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Research article U ZJ M C S

OO0 ycTOfUnBOCTH pelleHns 3aaui NHTerpaIbHOI
FeOMETPHUHU 110 HENOJIHBIM JIAaHHBIM B IPOCTpaHcTse R

Bermaros Axpam X.* Memomnos Asmmep C.

Annoramnusa

B crarbe msydaercs 3amada BOCCTAHOBJEHUS (DYHKIMHM IO UHTErPAJAM IO MPSIMBIM, JIEXKAIUM B
IJIOCKOCTSX, IIPOXOJAIINX 4uepe3 (PUKCHPOBAHHYIO TOUKy B R*, Ipu ycIoBHE, UTO HAIpaBJICHUS B
KaXKJIOM TIJIOCKOCTH OTPAHUYEHbI CEKTOPOM. PaccMaTpuBaeTcsl IMOCTAHOBKA C HEIOJHBIMU JIAHHBIMU
U JIOKa3BIBAIOTCsI TeOpeMbl 00 €IMHCTBEHHOCTH W JiorapudMudeckoit ycroiumBocru. OTmedarorcs

reoMeTpuvieckKue 0COOEHHOCTH 3a/lavu.

Kurouesbie ciioBa: nHTEerpaJiIbHasdA reoOMeTPpHsd; HEIIOJIHbIE JaHHbIe; yCTOﬁ‘IHBOCTL; rapMOHHUYECKad Mepa; 'paCCMaHUAaH.

Ipenmernas knaccudukanpe AMS (2020): 44A12; 35R30; 65R32.

Beenenne

3ajiaun HHTErpaJIbHO TEOMETPHUH TIPEJICTABIISIIOT CODOI KIIACC 3a/1ad, B KOTOPBIX 110 3HAYEHUSIM HHTETPAJIOB
HEM3BECTHOW (DYHKIMU TI0 OMPEIEJEHHBIM CeMeicTBaM MOJAMHOro00pasnii TpebyeTcsi BOCCTAHOBHUTEL CaMy
dpyukmo. Hanbosiee mM3BECTHBLIM TPUMEPOM SIBJISETCS 3a/1a9a BOCCTAHOBJICHUST (DYHKIIMHM MO €€ 3HAYCHUSIM
Ha TPSIMBIX — PEHTIEHOBCKOE Mpeobpasopanue. Takue 3a/1a9u HAXOJIAT MIMPOKOE TPUMEHEHNe B ToMOorpadun,
reodusnke, acTpodu3nKe U APYrux MPUKIATHBIX 00JIACTSX.

OpHako B OOJIBIIMHCTBE CJIYYAEB 3aJa9d WHTErPAJIBHON TeOMETPHM OKa3bIBAIOTCH HEKOPPEKTHBIMHU. B
kyaccuueckoii MoHorpadun M.M. Jlaspenrbesa [2] Gbuia npejjioyKeHa KaaccuduKalys 3a/1a9 HHTErPAIbHOI
reoMerpuu Ha cjab0 ¥ CHJIBHO HEKOPPEeKTHBbIE. 3aJiadl, B KOTOPBIX OlepaTop OOpallleHusl He siBJISeTCsI
HEIPEPBIBHBIM JIa2Ke B IIPOCTPAHCTBAX ¢ KOHEYHBIM YHCJIOM ITPOU3BO/IHBIX, OTHOCITCS K CUJIBHO HEKOPPEKTHBIM.

B Gosee pammeii paBore [1] Obuia mecsemoBaHa 3aJava BOCCTAHOBJICHHS (DYHKIUH 1O €8 3HATEHUSIM
PEHTTEHOBCKOTO TpeoOpa30BaHus PN OTPAHNIEHHOM HAabOpe HAITpaBIEHUN B IIJIOCKOM cekTope. B pabore ObLia
[oJTy YeHa JiorapuMUIecKasi OIeHKa YCTOWIUBOCTH B YCJIOBUSIX CUIHLHON HEKOPPEKTHOCTHU 3aJIA4N.

Metoz1, OCHOBAHHBIH HA TPUMEHEHUN TADMOHUIECKONH MEPhI U T€OMETPUYECKOTO TOCTPOEHUSI Iy IKOB IPIMBIX,
OKa3aJICs AKTYAJIbHBIM U IIPUMEHUMbBIM B PsiJie MOC/IeAYONUX nccaeaoBannii. B uacrHocTn, B crarhax Casazapa
[3, 4], Yorepca n Yabmana [5], a Takxke B psizie pabor Credanosa, dua, Cano u ap. [6-10] meromonornueckne
UJien, U3JI0XKeHHbIe B [1], MCII0JIB30BAINCh KaK OCHOBA JJIsl aHAJIN3a YCTONUIMBOCTH B 33/[a9aX Te0/Ie3MIECKOro
PEHTIEeHOBCKOI'O IIpeoOpa30BaHusi, B 3aJ@daX € BPEMEHHBIMU KodhduimeHTaMu, a Tak»Ke B 3ajadax Ha
MHOT'000PA3UAX C JIOPEHIIOBOM METPUKOIA.

It TIOTHOTHI M3JIOXKEHWsT KPATKO HAIIOMHHUM MOCTAHOBKY 3/l W OCHOBHBIE PE3YJIBTATHI, MMOJIYICHHBIE

Hamu paHee B pabore [1].
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Paccmarpusanach 3a1ada Bocetanobiaenns dbynxmun f € C5(2), tne Q C R? — orpanmdennast 061acTs, 110
3HAYEHUSIM €€ HHTErPAJIOB 10 MPSIMBIM, IPOXOJISIINM Yepe3 (PUKCUPOBAHHYIO TOUYKY Lo U HAIPABJIECHHBIM BJIOJIH

HEIIOJTHOTO0 MHOKeCTBa HampasieHnit w € I' C S$2. DTo cOOTBETCTBYeT PEHTTEHOBCKOMY IIPe06PA30BAHMTIO:
oo
Rf(w):/ flxo+sw)ds, wel.
— 00

IIpu sToMm MHOXKeCTBO HampaBjeHuil I onuchiBaeTcst KaK CEKTOP Ha cepe ¢ MeHTPATBHBIM yriioM 260, 910
[IPUBOJUT K IMOCTAHOBKE 33JIa9M C HEIOJTHBIMU JTAHHBIMA.

B yxkaszammoit pabore Obuia JOKa3aHa TeopeMa 00 eIMHCTBEHHOCTH BOCCTAHOBJIEHUsI (DYHKIIUU, & TaKKe
[TOJIy4eHa, jiorapudMuvIecKas OleHKa ycroiiunBocTu pemteHusi. OCHOBHBIM MHCTPYMEHTOM CJIYKUJIO CBeJIeHUe
3aJla9¥ K JBYMEPHOI C ITOMOIIbI0 KOH(OPMHOTO OTOOparKeHUsI CEKTOpa Ha IOJIYIUCK W IIPUMEHEHUE TEOPUU
rapMOHUYIECKON MephI B IJIOCKOCTH.

B nacrosimeit pabore paccMaTpuBaeTcs 3a/iada BOCCTAHOBJIEHNs (DYHKIUU 110 3HAYEHUSAM €€ MHTEIPAJIOB 110
IPSMBIM, IPOXOISAIINM Yepe3 (BUKCUPOBAHHYIO BEPIIUHY JIBYIIOJIOCTHOIO KOHYCA HAIIPABJIEHUN — TOYKY Tg €
R*, pacro/oxKennyio BHe 3aMKHYToit obacTu B, cojepskareil HocuTesb nckKoMoit dbynkinuu. PaccMaTpusaroTcs
3HAYEHUs] WHTEI'PAJIOB 3TOH (PYHKIIAU IO MPSMBIM, ITPOXOISIINM Yepe3 Ty U HAIIPABJIEHHBIM BIOJIb HEIIOJHOTO
MHOXKECTBa HallpaBJIeHUR w B KaxKJI0il AByMEpHOU IJIOCKOCTH, coJepzKalleil xg.

