0

где:
ri-относительная доходность i-го актива, отражающая; насколько изменилась стоимость актива

относительно его начальной цены;
K(ai)0-прогнозируемая (будущая) стоимость i-го актива, то есть ожидаемая рыночная цена актива в

будущем;
K(ai)p-начальная (текущая) стоимость i-го актива, то есть его цена на момент приобретения или

текущая рыночная стоимость.
Рентабельность портфеля инвестора определяется по следующей формуле:

Rn =
∑

Xiri

Здесь Xi доля i - ценных бумаг в портфеле, сумма которых, естественно, равна 1.∑
Xi = 1.

Кроме того, если портфель содержит короткую позицию, то

X1 +X2 + ...+Xn −Xb = 1

Здесь Xb доля заемного актива (продается на коротких торгах).
Математическое ожидание дохода от портфеля ценных бумаг в n

R =
∑

XiRi

.
Здесь, Ri = M{ri} - рентабельность, i-й ценной бумаги, а её математическое ожидание. При

формировании портфеля ценных бумаг мы используем стратегию, гарантирующую определенный доход
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или доход в R0 а не стратегию, основанную на "наборе эффективных портфелей". Следовательно,
в качестве рациональной стратегии рационального формирования портфеля ценных бумаг можно
использовать Rn ≥R0 или

n∑
i=1

Xi · ri ≥ R0

приходится выбирать те, которые обеспечивают выполнение неравенства. Поскольку левой стороной
вышеуказанного соотношения является случайная величина, вместо неравенства можно взять
вероятность его выполнения:

P = P (

n∑
i=1

Xi · ri ≥ R0)

Для оптимального портфеля ценных бумаг вероятность получения дохода, превышающего R0 , должна
быть максимальной. Это означает, что оптимальный портфель формируется из долей Xi каждого актива.
Вектор долей X , удовлетворяющий условию нормализации, определяется следующим соотношением:

X = arg

{
maxP = P

(
n∑

i=1

Xiri ≥ R0

)}
Определенная в связи с этим задача относится к классу стохастических проблем программирования.

Рассмотрим случай, когда доходы по ценным бумагам независимы. Получим случайные значения дохода
каждого актива по нормальному распределению:

P = P

(
n∑

i=1

XiIi ≥ R0

)
= Φ

(∑n
i=1 XiIi −R0√∑n

i=1 X
2
i Di

)
.

Здесь, Φ(x) функция Лапласа. Последнее выражение Y =

n∑
i=1

Xiri−R0√
n∑

i=1

X2
i Di

. Выражение достигает максимума,

когда значение достигает максимума. Затем нормируйте
n∑

i=1

Xi = 1

неотрицательный X = {X1, X2, . . . , Xn} найдем величину,

X = arg

max


n∑

i=1

Xiri −R0√
n∑

i=1

X2
i Di




Этот найденный X = {X1, X2, . . . , Xn} значения представляют собой оптимальный портфель ценных
бумаг. Такая постановка задачи на нахождение оптимального портфеля ценных бумаг является одной из
возможностей теории оптимального портфеля, изученной Г.Марковицем. Первое условие формирования

эффективного портфельного пакета
n∑

i=1

X2
i Di = const второе условие

n∑
i=1

Xiri = const. Каждое из этих

равенств имеет вид, который принимает аналитическое решение. Y при максимизации имеет следующий
вид

Y =

n∑
i=1

Xiri −R0√
n∑

i=1

n∑
j=1

XiXjDij
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Если для n ценных бумаг их доходы составляют r1 < r2 < ... < rn существует три варианта формирования
оптимального портфеля. В то же время варианты формирования портфеля зависят от желания инвестора
получить больше прибыли. Первая - консервативная стратегия. Инвестор Хочет зарабатывать меньше r1

. Вторая - стратегия со средним уровнем риска i . Инвестор хочет получить доход от ri до ri+1 . Третья
- стратегия риска. Инвестор хочет получить доход выше rn . Математическая модель для оптимального
инвестиционного портфеля из двухпериодического формирования записывается в следующем виде:

X∗ = arg

max


n∑

i=1

Xiri −R0√
n∑

i=1

n∑
j=1

XiXjDij


 ,

ri =
K0

i −Kp
i − Tr

K0
i

,

r1 ≤ R0 ≤ rn,

r1 ≤ r2 ≤ · · · ≤ rn,

Kp
i = f(Km

i , θ),
n∑

i=1

Ii = I, Ii = 0.01XiI, ai =
Ii
K0

i

,

I =

I, период-1

I + (1− η)
n∑

i=1

Si, период-2

X∗ = {X1, X2, . . . , Xn}, Xi ≥ 0,

n∑
i=1

Xi = 1.