B mpocrpanctBe R* MHOMXKECTBO BO3MOMKHEIX JBYMEDHBIX HAIIPABICHHH OIICBHIBACTCS T'PACCMAHIAHOM
G(2,4) — MHOroo6pasmeM BCeX JBYMEDHBIX JIMHEHHBIX IIOANPOCTPAHCTB YETHIPEXMEPHOIO IMPOCTPAHCTBA.
Kazkmast Touka 9TOro MHOroo0Opas3usi COOTBETCTBYET IIJIOCKOCTH, IPOXOJISINeil depe3 xo. B KaxKjaoih u3 3Tux
IUIOCKOCTEHl pacCMaTpPUBAIOTCH MPsMble, OFPAHUYEHHbIE 33JaHHBIM YIJIOM, YTO IIO3BOJISIET CBECTH 3314y
YCTOMYMBOCTH K JIBYMEPHOI1, I'Jle IPUMEHUMBI METO/IbI aHAJIN3a HA OCHOBE rapMoHIYecKoit Mepsnl. [lomydennnre
JIOKAJIbHBIE OLEHKH 3aTeM OObeIUHSAIOTCs yTéM uHTerpupoBanus 1o G(2,4), uro u 1aér riobabHyI0 OLEHKY
YCTOMYMBOCTH.

OJIHAKO BasKHO IIOJYEPKHYTD, YTO MEPEXO OT TPEXMEPHOIO K YeThIPEXMepHOMY IIpocTpancTsy R TpeGyer
HE IMPOCTO ODODIEHUsI paHee IOJYUYEHHBIX PEe3YJIbTATOB, & IIOCTAHOBKU IMPWHIMINAJIBHO HOBOW 3aaqu.
MeToipl, UCHOb30BaHEBIE B 1] /It JOKA3aTeIbeTBa yCTOMYIUBOCTH 3a/1a4i ¢ HElOJHBIMU JaHHbIMUu B R3,
HE IIEPEHOCSTCS HAIPSIMYI0 Ha YeThIPEXMEDHBIN Ccjydail. DTO CBsI3aHO, B YACTHOCTU, C HEBO3MOYKHOCTBIO
[pUMeHeHUsI KOH(OPMHBIX OTOOPasKEHUIl U JIOKAJILHOIO CBEJIEHUS 3aJa9d K JIByMEPHOMY CJIydar, KakK 3TO
J1eJ1aJIOCh PAHee.

IIpobsiembr BoccTaHOBJIeHMST (DYHKINN O HENOJHBIM HHTEIDAJIBHBIM JTAHHBIM AKTHBHO HUCCJIEILYIOTCS B
DPa3/IMIHBIX TOCTAHOBKAX WHTETPAJILHOIN reOMeTPHH U 0OPATHBIX 33/1a9. B 4acTHOCTH, BA2KHBIM HAIIPABJIEHAEM
SIBJIAIOTCH 331291, B KOTOPBIX JOCTYIHA JIUIIh YaCTh WH(MOPMAINY, OTPAHUYEHHAS 110 T€OMETPUIECKUM WJIN
AHAJUTUYIECKUM TpuInHaM. B mocsegaue robl ObLIO Oy Y€HO MHOYKECTBO 3HAYNMbBIX PE3YJIbTATOB, CBSI3AHHBIX
C YCTOMYUBOCTBIO U €IMHCTBEHHOCTHIO BOCCTAHOBJIEHUS B TIOJIOOHBIX YCJIOBUSIX.

B pabore Yorepca [12] uccieayercst yeTORIMBOCTh BPEMEHHO-3aBICHMOI0 PEHTIEHOBCKOTO IIPe0BpasoBaHuUsT
B YCJIOBUSIX OIPaHUYEHHON BHIMMOCTH. PaccMarpuBaercs cjydail, Korja WHMOpPMAIUs [TOCTYIAeT TOJIBKO U3
OIIPENIEJIEHHOM 00JIacTH, M JOKA3bIBAIOTCS AIlPUOPHBIE OIEHKH, OTPAXKAIOINWUe JIOrapudMUYecKUil XapakKTep
HECTAOWJIBHOCTH  3aJ[ad. DTa MOJENb JEeMOHCTPUPYET BayKHOCTH JIOKAJIBHOW TeOMETPHH JOCTYITHBIX
HaIPAaBJIEHU U MOTHBUPYET Pa3pabOTKy HOBBIX IOJXOMIOB K YCTOMYMBOCTH B YCJIOBUSAX OIDAHUIEHUI.

Credanos B [13] mokasbiBaer Teopemy O HopepKKe (DYHKIUU Ha JIOPEHIOBBIX MHOIO00PA3UsIX, UCIOJIb3YsI
CBOICTBa TeOJe3MIeCKNX IMOTOKOB W METOJOB MHUKDPOJIOKAJHHOTO aHajum3a. HecMOTps Ha TO 9TO MeTPHKA
OTJIMYAETCS OT €BKJIUIOBOIl, TeOMeTpUIecKasi JIOTUKA, JIEXKAIAs B OCHOBE BOCCTAHOBJIEHUsI, BO MHOT'OM CXOXKa,
C HaIlei: TaHHble 0 UHTErPAJIAM BJIOJIb Te0Ie3UIECKUX MTO3BOJISIIOT CYAUTh O (DYHKIMHN B O0JIACTH.

B paGore Credanosa n dura [14] uccienyercs obparnas 3amada upanxie-Hefimana s ypaBHeHuit
¢ TUepOOJIMIeCKUM THIIOM, C aKIEHTOM Ha TOMOrpaduUYecKue acleKTbl B JIOPEHIIOBOW IeOMeTpHH. 3J1eCh

OEHTPaJIbHBIM fABJIAE€TCA BOIIPOC, MOXKHO JIM II0 JaHHBIM Ha I'DaHHUIIE 00J1aCTH BOCCTaHOBUTH BHYTPEHHIOIO
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CTPYKTYPY, 9TO OJIM3KO K HAIIEMY CTPEMJICHIIO BOCCTAHOBUTDH (DYHKITHIO IO MHTETPAJIAM BI0JIb OTPAHIIEHHOTO
ceMelicTBa IpAMBIX.

B pa6ore Besnacysna u Ben Afima [15] pacemarpuBaercst yeToianBoe BocCcTanoB/IeHAE (DYHKIUN, «CKPBITON»
II0/T MAacCKO#, B KOHTEKCTE 3a/[ad 0OPATHOTO PACIPOCTPAHEHUS BOJH. XOTSI MOCTAHOBKA OTHOCUTCS K BOJIHOBOI
dusnke, xapakTep yCTONUYMBOCTH — JorapudMUIecKuil, KaKk ¥ B Halleil pabore, 9TO MOAIEPKUBAET OOIILYIO
IIPUPO/Ly HECTAOMIIBHOCTH B 33/1a9aX C HEIIOJTHBIMU JTaHHBIMU.

Hemuenko B crarbe [16] aHammsupyer 3ajady BOCCTAHOBJIEHHSI UCTOYHUKA JJIsl BOJHOBOTO yDaBHEHWs B
YCJIOBHUAX YACTHUIHBIX JAHHBIX. BayKHBIM SBJISIETCH TO, UTO JaKe IIPYU OIPAHUYEHHON MH(MOPMAIMH BO3MOXKHO
JIOKa3aTh YCTONIMBOCTD (IIyCTh U CJIa0YI0) PEIeHNUs, [P YCJIOBUY BBIIIOJIHEHUS OIIPEIEJIEHHBIX [€OMETPUIECKUX
YCIOBHIA.

Hakonen, Unmasupra [17] usygaer peHTreHOBCKEE IPeoOpa30BaHUsl HA [ICEBIOPUMAHOBBIX MHOr00Opa3HsiX,
C aKIIeHTOM Ha IapaMeTPU3alldi0 HApaBIEeHHI W WHBAPHAHTHOCTb 3aJa4dd. XOTd TeOMETPHUs CYIIEeCTBEHHO
OTJINYAETCS OT EBKJIMIOBOW, HCIOJIB30BaHME MHOroOOpa3uil HaIpaBieHWH OJIM3KO K HAIIEMy IIOAXOMY C
rpaccmannanom G(2,4).

Takum ob6pa3oM, BCe I€pEYNCIIEHHbIE PAOOTHI IOATBEPXKIAIOT (DYyHIAMEHTAJIBHYIO BayKHOCTH I'€OMET-
PUYECKOro XapaKTepa JOCTYIIHBIX IaHHBIX, CTPYKTYPY HamIpaBjeHuil u anpuopnble oneHku. Hacrosimas
CTaThs IPOJOJIKAET U 0000OIIAeT ITY JIMHHUIO HUCCIEIOBAHUN, NpeJiaras HOBYIO YETHIPEXMEPHYIO MOJENb C
HCIIOJIb30BAHUEM PACCIOEHHOIO0 MHTEIPUPOBAHUS IO TPACCMAHUAHY U CTPOroe JorapudMuIIecKoe 000CHOBAHTE
YCTOWYMBOCTH U €IMHCTBEHHOCTH.

Nsyuenne 3a1a1 mHTErpaJIbHON T€OMETPUN, CBA3AHHBIX C BOCCTAHOBJIEHHEM (DYHKITMHU TI0 €€ WHTEerpaJjaM Io
OIIPEIEJIEHHBIM ceMeflCTBaM IOAMHOXKECTB, OCTAETCA aKTyaJbHOI KaK B TEOPETHIECKOM, TaK M B IPUKJIATHOM
acriekTax. [Ipu 9ToM 0COOBINT MHTEPEC IPEJICTABIAIOT HEKOPPEKTHBIE 3a/1a9d, B KOTOPBIX MaJible M3MEHEHUS
B HMCXOJIHBIX JAHHBIX MOTYT MPUBOJUTH K 3HAYUTETHHBIM OTKJIOHEHWSIM B peIlleHnu. Takue 33Ja9u TPeOYIOT
CIEIUAJILHBIX METOJIOB PErYISPU3AIIN U aHAIN3a YCTONINBOCTH.

B mpempiaymmx paborax omHOrO m3 aBTOpOoB |[1-6] ObuM WCCIEIOBAHBI PA3JUIHBIE KJACCHL  CJIA00
HEKOPPEKTHBIX 33/1a9 HHTEIDAJHLHON I€OMETPHH, B KOTODPBIX yIAETCA YCTAHOBUTH YCTONYUBOCTD DPEIIEHUsT
B dyHKIMOHAJIBHBIX upocTpancTBax tuna CoboseBa. B wacrHocru, B crarbax [18, 19, 20] mnosydenst
JiorapudMuIecKne ONeHKN yCTOWIUBOCTH U IIOCTPOEHBI (DOPMYJIBI OOPAIIEHUS [IJTsT 3829 C HHTEIPUPOBAHUEM IO
napaboianM, KOHycaM U KPUBBIM ¢ ocobenHocTaMu. B paborax [22, 23] npemiozkeHbl HOCTAHOBKY € PA3PbIBHBIMA
BECOBBIMU (DYHKITUSIMU U UCCJIEIOBAHBI METOJbI IIPOJIOJIZKEHHUSI PEIIEHUs B CHMMETPUIHBIX 0biacTsx. B craThe
[21] GBI paccMOTpeHBI JBa Kjacca c¢aab0 HEKOPPEKTHBIX 3ajad WHTerpajbHoil reomerpuu. IlepBbiii Kiace
CBA3aH C BOCCTAHOBJIEHHEM (YHKIMU II0 WHTErpajiaM BJIOJIb KYCOYHO-IJIQJIKUX KPHUBBIX C OCOOEHHOCTBIO B
BepIInHE Ha ILIOCKOCTH. [y 9TOro Kiacca IOJIydYeHBI OIEHKH YCTONYMBOCTH B IIPOCTPAHCTBAX KOHEYHOM
IVIQJIKOCTH , JIOKA3aHbI TEOPEMBI CYIIECTBOBAHUS U IIOJyYeHbl aHAJIUTHIeCKHe HopMysibl obparenus. Bropoit
KJIACC 3a/1a9 OCHOBAH HA HHTEIPHUPOBAHUU IO CeMeHCTBaM KOHYCOB B NM-MEPHOM HIpocTpaHcTBe. B pabore
ITOKA3aHO CYIECTBEHHOE PA3JINYINE MEXK/Iy YETHOMEDPHBIM M HEIETHOMEPHDBIM CJIyJasiMU, YCTAHOBJIEHBI TEOPEMBI
€JIMHCTBEHHOCTU W YCTOWYMBOCTH, & TAKYKE BBIBEJIEHBI COOTBETCTBYIOIIHE (hOPMYJIbI OOPAIICHUS.

Hacrosimas paboTa MocBsIeHa U3yYeHnIo 3a/1a9i HHTErPAIbHON TeoMeTpuu B IpocTpancTse RY, xoTopast
OTHOCHTCS K KJIACCY CHJIBHO HEKOPPEKTHBIX 3asad. OCHOBHOE BHUMAHWE Y/EJSAETCA HMOCTPOEHUIO YCJIOBUS
CYIIECTBOBAaHUS pelieHnsi, GopmMysie OOpAIleHns] U OIEHKE CTEIeHN HeCTaOMILHOCTH 3ajadn. 1IpemiokeHHbIit
IIOJIXOJ] SIBJISIETCS PAa3BUTHUEM METOJOB, pa3pabOTAHHBIX paHee I 3aJad B IIPOCTPAHCTBE MeEHbINE

pa3sMepHOCTH, U TpeOyeT NPUHIUINATIBHO HOBBIX TEXHUYECKUX CPEICTB.
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1. ITocranoBka 3aga4u

Paccmorpum mpoctpanctso R* ¢ mekaprosoit cmcremoit kKoopamHar (1, T2, 23,74). Ilyeth B C R* —
orpaHnYeHHasi 00JIaCTh € TVIaJKOil rpanureil. Uepe3 m 000O3HAYNM JIByMEpHBIE JIMHEHHBIE MOIIPOCTPAHCTBA
B R?*, npunasiexanue Maoroobpasuto 'pacemana G(2,4), u wepes | C m N B — 0Tpe3KH NPsMBIX, JiexKalliie B
nepecevernnu w N B.

ITycrs dyukmus f € C§°(B) 3amana Ha orpe3kax | C m N B, U jjIst KayK 10 TAKOI IPAMOI 3a/IaH HHTEIPAL:

Rf(m.1) = /l f(x) ds,

rje ds — 3JIeMEeHT JUIMHBL Ha npsiMoit 1. 3asada 3akiouaercst B BoccraHobiennn dbyHkuuu f(z) B obractu
B 10 BceMm TaKuM HWHTErpaJsiaM.

OrmeTnM, 4To 0671aCTh B TOKPHITA UL HOIMHOMKECTBOM BCEX BO3MOYXKHBIX IPAMBIX B R*, T.e. mmeem eso
¢ 3aja4eil 110 HEMOJHBIM JAaHHBIM. Takas IIOCTAHOBKA MPUBOIUT K CHUJIBHO HEKOPPEKTHOH 3a/1ade, MOCKOIbKY
nadOopMaIys OrpaHnYeHa KaK 110 HAIPABICHUSM, TaK U 110 JIJINHE TPAMBIX.

Hesbio paboThl ABASETCH:

® YCTAHOBHUTD YCJIOBUS PA3PEIINMOCTH 331N,
® [OJYIUTH (POPMYJTy OOpAIIECHMUST;
® 1aTh AINPUOPHBIE OIEHKHU JIJIsi BO3MOXKHBIX DeIreHnil B (DyHKITMOHAIBHBIX TPOCTPAHCTBAX;

® IpOaHAJIN3UPOBATH CTEIIEHDb HeCTaOUILHOCTA B 3aBACHUMOCTH OT XapaKTEepUCTUK MHOXKECTBa JaHHbIX.

2. l'eomeTpuyeckast CTpyKTYpa 3a/a9u

2.1. IIpocrpancrso Hanpasienuii: poiab G(2,4)

B Tpéxmepnom ciydae (R?) MHOMKeCTBO Beex HaNpaB/IeHHIT 331a8TCsl KaK TIOIMHOXKECTBO eJIMHITHOf cepbl
S52. 9T0 HaéT BOBMOMKHOCTDL €CTECTBEHHO paboTaTh C YIJIAMU M CEKTOPAMI B chepHIecKIX KOOPIMHATAX.
B dgernipéxmeprom caygae (R*) MBI paccMaTpmBaeM mHpsMBIe, JeXKallue B IBYMEPHBIX ILIOCKOCTSX,

MIPOXOJSAIINX Yepe3 TOUKY Xg. TaKue MIOCKOCTU OMMCBHIBAIOTCS TPACCMAHUAHOM:
G(2,4) = mHOrOOOpA3ME BCEX JABYMEPHBIX JIMHEHHBIX IIOJIPOCTPAHCTE B R*.

Or1o koMmmakTHOe 4-MepHOoe MHOrooGpasue (cM. [7, 3]). Takum o6pazom, HampapieHHe 33J@ETCS HE IIPOCTO

BEKTOPOM, a IIJIOCKOCTBIO 7T U HallpaBJICHUEM BHYTDPDH HeE.

2.2. Kak cTposITCs TIJIOCKOCTH 7T U CEMEHCTBO MPSMbIX

®ukcupyeMm ToUKy ro € R*. Yepes Hed mpoXomUT BCE MHOYKECTBO JIBYMEDHBIX JIMHEHHBIX IIOAIPOCTPAHCTB
m € G(2,4). B kaxn0ii Takoil miockoctu GbUKCUPYETCst CEKTOP HAIIpaBJIeHuii (HApUMeD, C EHTPAJIbHBIM yIJIOM
6), u paccMaTPUBAIOTCsI IPMbIE, IIPOXOJISINNE YePe3 Lo B ITUX HAIIPABJICHUAX.