Здесь,
i-ценная бумага
n-ожидаемый ценный бумаги в портфеле
Xi-доля i - й ценной бумаги портфеле инвестора
Dij-ценными бумагами i-й и j-й коваряция дохода
ri-доход от i-й ценной бумаги
K0

i -ожидаемая цена актива i

Kp
i -Прогнозная стоимость ценной бумаги на шаге p, p-прогнозный периода

f (Km
i , θ)-i-линейная рекуррентная формула в виде временного ряда,изображающего ценную бумагу

Tr-плата брокеру (в тарифе компании)
I-начальный капитал инвестора
ai- количество акций i портфеля инвестора
η- ставка государственного налога для физических лиц.
Si-доход от i-й ценный бумаги.
Используя эту формулу, можно спрогнозировать будущий доход выбранной компании. Для этого

нам понадобятся данные о доходах выбранных компаний, составляющих инвестиционный портфель, в
размере не менее 5 в год. Чем больше информации, тем больше точность прогноза.

Приведем пример оценки доходности портфеля какого-либо инвестора в модели Марковица. Для
этого рассмотрим в качестве примера финансовый портфель самого богатого человека в мире, Илона
Маска, обладающего огромным капиталом. Потому что его финансовый портфель многомерен и сложен.
Он обычно имеет портфель, диверсифицированный акциями, облигациями, частными компаниями,
криптовалютами и другими финансовыми инструментами. Ниже мы построим его портфель с помощью
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математической модели, учитывая взгляды Илона Маска на инвестиции и его отношение к риску.
Илон Маск не боится высокорисковых инвестиций, так как уделяет внимание развитию инновационных
компаний и технологического сектора. Его портфель включает в себя SpaceX, Tesla, Neuralink и другие
высокоопасные, высокодоходные проекты(https://www.bloomberg.com/billionaires/profiles/elon-r-musk/).
В то же время он инвестировал в другие более безопасные активы, чтобы снизить риск.

Портфель Илона Маска состоит из следующих средств:

1. Акции Tesla:

• Ожидаемый годовой доход: 15%,

• Опасность (стандартное отклонение): 30%

2. SpaceX (частная компания)

• Ожидаемый годовой доход: 25%

• Опасность (стандартное отклонение): 40%

3. Криптовалюты (например, Bitcoin, Ethereum):

• Ожидаемый годовой доход: 50%

• Опасность (стандартное отклонение): 60%

4. Облигации (государственные облигации США)

• Ожидаемый годовой доход:: 4%

• Опасность (стандартное отклонение): 5%

5. Ковариации:

• Высокая взаимосвязь между Tesla и SpaceX

(Cov (RTesla, RSraceX) = 0, 09)

Криптовалюты умеренно связаны с Tesla и SpaceX.

(Cov (RCrypto, RTesla) = 0, 04) ,

(Cov (RCrypto, RSpaceX) = 0, 05)

Облигации практически не связаны с другими активами, потому что они являются безопасными.

(Cov (RDonds, ROthers) = 0)
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6. Показатель риска λ : λ = 1, потому что Маск подвержен риску принимаем. Математическая модель
финансового портфеля Илона Маска выглядит так:

E(Rp) =

4∑
i=1

ωiE(Ri),

σ2
p =

4∑
i=1

4∑
j=1

ωi · ωj · Cov(Ri, Rj),

R1 = RTesla, R2 = RSpaceX, R3 = RCrypto, R4 = RDonds,

F = max
ω1, ω2, ω3, ω4

(
E(Rp)− λ · σ2

p

)
,

ω1 + ω2 + ω3 + ω4 = 1, ωi ≥ 0, i = 1, ..., 4.