Wrak, MHOXKECTBO TPSAMBIX — 3TO O0'bEINHEHNE BCEX JIOKAJIBHBIX IIYIKOB MPSMbBIX, 33 TAHHBIX B ILIOCKOCTSIX

m €Il C G(2,4), ¢ TOKATBHBIM OIPAHUYEHUEM II0 YIJLY.

2.3. IlokpeiTne obnactu B

Ilycts B C R* — orpammyennas o67acTb, cojeps:kamas Zo. MbI paccMaTpUBaeM CeMeilcTBO IIPIMEIX,

dbopmupyemoe Tak:
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® i Kaxkioi mwiockocru m € II C G(2,4),
* bukcupyercs cektop Hampasienuit I'y C SL
® pPaCCMaTPUBAIOTCS TPsIMble L, TPOXOAIINE Yepe3 Ty B 9TUX HAIIPABIECHUSX,

® 5TU IpdMble OI'PAHUYNBAIOTCA OTPE3KaMU, JIeXKallliMU B B.

Taxum 06pazoM, HOJIydaeTcs YaCTUYHOE MOKPHITHE 00acTH B HalpaBI€HHBIMU OTPE3KAMU.

2.4. BI/ISyaJ'II/ISaL[I/IHI IIOCTpOEHUE ceMencTBa OPpsAMBIX U3 T(

IIporecc MOXKHO omnucaTh TakK:

1. B Touke zy duKcupyercs NI0CKOCThH 7.
2. B wmeit Boimensiercs cekTop Hampasienuit ;.
3. Yepes zy u Kaxka0€e HapaBjeHue u3 ['; MPOBOIUTCS MIPIMAs.

4. IloBTOpSIst 3TO JJIsT PA3AUIHBIX 7, TOJIYIaeM CEMEHCTBO MPAMBIX, «BEEPOM» 3AIOTHSIIONNX OKPECTHOCTH

Zo-

OG’beILI/IHHH BCe TaKue IIpdAMble, MblI CTPOUM MHO2KECTBO <«YaCTUIHBIX leqeﬁ» B R4, IO KOTOPbIM

unTerpupyercst Gyuknus f(x).

2.5. SakJ/nouenue

TeomeTpuyeckasi CTpyKTYpa 3aa9u ONPEIEISIeTCS JIBYMsl YPOBHSAMHU IIapaMeTPU3alii: BEIOOPOM IJIOCKOCTH
7w € G(2,4) u HanpasyeHneM BHYTpu Heé. IIpOCTPAHCTBO HANDABIEHHWI NDPEICTABISET COOOH BOJOKHUCTOE
IIPOCTPAHCTBO: HaJ| Kaxkaoi Touxoit G(2,4) sucur S'. D10 jmeaer 3a1auy CymecTBeHHO Gojiee CIOXKHON H

HUCKJIIOYaeT IIPpAMO€ HUCIIOJIb30BaHuE METOI0B U3 Rg.

3. Bemomorarenpaag JeMmMa

Paccmotpum orpanmdentyio obmacts B C R?*) comepskamiyio Touky xg. Ilycrs II C G(2,4) — cemeiicTBo
JIBYMEPHBIX TITTOCKOCTEdt, TIPOXO/IATIAX 9epes To, N B Kaxkoit m € Il 3aman cekrop Hampasyennit ['; C Sk

Iycrs f € Co(B) — nenpepbiBHasi (DYHKIUSA ¢ KOMIAKTHBIM HOCHTeJeM B B, U u3BeCTHbI 3HAYeHHs €6
MHTErpaJjioB IO OTPE3KaM BCEX MIPSMBIX, MPOXOJSAIINX 4Yepe3 Xy B HampasiaeHusx u3 [, Bo Bcex m € Il
ObozHaunM 9TO WHTErpaJjbHOe IIpeobpazoBanue depe3 R f.

Jlemma (0 norapudmudeckoit yeroiiausocrn). Ilycers dyuknust f € Co(B), u nycrs R f u3BecTHa B OIIMCAHHOM
BBIIIIE HEIOJIHOM KJjacce HanpasJseHuit. Torma cymectsyer nocrostaaas C' > 0, 3aBucsInast TOJIbBKO OT 00JIacTH

B, cemetictsa mutockocreit II C G(2,4) u cektopos I';, Takast 9T0

1/2

1]l < C / / Rf(r.6)2 dodu(m))
II1JI,
re:

e )T, CS' — mapamerp HampaBiIeHNSI B INIOCKOCTH T,
e du(m) — mepa Xaapa Ha G(2,4),

e Rf(m,0) — uarerpan GyHKIMU f 1O OTPE3KY B HANpPaBjaeHUH § U3 Ty B IJIOCKOCTH .
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HoxkazareabcrBo. Pacemorpum dukcupoBannyo miockocrb 7 € G(2,4), OPOXOIAINYIO Yepe3 TOYKY Zg.
Torma 3agaua cBOAUTCS K ABYMEPHOI: HEOOXOAMMO OIEHUTh HOpMY dyHKIuu f, orpanmdennoit Ha B N, 1o
3HAYEHUSIM €€ MWHTErDAJIOB 0 OTPE3KaM, UCXOMANINM U3 TOYKU T B Hampasjenusx 6 € ' .

B 1ByMepHOM cilydae aHAJOTMYHAsl 3aJ@da u3ydeHa B pabore [l], rme mnosydena Jsorapudmudeckast

alpuopHasl OIeHKa

Cﬂ— 1/2
”f”LZ(er) < \/ﬁ (/F |Rf(7r,9)|2d9> R

rje € — Mepa NIMPUHBLI ceKTopa [,. Takas OIeHKa MOJydaeTcss ¢ MOMOIMIBIo mocTpoeHus (GyHkmum u(z),
rapMOHMYECKOH B IJIOCKOCTH T, 3HAYEHHS KOTOPOH Ha TIPAHUIE CEKTOpA KOHTPOJHUPYIOTCS JIAHHBIMHU, U
NPUMEHEHUsST TEOPEMBI O TADMOHUYIECKON Mepe (cM. Takxke [3]).

Hasee, narerpupyst 1mosydeHHble AByMepHbIe OleHKH 1o BceM 7 € II C G(2,4) ornocuresnsuo mepbl Xaapa

(), mosydaem
/ 112 sy dis() < C / / (R f(m,0)d6 du(r).
G(2,4) IJIx

ITockonbky cemeiicTBo mmockocreir I jocrarodno, 4ToOBl HOKPBITH 00JIACTH B, JileBasi 4acThb OIEHUBAET
nosryio HopMmy || f||z2(py. OTcioma u ciemyer yTBepk/eHne JeMMBL.

Bameuanne o mepe Xaapa. Mepa p(7) siBisieTcss HHBAPUAHTHON OTHOCUTEBHO neficTBus rpynnbl SO(4) Ha
rpaccMannane G(2,4) = SO(4)/[SO(2) x SO(2)]. Ona urpaer aHAJIOrHIHyIO POJIb Mepe Jlebera Ha eBKIIMI0BOM

upocrpancrse. KoHeTpyKimu u cBoiicTBa Takoil Mepbl II0pOGHO paccMOTpeHsl B [4, 5.

4. Teopema eIMHCTBEHHOCTHU

4.1. DopmynupoBKa

Teopewma. Ilycts f € Cy(B), tne B C R* — orpammuennas obmacts. IIpeamonoxum, aro aas seex m € 11 C
G(2,4) u Beex nanpasiennit § € I'y C SL, poimonnsercs

Rf(m,6) = f(x)ds =0,

Lo

rie Ly g C ™ — OTpPe30K IPSIMOM, HPOXOSIuil depe3 (PUKCUPOBAHHYIO TOUKY To € B B HanpasseHuu f u
JeXKalIuii B ILJIOCKOCTH TT.

ITpenmonoknm TakkKe, 9TO CeMeHCTBO OTPe3KOB { L ¢} MOKpBIBacT 06s1acTh B B ciIeyromeM CMBbICIe:

VreB dnelll§el;:x€ Ly

Torna f(x) =0 ms Becex © € B.

4.2. JToka3aTeabCTBO

Pacemorpum npousBosibayio miockocth 7 € II. Torga orpanmdenune dyuknun f Ha 7 mpeacraBiser coboi

HenpepbiBayio Gyaknuo f|, € Co(B N ). Ilo upeanonoxenuto, s Beex Hanpasienuii § € I'; umeem:

f(z)ds =0.
Lo

To ecTb M3BECTHBI 3HAUEHNUSI MHTETPAJIOB (DYHKIMY 110 OTPE3KAM, JIEXKAIIUM B ILIOCKOCTHU 77, HAIIPABJIEHHBIM
B cekTOpe ', U NPOXOJISINUM Yepe3 TOUKY To. JTO O3HAYAET, YTO B KarKJOW IIJIOCKOCTH PeIlaeTcs 3ajada

BOCCTAHOBJIEHUS (DYHKIIMH 10 WHTErpaJjaM 0 IyYKY HAIIPABJIEHNN, UCXOJAAIINX U3 OIHON TOYKU.
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CoruiacHo pe3yJsibraTaM, J0Ka3aHHBIM B [1], B 1ByMepHOM ciydae (B IJIOCKOCTH) Takasl CHCTEMa MHTErDAJIOB
OJTHOZHAYHO OIpeNenseT (DyHKIWMIO, TIPU YCJIOBHH, UTO CEKTOP HampapjieHuil [; COMEP:KUT OTKPBITYIO JyTY.

CirenoBaTesbHO,

leﬁTr =0.

Tak Kak MHOXKecTBO IIocKocreil 7 € II TakoBo, 4To [y KaxKIoil Toukn « € B naitnércs orpe3ok Ly ¢ > z,
Ha KOTOPOM HHTerpaJi PyHKIUKA PaBEH HYJIIO, U, CJIEI0BATEILHO, (DYHKIMS OOHYJIAETCS B KAazKI0i ILJIOCKOCTH,

OXBaTBIBAIOWIEH X, TO MOJIydaeM:

Vx e B f(x)=0.

Takum obpazom, f =0 B B. Teopema jokazana.

4.3. 3ak/arouenue U 3aMe4YaHIA

JlokazaHHasi TeopeMa yTBEPXKIAET, YTO 3HAHWE WHTErpaJjioB (DYHKIUU IO CEMEHCTBY OTPE3KOB, JIEXKAINX B
GUKCHPOBAHHBIX JBYMEPHBIX ILIOCKOCTSX U IPOXOJANINX depe3 OJHY TOUKY, IIPU yCJIOBUU OXBaTa objactu B,
obecrieunBaeT OJHO3HAYHOCTH BOCCTAHOBJIEHUS (DYHKITHH.

1o pe3ysbTaT CyneCTBEHHO OT/INIaeTCsd OT KJ/IACCUYIECKUX 3a/1a9 HpeO6pa30BaHI/IH PaﬂOHa, ITOCKOJIbKY:

® HalpaBjieHHe MHTEI'PUPOBAaHUsA OI'PDAHMYEHO JIOKAJbHBIMU IIyYKaMHU B KaxKJIOH IJIOCKOCTH;
® I[IDOCTPAHCTBO HAIpaBJeHuil mapamerpusyercs He cdepoil, a rpaccmanuanom G(2,4);

® OTCYTCTBYET BO3MOXKHOCTb CBEIEHUsI 3aJJa4l K ,[LByl\/IepHOfI J100aJILHOM ITOCTAHOBKE.

Baxkneiiimyto poJsib Wrpaer yCJAOBHE TOKPBITHs: 03 Hero BO3MOXKHBI HETPUBUAJbHBIE (DYHKITUNU,
OPTOrOHAJIbHBIE K CHCTEME OTPE3KOB. Teopema, TakKuM 00Opa30M, IOJTBEPXKJIAET KOPPEKTHOCTH CAMOM

IIOCTaHOBKHU 3aJa4Y1 BOCCTaHOBJIEHUA IIPU HAJIUYIUN AIIPUOPHBIX I'€OMETPUICCKUX yCJIOBI/IfI.

5. Teopema ycroitauBocTu

5.1. @opmyMpoBKa

Teopema. Ilycts f € Co(B), tne B C R* — orpanmuennas obmacts. IlycTs Touka x¢ € B, W mycThb s
KazKJIOro JIByMEPHOIO JimHejiHoro noiupocrpanctsa m € II C G(2,4), upoxopsinero depes g, 3abUKCHPOBaH

cexrop Hanpasyennit I'; C SL. IIpemmomoxmm, uto maasa Beex (7, 0) € I x 'y, n3BeCTHBI 3HAYCHHUST HHTEIPAJIOB

Rf(m,0) = f(z)ds,

Lro
rie Ly g C ™ — OTPE30K NPAMOil, TPOXOAAIINH depe3 ¥o B HAIPaBJIeHNH § n jiexKamuit B obgactn B.

IIpeamosmozkum, ITO MHOXKECTBO BCEX TAKUX OTPE3KOB IOKPBIBaET 00/1acTh B B CMbICIE:

Vxe B 3w ell,§ €l rakue, uro € L, .

Torma cymectsyer koHcTanTa C' > 0, 3aBucAIast TOIbKO oT obiactu B, reomerpun cuctemsbr {I';}, 1 Toukn

o, TaKad 4TO

1/2

C
Il € o /H / RGO dodu(x)) .

rie € — 0 — mapamerp, XapaKTepu3yoOIMuii y30cTh ceKTOpoB .
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5.2. JlokazaTeabCcTBO

[Tar 1. JlokanbHaas omnenka B ¢pukcupoBanHOil mwiockoctu. 3adukcupyem 7w € II. Torma B 9Toit miockocTu
3a/1aa CBOAUTCS K BOCCTAHOB/IeHHo Gynkuun fr := f|. € Co(B N 7) C R? no uurerpanam no orpeskam L g,
IPOXOIAIIIM Uepe3 TOUKY o € T B Hampasiaenusx € [, C S1.

ITycrs D, := BNx. CoraacHo Teopeme u3 [1], B Takoil jByMepHOl IIOCTAHOBKE CIIpaBeyinBa AlPUOPHAST

OIlEHKA:

C (7'(' 1/2
IIfWIILz(DHs\/% /F|7Zf(7r,9)|2d9

Jloka3aTesbeTBO ITON OIEHKM OCHOBAHO HA IIOCTPOEHUM BCIIOMOTATENIbHON CyOrapMOHUYECKON (QyHKIN
u(z), rapmonmdeckoit B D \ {xo}, npunnmaromeii 3uadenns, oupeesnsiemble npeobpasosanunem R f(m, ), n
NPUMEHEHNY WHTErPAJIBHOI TeopeMbl 0 cpexanx (cM. [3]).

[ITar 2. uterpupoBanne 1Mo MPOCTPAHCTBY IJIOCKOCTEH. VIHTErpupys MOy IeHHYIO OIEHKY 1o BceM w € II C

G(2,4) c ucnonb3oBanueM Mepbl Xaapa pu(7), Horydaem:

C
%2 du(m 2 7,0)|>do du(n).
1oy i) < iy [ st a8

CormacHo pe3ynbTaTaM HHTerPaIbHO reomerpun (cM. [5], [4]), mpu ycmoBun, 9T0 MHOXKECTBO OTPe3KOB { L o}

IOKPBIBaET B, 3T0 ycpeaHeHne 00ecneanBaeT MaXKOPAHTY BCEll HOPMBI:

11220 < Cs /H Vel dia().

IloacraBisasa MpeAbIYIIYIO OTIEHKY, TOTYYaeM

C
IIfHLz<B>§\/ﬁ /H/F IR f(,0)|? d6 du()

1/2

Teopema mokazana.

5.3. 3akinouenue

[Tonygyennas sorapudmudeckasi OIEHKA IEMOHCTPUPYET XAPAKTEPHYIO ISt 3aJad C HEIOJHBIMU JAHHBIMA
ciabyto ycroitanBocTh. [losiBiieHne jiorapudma CBS3aHO C Jlerpajarueil TapMOHMYECKON MEPBI IIPU CyKEHUN
CEKTOPa HAIIPABJIEHUIA: JIJIsi CEKTOPOB [ ¢ yIJIOBOI MIUPUHOI TIOPSIIKa €, BEC B IEHTPAJIBHOI TOUKe () yObIBaeT
kax |loge| ™!, uTo U oTparkaercst B MpaBoit YAaCTH OIEHKH.

Takum obpaz3oM, Mpu JIFOOBIX OIPAHUYEHUSIX HA HAIPABJIEHWE WHTEIPUPOBAHUS, COXPAHSIIONIUX IIOKPBITHAE
obstactu B, 3a7a1a 0CTaéTCsl YCTOWIMBOM, XOTSI U C CYNIECTBEHHO OoJiee c1aboii OIEHKOH, YeM B CJIyvae TOJTHOM

nHMOpMAITNT.