Здесь, E(Rp) - ожидаемый доход портфеля,
σ2
p - риск портфеля или дисперсия,

F - Целевая функция.
ωi - финансовая средства i-й,
В данной модели, с помощью программы, созданной на языке программирования Python, определим

оптимальный состав финансового портфеля Илона Маска:
Оптимальная доля акций:

• Акции Tesla: ω1 = 0, 30 (30%)
• Акции SpaceX : ω2 = 0, 35 (35%)
• Криптовалюты: ω3 = 0, 25 (25%)
• Облигации: ω4 = 0, 10 (10%)

Тогда доходность его финансового портфеля:

E(Rp) = 0, 30 · 0, 15 + 0, 35 · 0, 25 + 0, 25 · 0, 50 + 0, 10 · 0, 04 ≈ 0, 267 (26, 7%)

Риск портфеля:

σp =
√

0, 302 · 0, 09 + 0, 352 · 0, 16 + 0, 252 · 0, 36 + 0, 102 · 0, 25 ≈ 0, 28

Оптимальные доли портфеля: [4.81774773e− 013.90312782e− 182.56115886e− 012.62109341e− 01]

Оптимальный ожидаемый доход: 0.13871705565065273
Риск (volatilite): 0.2955375688595006
Оптимальный коэффициент Шарпе: 0.40169869471685055
Анализ представленных графиков

• График "Риск и Ожидаемая Доходность"Данный график демонстрирует, как изменяется
совокупный риск (волатильность) портфеля в зависимости от доли акций Tesla и SpaceX.
Согласно модели Марковица, существует оптимальная комбинация активов, при которой
риск минимизируется при заданном уровне доходности. На графике можно наблюдать точку
оптимального портфеля, которая представляет собой наиболее эффективное распределение
активов.

• Диверсификация между Tesla и Bitcoin (синяя кривая) приводит к различному уровню риска
по сравнению с диверсификацией между SpaceX и Bitcoin (зелёная кривая). В определённых
пропорциях портфельный риск минимизируется, что соответствует идее эффективной границы
Марковица. Добавление высоковолатильного актива, например, Bitcoin, может значительно
увеличить общий риск, если его доля слишком высока.
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• Данный график показывает, как изменяется волатильность портфеля при изменении доли акций
Tesla. Оптимальная структура портфеля заключается в нахождении такого распределения активов,
при котором риск минимален.

Выводы из графика:
Коэффициент корреляции измеряет степень зависимости между двумя активами и вычисляется по

следующей формуле:

ρij =
Cov(Ri, Rj)

σiσj

где:
Cov(Ri, Rj)-ковариация, характеризующая совместное изменение доходностей двух активов;
σi и σj-стандартные отклонения доходностей активов (волатильность).
Влияние корреляции на риск и доходность портфеля

• Сильная корреляция между Tesla и SpaceX (ρ = 0.75)
• Означает, что если акции Tesla растут, то, с высокой вероятностью, растет и стоимость инвестиций

в SpaceX.
• Однако высокая корреляция ограничивает эффект диверсификации.

• Слабая зависимость между Tesla и Bitcoin (ρ = 0.3)
• Эти активы движутся относительно независимо друг от друга.
• Добавление Bitcoin в портфель снижает совокупный риск, поскольку падение одного актива не

обязательно приводит к падению другого.

• Средняя корреляция между SpaceX и Bitcoin (ρ = 0.4)
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• Инвестиции в SpaceX частично зависят от рыночных трендов, влияющих на Bitcoin.
• Это не обеспечивает полной диверсификации, но снижает общий риск портфеля.

Выявленные значения коэффициентов корреляции: Из этих результатов можно сделать следующие
выводы:

a) Илон Маск выделяет значительную долю высокодоходным компаниям, таким как Tesla и SpaceX. С
помощью криптовалют риск увеличивает доход, но также инвестирует в облигации, чтобы снизить риск.

b) Сохраняется баланс между доходом и риском, то есть ожидается годовой доход в размере 26, 7%, а
риск составляет около 28%.

c) Эта стратегия показывает, что Маск принимает высокий риск и стремится к высокой прибыли.

Determining the optimal portfolio composition using a mathematical model of a
financial portfolio

Eshkabilov A.A., Raufov H.R., Shamsiyeva U.

Abstract

The article provides information about the Markovitz portfolio, the investor’s financial portfolio, and compiles
a mathematical model of the financial portfolio. Using the example of the financial portfolio of the famous
businessman Elon Musk, the optimal composition of the portfolio was determined using a mathematical model
of the financial portfolio. A program created in the Python programming language was used to determine the
optimal composition of the financial portfolio.
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O гладкости периодической краевой задачи для
трёхмерного уравнения Чаплыгина в неограниченном

параллелепипеде
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Аннотация
В статье исследуются единственность, существование и гладкость обобщенного решения
периодической краевой задачи для трехмерного уравнения Чаплыгина в неограниченном
параллелепипеде. Для доказательства теоремы единственности, существования и гладкости
решения задачи используются преобразование Фурье, методы "ε регуляризации" и априорных
оценок.