6. Obcy2xKieHne u MPUIOXKEHU st

6.1. CBs3b ¢ 3aa9aMU TeOIe3NIECKOrO TUIIA,

PaccmaTpuBaemast 3a/1a4a OTHOCUTCA K KJIACCY 33J1ad MHTErPAJBLHON T€OMETPUU C YaCTUIHBIMU JTAHHBIMU.
CylmecTBYIOT aHAJIOTMU C 3aJla9aMU T'e0JIe3UIeCKOil ToMorpaduu, B KOTOPBIX H3y4YalOTCs WHTErpaJjbl II0
reo/IE3NIECKIM JIMHUAM HA PUMAHOBBIX WJIM IICEBIOPUMAHOBBIX MHOrooOpasusx (cM. [6]). Oanako, B oTiamdme

OT TaKuX 3a/Ja4, rJie JUHUN UHTEI'PUPOBaHUA OIIPEACIAI0OTCA MeTpI/IKOI‘/JI n He BCerjia ABJIAIOTCA .J'IHHefIHbIMH, B
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HaIlell OCTAHOBKE PACCMATPUBAIOTCS TOJBKO MPSAMOJIMHENRHbIE OTPE3KH, PACIIONIOXKEHHDBIE B (PUKCHPOBAHHBIX
ABYMEPHBIX IIJIOCKOCTAX.

Takum obpazom, Hama 3ajada OJMMKe IO [IyXy K OpeobOpa3oBaHuio PajgoHa, HO € CyIECTBEHHBIM
OT'PaHUYCHUEM: HTHTCTPUPOBAHUEC HE IIPOUCXOAUT 110 BCEMY IIPOCTPAHCTBY HaHpaBJIeHI/IIU/I7 a TOJIBKO ITIO Cy2KCHHBIM

IyYKaM B OrPaHMYeHHBIX MOoAMHOroobpasuax G(2,4) x St.

6.2. IlpunnunuajapHble OTJINYUS OT 33/7[a9 Ha MHOTOOODa3UIX

Basaua, paccMaTpuBaeMas B JaHHON pabore, (OPMyIHpyercs B eBKIHIOBOM IpocTpancTtse R*, mo c
mapaMeTpu3alneit, He o0/aatoneit mogHoH cuMMeTpueii. HamoMHrM, 9TO B TPEXMEPHOM MTOCTAHOBKE (R3)
BO3MOXKHO HUCIIOJIb30BaHuEe KOH(MOPMHBIX Ipeobpa3oBaHuili u peayKius 3ajgadu K asymepnoit (cm. [1]). B
YeTBLIPEXMEPHOM CJIydae TaKOl pejyKiuuu He cylnecTByeT: rpaccmanuan (G(2,4) me moiryckaer KOHGMOPMHOMN
CTPYKTYPBI, COIVIACYIOIEca ¢ eBKINA0BOM METPUKOI.

Kpowme Toro, marerpupoBanue mpoOUCXOIUT IO CEMEUCTBY JIBYMEPHBIX CEUEHUH, UTO CYNIECTBEHHO yCIOXKHIET
reOMeTPHIO 339U U HCKJYaeT IPAMOe HUCIIOJb30BAaHUE CTAHIAPTHBIX METOJIOB CIIEKTPAJIbHON Teopuu WUJjn

BapualOHHBIX IIOJAXO/I0B.

6.3. O Bo3mozkHocT 0600menns na R™

OpHuM 13 BO3MOXKHBIX HAIPABJIEHUIT 0DODINEHUsT sIBJISIETCSl [MOCTAHOBKA aHAJOIHMYHON 3ajadn B R™ mpu
GbUKCHPOBAHHON Pa3MEPHOCTH MHTEIPUPYIONIUX [MOIIIPOCTPAHCTB — HAIPUMED, IBYMEPHBIX WA K-MEPHBIX.
O 1HaKO, Kak MOKa3aJl aHAJIU3, IIPYU YBEJUICHUH PA3MEPHOCTH IPOCTPAHCTBA PE3KO YCIOKHAETCI CTPYKTYPa

rpaccmanuana G(k,n), 970 IPUBOJUT K CYIIECTBEHHLIM TPYHOCTSM:

® mepa Xaapa CTAaHOBHUTCS BCE MeHee KOHCTPYKTHBHOM;
® OTCYTCTBYET MHBAPUAHTHOCTb HAIIPABJIEHUN OTHOCUTEIHLHO HMOJAIDYIII JBUKEHUH;

® YXVIIIAeTCs JIOKAJIbHAS YCTONINBOCTD: JIOrapudpMUIecKne OeHKN 3aMEeHAIOTCA Ha CyOorapudMudecKne

(cn. [8], [9]).-

Takum o6pa30M, X0Td TeopeTu4deCKasd IMOCTaHOBKa 3a/lavdd BO3MOXKHa U B HpOHSBO.HbHOfI pPasMEepHOCTH,

nepexos, K R™ Tpebyer cyIiecTBeHHON MOAUMUKAIIMA METOIOB.

7. 3akJoueHue

B mammoit pabore paccMoTpeHa HOBasl TOCTAHOBKA 33241 MHTEIPAJILHON TeOMETPHUHU C HEITOJHBIME JAHHBIMI
B YeTHIPEXMEPHOM €BKJIHIOBOM IpocTparcTse R, B ommune or Kiaccmdeckux mpeobpasosannii PajioHa 1 nx

momudukanumit B R? u R3, 1annas 3a1a4a oTIMUaeTcs CIIYOIIME OCOOCHHOCTAMIL:

® YHTErpUpOBAHME TPOUCXOIUT IO Iy IKAM IPAMBIX, JIEXKAIIAX B JBYMEPHBIX JJUHEHHBIX TOAITPOCTPAHCTBAX;

® HalpaBjIeHHs] MHTErPUPOBAHUS NapPaMETPU3YIOTCs d1eMeHTaMu rpaccManuana G(2,4) u cekropamu ', C
Sx;

® OTCYTCTBYET BO3MOXKHOCTBH CBEJICHUS K JIBYMEPHON 3ajiade yepe3 KOHMOPMHbIE TPeoOpa30BaHus;

® [IPOCTPAHCTBEHHAsI CTPYKTYpPa OXBaTa OMPEJIE/IsieTCsl CUCTEMON MOMIPOCTPAHCTB U TpebyeT aHaau3a Ha

MHoroobpasuu G(2,4).
B paMkax JaHHO!N HOCTAHOBKH HaMI JOKA3AHBI CJIELYIOIINE PE3Y/ILTATEL:

1. TeopeMa C€IMHCTBEHHOCTHU: IIpU YCJIOBUU, YTO CceMelcTBO HaHpaBJ’IeHI/Iﬁ IIOKPbIBaET 00J1acTh B7 3HaHue

HMHTErpaJjioB M0 COOTBETCTBYIONIUM OTPE3KAM OJIHO3HAYHO ONpeessdeT DyHKIHIO;

tstu.uz/en/pub/UJMCS


https://tstu.uz/

O6 yCcTONYMBOCTU peIIeHns 3aJa9 WHTErPAJIbHOM reoMeTpun

2. Teopema ycroitumBOCTH: TOJyUeHA JOrapuMUUIECKas AMPUOPHAT OIEHKA HOPMBbI (DYHKIUHA Uepe3

WHTErpajbl 110 HEMOJHOMY CEeMeHCTBY IIPAMBIX. XapaKTep OIEHKNA ODYCJIOBJICH TIeOMETPUICCKIM

BBIPOXK/IEHIEM TapPMOHMYECKOIT Mepbl IPU CY2KEHUN CEKTOPa HaIIPaBJICHUI;

3. TlocTpoeHa cTporasi reoMeTpuvecKas MOJEJIb 3a7a9u depe3 napamerpusanuio G(2,4), yrouHeHa poJib

MepbI Xaapa 1 JO0Ka3aHa BCIIOMOraTeJIbHad JIEeMMa, Jaiollasd K/IIOYEBYIO OIICHKY II0 YaCTUYIHBIM JaHHBIM.