Ключевые слова: трёхмерное уравнение Чаплыгина; периодическая краевая задача; преобразование Фурье; методы " ε-

регуляризации" и априорных оценок.

Предметная классификацие AMS (2020): Основная: 35M10;

1. Введение.

Как известно, в работе А.В.Бицадзе показано, что задача Дирихле для уравнения смешанного типа
некорректна [1].

Естественно возникает вопрос: нельзя ли заменить условия задачи Дирихле другими условиями,
охватывающими всю границу, которые обеспечивают корректность задачи? Впервые такие краевые
задачи (нелокальные краевые задачи) для уравнения смешанного типа были предложены и изучены в
работах Ф.И.Франкля при решении газодинамической задачи об обтекании профилей потоком дозвуковой
скорости со сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения [2],[3]. Близкие по
постановке задачи для уравнения смешанного типа первого рода в ограниченных областях изучены в
работах [4]-[8].

В данной работе используя результаты работ [7],[8], изучаются однозначная разрешимость и гладкость
обобщённого решения одной периодической краевой задачи для трехмерного уравнения Чаплыгина в
неограниченном параллелепипеде.

В области

G = (−1, 1)× (0, T )×R = Q ×R = { (x, t, z) | x ∈ (−1, 1), 0 < t < T < +∞, z ∈ R }

рассмотрим уравнение Чаплигина:

Lu = K(x)utt −∆u+ a (x)ut + c (x, t)u = f (x, t, z). (1.1)
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Здесь xK(x) > 0 при x ̸= 0, где x ∈ (−1, 1), ∆u = uxx + uzz - оператор Лапласа.
Пусть все коэффициенты уравнения (1.1) достаточно гладкие функции в области Q.
В дальнейшем для решения поставленных задач нам необходимо ввести определения нескольких

функциональных пространств и обозначения.
Обозначим через

û = û(x, t, λ) = (2π)−1/2

+∞∫
−∞

u(x, t, z) e−iλzdz

преобразование Фурье по переменной z функции u(x, t, z), а через

u(x, t, z) = (2π)−1/2

+∞∫
−∞

û(x, t, λ) eiλzdλ

обратное преобразование Фурье. Теперь с помощью преобразования Фурье определим анизатропное
пространство Соболева W l,s

2 (G) с нормой

∥u∥2W l,s
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
s
· ∥û (x, t, λ)∥2W l

2(Q) dλ, (A)

где s, l- любые конечные положительные целые числа.
Через W l

2(Q) (при l = 0,W 0
2 (Q) = L2(Q)) определяется пространство Соболева со скалярным

произведением (u, ϑ)l и нормой

∥ϑ∥2l = ∥ϑ∥2W l
2(Q) =

∑
|α|≤l

∫
Q

|Dαϑ|2dxdt.

Здесь α− мультииндекс, Dα−обобщённая производная по переменным x и t [12], [13]. Очевидно, что
пространство W l,s

2 (G) с нормой (A) является гильбертовым пространством [9]-[12].
При получении различных априорных оценок мы часто будем использовать неравенство Коши с σ [13]:

∀u, ϑ > 0, ∀σ > 0, u · ϑ ≤ σ
u2

2
+

ϑ2

2σ

1.1. Постановки задачи.

Периодическая краевая задача: Найти обобщенное решение u(x, t, z) уравнения (1.1) из пространства
W 2,3

2 (G), удовлетворяющее следующим краевым условиям

Dp
t u|t=0 = Dp

t u|t=T , (1.2)

Dp
xu|x=−1 = Dp

xu|x=1, (1.3)

при p = 0, 1, где Dp
t u = ∂pu

∂tp , D0
t u = u.

Далее будем считать, что u(x, t, z) → 0и uz(x, t, z) → 0при |z| → ∞. (1.4)

Определение 1.1. Обобщенным решением задачи (1.1)-(1.4) будем называть функцию u(x, t, z) ∈ W 2,3
2 (G),

удовлетворяющую уравнению (1.1) почти всюду с условиями (1.2)-(1.4).
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1.2. Основной результат.

Теорема 1.1. Пусть выполнены следующие условия для коэффициентов уравнения (1.1); 2a(x) + µK(x) ≥
δ1 > 0, µ c(x, t)− ct(x, t) ≥ δ2 > 0, для всех (x, t) ∈ Q, где c(x, 0) = c(x, T ), для всех x ∈ [−1, 1]. Тогда
для любой функции f ∈ W 1,3

2 (G), такой, что f(x, 0, z) = f(x, T, z), существует единственное обобщенное
решение задачи (1.1)–(1.4) из пространства W 2,3

2 (G).