OcobeHHoCThIO ,ZLaHHOfI HOCTAHOBKHN SBJIFETCSI €€ IIoTeHIOUaJIbHad IIPUMEHHUMOCTL K 3aJadaM C

JIOKaJIN30BaHHBIM JOCTYIIOM K JaHHBIM (Haan/IMep, B MaTeMaTHYICCKUX MOAECJIAX, OIIMChIBAIOIINX OI'PaHUYICHHOE

I10J1€e 3peHUud JATIYUKOB UJIM YaCTUYIHbIE ITIOTOKU HH(l)OpMaLLI/IH)

By,aymne uccJjaeJ0Banusd MOTyT OBLITH HallpaBJICHbI Ha:

® 0000IIeHNEe IIOJIyYeHHBIX pe3y/JbTaToOB Ha IIPOM3BOJIbHYIO pasMepHocTh R"™ wu  6Gojiee  BBICOKUE
rpaccmanuansl G(k,n);

® p3ydYeHNe AHAJOTMIHBIX 33729 Ha PUMAHOBBIX MHOTO00PA3UsIX C OTPAHUYEHHBIM HAOOPOM TeOJe3MIECKUX
HaIlpaBJICHU];

® pa3pabOTKy YNCIEHHBIX AJITOPUTMOB, UCIIOJIH3YIONIIX JJOKA3aHHbIE AIIPUOPHLIE OIIEHKU B KadecTBe H6a3nca

JUIAd PETYJIsApu3alinuyl HEKOPPEKTHBIX 3a/1a4q.

Takum obOpazom, mpeacTaBiaeHHas paboTa He TOJILKO IIpejlaraeT HOBYIO ITOCTAHOBKY W €€ CTpPOroe

MaTeMaTH49eCKOe O6OCHOBaHI/Ie, HO M OTKPBIBA€T BO3MOZKHOCTH IJIA ,D;aﬂbHefIIHeI‘O Pa3BUTHUA METOI0B JaCTUYHOM

UHTETrPAJIbHON I'€OMETPUN B MHOI'OMEPHBIX IIPOCTPAHCTBAX.
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On the Stability of the Solution to an Integral Geometry Problem from
Incomplete Data in R*

Akram K. Begmatov, Alisher S. Ismoilov

Abstract

This paper addresses an inverse problem in integral geometry in four-dimensional space R* based on incomplete
data. The problem involves recovering a function defined in a bounded domain from its integrals along line
segments lying in two-dimensional planes intersecting the domain. The incompleteness arises due to the
restriction on the set of available directions and lengths of the lines, which leads to a severely ill-posed problem.
A constructive inversion formula is proposed under geometric constraints, and a priori estimates are derived.
The results obtained lay the foundation for applying the method in tomographic and geophysical problems
with limited observational geometry.
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ABSTRACT

In this paper, we study the dynamics of a quasi-Non-Volterra cubic stochastic operator defined
on a finite-dimensional simplex. Unlike classical Volterra-type operators, the quasi-Non-Volterra
structure allows for more general interactions among population components, leading to richer
dynamical behavior. We identify the fixed points of the operator and analyze their nature by
studying the spectrum of the Jacobian matrix. Special attention is given to non-hyperbolic
trajectories, where the linearized system exhibits eigenvalues on the unit circle, indicating
neutral stability. Furthermore, we construct a suitable Lyapunov function to investigate the
asymptotic behavior of trajectories and demonstrate stability conditions for the fixed points.
The results contribute to the theoretical understanding of higher-order stochastic operators
and their applications in population dynamics and evolutionary systems.
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1. Introduction

Let E ={1,2,...,m}. By the (m — 1)-simplex we mean the set

m
Sm_lz{xeRm:xiZO, inzl}

i=1

Each element x € §™~! is a probability measure on E, and so it may be looked upon as the state of a biological
(physical and so on) system of m elements.
A cubic stochastic operator is a mapping V: §™~1 — §™~1 of the form

m
Vix) = Z Dijk,1XiX jXk, [=1,...,m, (1.1
i,j.k=1
where p; ;1 are coeflicients of heredity such that

m
pijkr 20, Y pia =1 ik l=1,...,m, (1.2)
=1
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and the coeflicients p;jx ; do not change for any permutation of 7, j and k if the types are not related with sex.

For a given x(0) e §m-1 the trajectory x" n=0,1,2,..., of an initial point x© under the action of the
CSO (1.1) is defined by x"*1) = v(x"), where n = 0,1,2, .. ..

One of the main problems in mathematical biology consists of the study of the asymptotical behaviour of
the trajectories. Note that the main problem is open even in two-dimensional case.

In [13, 14, 15, 11] this problem was considered for a class of Volterra CSO. A NoVolterra CSO is defined
by (1.1), (1.2) and with the additional assumption

Dijk,l = 0if [ e {l,_],k}

In [13] a notion cubic stochastic operator (CSO) was introduced and investigated. A CSO which is a convex
combination of regular and non-ergodic operators was studied in [8]. Random dynamics of Volterra CSOs was
studied in [4]. In [12] blue the authors constructed a cubic stochastic operator. A class of non-Volterra CSO
which is called the class of conditional cubic stochastic operators was studied in [2]. If the following condition
is satisfied for the determined operator coeflicients,

piiii >0 if i=1,...,n.

then the operator of this from is called quasi-Volterrsa stochastic operator In the present paper we consider
non-contrained Volterra cubic stochastic operators defined on the two-dimensional simplex. In Section 2 we
recall some definitions and known results. In Section 3 for a non-contrained Volterra CSO, we found its
invariant sets, fixed points and the types of fixed points. Therein we showed that any trajectory starting from
the simplex converges to a fixed point, so such operator has the property being regular.

2. Preliminaries

A point x € §"~1is called a periodic point of W if there exists an n so that W”(x) = x. The smallest positive
integer n satisfying the above is called the prime period or least period of the point x. A period-one point is
called a fixed point of W. Denote by Fix (W) the set of all fixed points of the operator W, i.e.

Fix (W) = {x €S?: W(x) = x} .
Let DW(x*) = (OW;/0x;)(x") be a Jacobian of W at the point x*.

Definition 2.1. A fixed point x* is called hyperbolic if its Jacobian DW(x*) has no eigenvalues on the unit
circle in C.

Definition 2.2. A hyperbolic fixed point x* is called:

i) attracting if all the eigenvalues of the Jacobian DW (x*) are in the unit disk;
ii) repelling if all the eigenvalues of the Jacobian DW (x*) are outside the closed unit disk;
iii) a saddle otherwise.

Definition 2.3. A continuous function ¢: ™! — R is called a Lyapunov function for a CSO W if there exists
the limit lim ¢ (x™) for all x € $™~1.
n—oo
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3. Main results

Consider a CSO W : §2 — S? which has the form:
x' = %(x3 + 2+ 23) +3x%y + 3y%z + 2xyz
Widy =13+ +2%) +3y%x + 3x%z + 2xyz (3.1)
7 =103+ %+ 2%) + 322 + 322 + 2xyz
It is easy to see that the CSO W is a nonVolterra CSO. Let a face of the simplex S2 be the set ', = {x € §2 :
x;=0, i¢ac{1,2,3}}. Letthe set intS? = {x € 5?2 : x1xpx3 > 0} and let the set 352 = $2\int S be the

interior and the boundary of the simplex s2, respectively. Let e; = (1,0,0), e = (0,1,0), e3 = (0,0,1) be
the vertexes of the two-dimensional simplex.

¥ =y = (x-y)Bxy-3z(x +y)) (3.2)

this implies that the set {(x, y, z) € S%,x = y} is invariant. First, we find the fixed points of this operator. The
fixed point of the operator W is as follows.

X = %(x3 +y2 +23) +3x%y + 3y%z + 2xyz
y = %(xg’ +y3 4+ 23) +3y%x +3x%z + 2xyz . (3.3)
7= %(x3 + y3 +2°) + 3z2y +37%x + 2xyz
it means the solution of the system. We analyze the resulting equation by splitting it into two parts.
x—y=0 3xy—-3z(x+y)-1#0 (3.4a)
3xy-3z(x+y)-1=0 x=y#0 (3.4b)
First, let’s examine the case of (3.4a).
Thus, the median x = y is invariant. M = {(x, y,z) € S? : x = y}Let’s search for a fixed point on this median.

Since the considered domain is a simplex, the condition x + y + z = 1 holds. If we consider this equation on
the median x = y, we obtain the equation z = 1 — 2x. Let us introduce the following notation:

X' = f(x) = %(ﬁ +0+(1-20+33+3x%2(1-20) +2x*(1-2x),  x € [0;1].

flx) = —%(3x —1)3 + x. Let’s solve the equation x” = x. The solution of this equation is x = %
fi(x)=-33Bx-1)2+1
1 (3)1=1 )
3=
Thus, x* = % is a non-hyperbolic fixed point for the function f(x).

Theorem 3.1 ([1]). Let x* to be a fixed point of Xp+1 = f(x,). Suppose that f € C3(R) and f'(x*) = 1.
(i) If f7(x*) # 0, then x* is unstable.
(ii)  If f”(x*) =0and f"" (x*) > 0, then x* is unstable.
(iii)  If f"(x*) =0and f"'(x*) <0, then x* is asymptotically stable.