Доказательство теоремы проведем по следующей схеме:
1. Для задачи (1.1)–(1.4) формально по переменным применим преобразование Фурье и получим новую

задачу (1.5)–(1.7).
2. Изучим однозначную разрешимость периодической задачи для уравнения третьего порядка с малым

параметром (вспомогательная задача).
3. Затем с помощью этой вспомогательной задачи докажем однозначную разрешимость задачи (1.5)–

(1.7).
4. Используя однозначную разрешимость задачи (1.5)–(1.7), дадим обоснование сходимости интегралов

Фурье и докажем разрешимость задачи (1.1)–(1.4).
Приступим к реализации этой схемы.

Применяя для задачи (1.1)–(1.4) преобразование Фурье по переменным z, получим в области Q =

(−1, 1)× (0, T ) следующую задачу

ℑû = K(x)ûtt − ûxx + a (x) ût + (c (x, t) + λ2 )û = f̂ (x, t, λ), (1.5)

Dp
t û|t=0 = Dp

t û|t=T , p = 0, 1 (1.6)

Dp
x û|x=−1 = Dp

x û|x=1, p = 0, 1, (1.7)

где λ ∈ R = (−∞,∞), f̂(x, t, λ) = (2π)
−1/2

∞∫
−∞

f(x, t, z)e−iλzdz− преобразование Фурье по переменной z

функции f(x, t, z).
Как известно, однозначная разрешимость и гладкость обобщенного решения задачи (1.5)–(1.7) в случае,

когда λ = 0, изучены в пространствах Соболева W m+2
2 (Q),m = 0, 1, 2, ... в работах [7],[8]. Рассмотрим

задачи (1.5)–(1.7) в случае, когда λ ̸= 0. В этом случае решения задачи (1.5)–(1.7) û(x, t, λ) и f̂(x, t, λ)

правая часть уравнения (1.5) зависит от параметра λ. С возрастанием |λ| → ∞ может расти и правая
часть уравнения (1.5), поэтому в этом случае возникает вопрос: как можно получит априорные оценки,
обеспечивающше однозначную разрешимость задачи (1.5)–(1.7). Поэтому сначала при фиксированном
λ ∈ R, используя результаты работы [6]–[8] получим необходимые оценки для решения задачи (1.5)–
(1.7). В дальнейшем эти результаты используем для исследования задачи (1.1)–(1.4) в анизотропных
пространствах Соболева Wm+2,s

2 (G), m = 0, 1, 2, ...; s ≥ m+ 3 в неограниченном параллелепипеде

Теорема 1.2. Пусть выполнены следующие условия для коэффициентов уравнения (1.5):
2a(x) + µK(x) ≥ δ1 > 0, µ c(x, t)− ct(x, t) ≥ δ2 > 0, для всех (x, t) ∈ Q, где c(x, 0) ≤ c(x, T ), для всех
x ∈ [−1, 1]. Тогда, если для любой функции f̂(x, t, λ) ∈ L2(Q) существует решение задачи (1.5)–(1.7) из
пространства W 2

2 (Q), то оно единственно.

Доказательство. Докажем единственность решения задачи (1.5)–(1.7) с помощью метода интеграла
энергии. Пусть существует решение задачи (1.5)–(1.7) из W 2

2 (Q). Рассмотрим тождество:

(ℑû, 2ût + µû)0 = (f̂ , 2ût + µû)0. (1.8)

В силу условий теоремы 1.2, для любой функции u ∈ W 2
2 (Q), интегрируя по частям тождество (1.8),

легко получить следующее неравенство∫
Q

ℑû · (2ût + µû)dxdt ≥
∫
Q

{
(2a+ µK(x)) · û2

t+
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+µû2
x +

(
(µc− ct) + µλ2

)
· û2dxdt+ (1.9)

+

∫
∂Q

{
K(x)û2

t et − 2 · ûxûtex − û2
xet +

(
c+ λ2

)
· û2et

}
ds

где µ− cons > 0, e⃗ = (et = cos(e⃗, t); ex = cos(e⃗, x)) единичный вектор внутренней нормали к границе ∂Q.
Условия теоремы 1.2 обеспечивают неотрицательность интеграла по области Q.

Пусть u ∈ W 2
2 (Q) удовлетворяет краевым условиям (1.6),(1.7).Используя условия теоремы 1.2,

получим, что граничные интегралы равны нулю. Учитывая вышесказанное, из неравенства (1.9) получим
следующее неравенство ∫

Q

ℑû · (2ût + µû)dxdt ≥

≥
∫
Q

{
(2a+ µK(x)) · û2

t + µû2
x +

(
(µc− ct) + µλ2

)
· û2

}
dxdt ≥ (1.10)

≥ δ0

∫
Q

{û2
t + û2

x + û2}dxdt,

где δ0 = min
{
δ1, µ, δ2 + µλ2 ≥ δ2 > 0,

}
следут из неравенства (1.10). Тогда используя в левой части

неравенства (1.10) неравенство Коши с σ, получим необходимую первую оценку

∥û∥2W 1
2 (Q) ≤ c1

∥∥∥f̂∥∥∥2

L2(Q)
, (1.11)

из которой следует единственность решения задачи (1.5)–(1.7) из W 2
2 (Q), в дальнейшем через ci −

обозначим положительные, вообще говоря, разные постоянные числа, отличные от нуля.
Теорема 1.2 доказана.

2. Уравнение третьего порядка с малым параметром.

Разрешимость задачи (1.5)–(1.7) докажем методом "ε-регуляризации а именно: в области Q = (−1, 1)×
(0, T ) рассмотрим семейство уравнений третьего порядка с малым параметром

ℑεûε = −ε
∂3ûε

∂t3
+ ℑûε = f̂(x, t, λ) (2.1)

и с периодическими краевыми условиями

Dq
t ûε|t=0 = Dq

t ûε|t=T , q = 0, 1, 2, (2.2)

Dp
x ûε|x=−1 = Dp

x ûε|x=1, p = 0, 1, (2.3)

где ε− малое положительное число, Dq
zw = ∂qw

∂zq , q = 1, 2; D0
zw = w.

Ниже используем системы уравнений третьего порядка с малым параметром (2.1) в качестве "ε -
регуляризации"для уравнения Чаплыгина (1.5). [7],[8], [14],[15].

Определим пространство функции

W (Q) = { ûε| ûε ∈ W 2
2 (Q), ûεttt ∈ L2(Q)},

удовлетворяющие соответствующим условиям (2.1)–(2.3) с конечной нормой

∥|ûε|∥2W = ε ∥ûεttt∥20 + ∥ûε∥22 . (B)

Очевидно, что пространство W (Q) с нормой (B) является гильбертовым пространством [12],[13].
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Определение 2.1. Обобщенным решением задачи (2.1)–(2.3) будем называть функцию {ûε(x, t, λ)} ∈
W (Q), удовлетворяющую уравнению (2.1) почти всюду в области Q.

Теорема 2.1. Пусть выполнены следующие условия для коэффициентов уравнения (2.1): 2a(x) + µK(x) ≥
δ1 > 0, µc(x, t)− ct(x, t) ≥ δ2 > 0 для всех (x, t) ∈ Q, где c(x, 0) = c(x, T ) для всех x ∈ [−1, 1]. Тогда для
любой функции f̂(x, t, λ) ∈ W 1

2 (Q), такой, что f̂(x, 0, λ) = f̂(x, T, λ), существует единственное обобщенное
решение задачи (2.1)–(2.3) из пространства W (Q) и для нее справедливы следующие оценки

III) ε ∥ûεtt∥20 + ∥ûε∥21 ≤ c1

∥∥∥f̂∥∥∥2

0
,

IV ) ε ∥ûεttt∥20 + ∥ûε∥22 ≤ c2

∥∥∥f̂∥∥∥2

1
.

Доказательство. теоремы 2.1 осуществляется поэтапно, с использованием метода Галеркина и
соответствующих априорных оценок [7],[8]. Сначала докажем III)−третью оценку.

Рассмотрим тождество:∫
Q

ℑεûε · (2ûεt + µ ûε) dx dt =

∫
Q

f̂ ·(2ûεt + µ ûε) dx dt. (2.4)

Интегрируя по частям тождество (2.4), учитывая условия теоремы 2.1 нетрудно получить III)-третью
априорную оценку, аналогичную оценке (1.11), откуда следует единственность обобщенного решения
задачи (2.1)–(2.3) из пространства W (Q).

Теперь докажем справедливость IV )−четвертой оценки.
Для этого рассмотрим тождество:∫

Q

ℑεûε · Pûε dx dt =

∫
Q

f̂ ·Pûε dxd t, (2.5)

где Pûε = (−2ûεttt + µ ûεtt − µûεxx + µûεt).

Интегрируя по частям (2.5), с учетом условий теоремы 2.1 и краевых условий (2.2),(2.3), получим
необходимую оценку:

ε ∥ ûεttt ∥20 + ∥ûε∥22 ≤ c2

∥∥∥f̂∥∥∥2

1
. (2.6)

Из доказанных оценок методом Галеркина получим однозначную разрешимость задачи (2.1)-(2.3) из
пространства W (Q). Теорема 2.1 доказана.

Перейдем к доказательству разрешимости задачи (1.5)-(1.7).

2.1. Существование решения задачи.

Теорема 2.2. Пусть выполнены все условия теоремы 1.1-2.1. Тогда обобщенное решение задачи (1.5)-(1.7)
существует и оно единственно в W 2

2 (Q).

Доказательство. Единственность решения задачи (1.5)-(1.7) в пространстве W 2
2 (Q) доказана в теореме

1.2. Теперь докажем существование решения задачи (1.5)-(1.7) в W 2
2 (Q). Для этого рассмотрим в

области Q уравнение (2.1) и краевые условия (2.2),(2.3) при ε > 0. Так как выполнены все условия
теоремы 2.1, то существует единственное обобщенное решение задачи (2.2)-(2.3) в W (Q), при ε >

0 и для нее справедливы третья и четвертая оценки. Отсюда следует, по известной теореме о
компактности [13], что из множества функций { ûε(x, t, λ)} , ε > 0, можно извлечь слабо сходящуюся
подпоследовательность функций, такую, что { ûεi(x, t, λ) } → û (x, t, λ) при εi → 0 в W (Q). Покажем,
что предельная функция û(x, t, λ) удовлетворяет уравнению ℑû = f̂ (1.5) почти всюду в W 2

2 (Q). В самом
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деле, так как подпоследовательность { ûεi(x, t, λ)} слабо сходится в W (Q), а подпоследовательность
{√εiûεittt(x, t, λ)} равномерно ограничена в L2(Q) и оператор L линейный, то имеем

ℑû− f̂ = ℑû−ℑûεi + εi
∂3û εi

∂t3
= ℑ (û− ûεi ) + εi

∂3û εi

∂t3
. (2.7)

Из равенства (2.7), переходя к пределу при εi → 0, получим единственное обобщенное решение задачи
(1.5)-(1.7) из пространства Соболева W 2

2 (Q) [7],[8],[14], [19]. Таким образом, Теорема 2.2 доказана.

3. Существование решения задачи (1.1)-(1.4).

Теперь перейдем к доказательству теоремы 1.1 об однозначной разрешимости обобщенного решения
задачи (1.1)-(1.4) из пространства W 2,3

2 (G).

Для доказательства теоремы 1.1 необходима следующая лемма.

Лемма 3.1. Пусть выполнены все условия теоремы 1.1,1.2,2.1,2.2. Тогда решение задачи (1.1)-(1.4)
справедливы следующие оценки:

I). ∥u∥2W 1,3
2 (G) ≤ c1 ∥f∥2W 0,3

2 (G) ,

II). ∥u∥2W 2,3
2 (G) ≤ c2 ∥f∥2W 1,3

2 (G) .

Доказательство. В теореме 1.2 для решения задачи (1.5)-(1.7) доказана справедливость оценки (1.11), то
есть

∥û∥2W 1
2 (Q) ≤ c1

∥∥∥f̂∥∥∥2

L2(Q)
.

Чтобы доказать, что uz ∈ L2(G), нам необходимо умножить неравенство (1.11) на (2π)
−1/2 · (1 + |λ|2)

3

и интегрировать по λ от −∞ до +∞, тогда получим

∥u∥2W 1,3
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
3
· ∥û∥2W 1

2 (Q) dλ ≤

≤ (2π)
−1/2 · c1 ·

+∞∫
−∞

(1 + |λ|2)
3
·
∥∥∥f̂∥∥∥2

L2(Q)
dλ = c1 ∥f∥2W 0,3

2 (G) , (3.1)

откуда следует выполнение первой априорной оценки леммы.
Точно так же используя условия теорем 2.1,2.2 с предельным переходом при ε → 0, из четвертой оценки

нетрудно получить для решения задачи (1.5)-(1.7) следующую оценку.

∥û∥2W 2
2 (Q) ≤ c2

∥∥∥f̂∥∥∥2

W 1
2 (Q)

. (3.2)

Чтобы доказать, что uzz ∈ L2(G), нам необходимо умножить неравенство (3.2) на (2π)
−1/2 · (1 + |λ|2)

3

и интегрировать по λ от −∞ до +∞, тогда получим

∥u∥2W 2,3
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
3
· ∥û∥2W 2

2 (Q) dλ ≤

≤ (2π)
−1/2 · c2 ·

+∞∫
−∞

(1 + |λ|2)
3
·
∥∥∥f̂∥∥∥2

W 1
2 (Q)

dλ = c2 ∥f∥2W 1,3
2 (G) , (3.3)
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откуда следует справедливость второй оценки леммы. Лемма 3.1 доказана.
Доказательство теоремы 1.1. Из первой априорной оценки (3.1) леммы следует единственность

обобщенного решения задачи (1.1)-(1.4), а из справедливости второй априорной оценки (3.3) следует
существование обобщенного решения задачи (1.1)-(1.4) из пространства W 2,3

2 (G). Теорема 1.1 доказана.

4. Гладкость обобщенного решения задачи (1.1)-(1.4).

Теперь обратимся к исследованию гладкости обобщенного решения задачи (1.1)-(1.4) в пространствах
W m+2,s

2 (G), где m, s−целые конечные положительные числа, такие, что m ≥ 0, s ≥ 3.

Ниже, для простоты предположим, что коэффициенты уравнения (1.1) достаточно дифференцируемые
функции в замкнутой области Q.

Теорема 4.1. Пусть выполнены все условия теоремы 1.1, кроме того, пусть D q
t c |t=0 = D q

t c |t=T . Тогда
для любой функции f ∈ W m+1,s

2 (G), такой, чтоD q
t f |t=0 = D q

t f |t=T (q = 0, 1, 2, ...,m), существует, причем
единственное, обобщенное решение задачи (1.1)-(1.4) из пространства W m+2,s

2 (G), где m, s−любые целые
конечные положительные числа, такие, что s ≥ m+ 3, m = 0, 1, 2, 3, ....

Доказательство. Отметим, что в работах [7],[8] для уравнения Трикоми в случае, когда λ = 0 исследована
гладкость обобщенного решения периодической краевой задачи (1.6),(1.7) в пространствах Соболева
Wm+2

2 (Q) и доказаны соответствующие априорные оценки.

∥û∥2Wm+2
2 (Q) ≤ cm+1

∥∥∥f̂∥∥∥2

Wm+1
2 (Q)

(m = 0, 1, 2, ...). (4.1)

Аналогично такие же результаты можем получить в случае, когда λ ̸= 0. Теперь чтобы доказать, что
Ds−1

z u ∈ L2(G), где s ≥ m+ 3, m = 0, 1, 2, 3, ..., и применить теорему вложения Соболева, нам необходимо
умножить неравенство (4.1) на (2π)−1/2 · (1 + |λ|2)s и, интегрируя по λ от −∞ до +∞,можем получить

∥u∥2Wm+2,s
2 (G) = (2π)

−1/2

+∞∫
−∞

(1 + |λ|2)
s
· ∥û∥2Wm+2

2 (Q) dλ ≤

≤ (2π)
−1/2

cm+1

+∞∫
−∞

(1 + |λ|2)
s
·
∥∥∥f̂∥∥∥2

Wm+1
2 (Q)

dλ = cm+1 ∥f∥2Wm+1,s
2 (G) . (4.2)

Отсюда получим существование единственного обобщенного решения задачи (1.1)–(1.4) из пространства
Wm+2,s

2 (G). Теорема 4.1 доказана.

Замечание 4.1. Аналогично изучаются периодические краевые задачи для многомерного уравнения
Чаплыгина.
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On the smoothness of the periodic boundary value problem for the
three-dimensional Chaplygin equation in an unbounded parallelepiped

Dzhamalov Sirojiddin Z., Turakulov Khamidulla Sh. and Sipatdinova Biybinaz R.

Abstract

The article investigates the uniqueness, existence, and smoothness of a generalized solution to the periodic
boundary value problem for the three-dimensional Chaplygin equation in an unbounded parallelepiped. To
prove the theorems on uniqueness, existence, and smoothness of the solution, the Fourier transform, the methods
of ε-regularization, and a priori estimates are used.
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