Thus, % is an asymptotically stable fixed point.
Let’s analyze (3.4b).
3xy-3z(x+y)-1=0

13 ujmes.tstu.uz
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3xy-3(1-(x+y)(x+y)—-1=0
32 +3(Bx -1y +3x2-3x-1=0.

Let’s solve the equation with respect to y.

3(1 - 3x) + V45x2 — 18x + 21 3(1 - 3x) — V45x2 — 18x + 21
= . yz =
6 6
Since y, < 0, it does not belong to the simplex, and since x + y1 > 1, this also does not belong to the simplex.

Thus, equation (3.4b) has no solution in the simplex.

From the above, it follows that ¥ = (1 i %) € 52 is the unique fixed point. Now, let’s determine its

Y1 (3.6)

3’3
type. To do this, we construct the Jacobian matrix and find its eigenvalues. Let us introduce the following
notation:
1 3 3 3 2 2
fOny) =@ +y"+ (L -x—y)7) + 37y + 3y" (1 —x - y) + Zoy(1 —x = y) (3.7a)
1 3 3 3 2 2
glx,y) = g(x +y+(1=-x=-y))+3yx+3x“(1-x-y)+2xy(1-x—y) (3.7b)

From (3.7a) and (3.7b), we take the partial derivatives with respect to x and y.

af(x,y) 1
fax = 33" =3(1 = x = y)?) + bxy = 3y” + 2y(1 - x - y) = 2vy,
1
af((;;,y) = 5(3y2—3(1—x—y)2)+3x2+6y(1—x—y)—3y2+2x(1‘x‘Y)‘2xy’
1
55’&;"” = §(3x2—3(1—x—y)2)+3y2+6x(1—x—y)—3x2+2y(1—x—y) - 2xy,
X
ag(x, 1
gfaxyy) = 30y? =3(1 = x = y)%) +6xy = 3% + 2x(1 - x - y) - 2vy,
af(x,y) 1 af(x,y) _2 g (x,) _2 9g(x,7) _ 1 (3.8)
ox (L1 3 dy (31 3 dx (3.3) 3 9y (3:3) 3
1_ 2
P20 17 =0 G
3 3

1] = %, |41] = 1. Thus, w is a non-hyperbolic fixed point.

Lemma 3.1. Let ¢ : S?> — R, be the mapping given by ¢ = 3xy — 3z(x + y). Then, the inequality

3
lp(x,y,2)| < 1
holds.
Proof: 5
X+y+z\%
0<z(x+y)§(3-T) _

x—1<x—(x+)<x <(x+y)2_ _ZZ<1
Yoy TR Y= Ay 2 ) {72 ] =1

ujmcs.tstu.uz
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3(xy - }1) <3(xy-3z(x+y)) < Z

@ :intS? — R, p(x,y,2) = [x =y

/7 /7 !’ ’ /7 3
e,y ) = &' = y'| = |x = ylI3xy = 3z(x + y)| = ¢(x,y,2)|3xy = Bz(x + y)| < ;lso(x,y,Z) (3.10)

Lemma 3.2. V(xo,yo,zo) € 8?2 if we construct the following sequence: go(x"*l, y"+1,z”+1) =

o(W™(x0,¥0, 29)). Then, the following holds:
lim ¢,(x%,y%, 2% =0 (3.11)
VA= (x,y,z) € S% W'(1) € M.

From the theorem above, it follows that the trajectory of any chosen point converges to the median, and we
have previously shown that the median is invariant.

Lemma 3.3. For any point A € M
1

lim (A1) = 3 (3.12)
Proof. Let’s find the extremum points of the function f(x).
V3+1 V3-1
Ff(x)=-3Bx-12+1=0, xp= —, x; = ——.
3V3 3V3

Since xp > 0.5, it does not belong to the simplex. The function is decreasing from 0 to x; and increasing
from x1 to 0.5. Let’s analyze the domain by dividing it into three parts:

[0;x1] (3.13a)
[x1;x%] (3.13b)
[x*;0.5] (3.13¢)

First, let’s prove it in the interval (3.13b). Since the function f(x) is increasing and x* is a fixed point, it
is bounded. f(x) —x = —%(3x —1)3 > 0 thus f(x) > x. The inequality holds

) > ().

From this, it follows that the sequence {f"(x)} is monotonically increasing. Since it is both monotonically
increasing and bounded, we conclude that
: 1
VA € [x1;x7] Iim /() = =
n—oo 3
Secondly, let’s prove it for the segment (3.13a). Since f(0) = % and the function f(x) is decreasing in
this segment, we have f(x1) < f(x) < f(0) = % This, we can conclude that for any VA € [0; x1], its image is
mapped to the segment [x1; xx*].
Thirdly, let’s prove it for the interval (3.13c). In this interval, the function f(x) is decreasing and is
bounded below by f(x*) = 3. f(x) —x = -1(3x - 1)® <0 and f(x) < x. Thus

S < 1.
ujmes.tstu.uz
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From this, it follows that the sequence f”(x) is monotonically decreasing. Since it is both monotonically
decreasing and bounded, we conclude that

VA € [x*;0.5] lim f*(2) = %

Theorem 3.2. For any point A € §,  lim W™(1) c M.
n—oo

WhereM:{/l:(x,y,z)eSZ:x:y}.

4. Conclusion

In this study, we investigated the dynamical behavior of a quasi-Non-Volterra cubic stochastic operator acting
on a finite-dimensional simplex. The analysis revealed that the operator admits multiple fixed points, and their
local dynamics depend on the eigenvalue spectrum of the corresponding Jacobian matrix. In particular, we
identified non-hyperbolic trajectories emerging near certain fixed points, where linearization fails to provide
conclusive stability due to the presence of eigenvalues on the unit circle.

To further analyze the global behavior of the system, we constructed a Lyapunov function, which allowed
us to establish sufficient conditions for stability and to describe the asymptotic behavior of trajectories. The
existence of such a function indicates that despite the presence of non-hyperbolic dynamics, the system exhibits
regions of predictable long-term behavior.

Overall, the results contribute to a deeper understanding of higher-order stochastic models in population
dynamics, especially those deviating from the classical Volterra framework. Future research can explore
bifurcation phenomena and the global phase portrait of such operators to gain a more comprehensive view of
their dynamics.

This research was conducted within the framework of the fundamental and applied research project No.
AL-9224093956-RS5 entitled “Dynamics and Applications of Cubic Stochastic Operators.”
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Research article U ZJ M C S

Sammra 3jannit or Celicmunyeckux Bosa ¢ ITomorrbio
Cyxoro Tpenus n Hdemudgepos

Mupzaes 1., Typaues M.C." u Paxmaros H.B.

Annoranusa

B mammoit mccimemoBaTebcKoi paboTe pacCMaTpPUBAETCS 3aJada CEHCMOU3BOIANNN JE€BITUITAKHOTO
3/IaHUsl TOJ[ BO3AEHCTBUEM 4 Ppa3JUYHBbIX PEAJTHHBIX CEHCMUYECKAX BOJH IIyTEM COBMECTHOT'O
HCIIOJIb30BaHUs CEHCMOM30/IATOPOB CYXOI'0 TPEHUsI U PE3UHOMETA/LInYecKux Jemiigepon. 3ydeno
BJIUSTHUE CECMUYECKUX BOJIH HA BEJIMYUHY CJBUTOBON CUJIbI B 3/IAHUU B pe3yJIbTaTe yBEJIUYEHUs U

YMEHbIIIEHUA UX KOJIMIeCTBa.

Kutouesbie cioBa: CyXo€e TpeHwue, CeﬁCMOHBOJ’IHHHH; peBI/IHOMeTaJ'IJ'II/I‘{eCKI/Iﬁ ,/:LeMnd)ep.

IIpenmernas kmaccudpukamme AMS (2020): Ocnosnas: 74-XX; Hononmaurensaas: 74Jxx; 74Kxx; 74K10; T0F35; 74Pxx; 86A15.

Bgenenne

B wmwumpe ocoboe BHUMaHHWE YIEISI€TCsT CTPOUTENLCTBY 3HAHUA C CEHCMO3AIMUTHLIMUA YCTPOHCTBAMI,
IIO3BOJIAIOIIUMY IIOBBICUTH CEACMOCTOMKOCTD U HAJIC2KHOCTDL 3AaHUNA U COOPY2KEHUN IIPU BO3AEUCTBUU CUNBHBIX
ceificMmyeckux BOJIH. B Hacrosinee BpeMs B pasBUTBHIX crpaHax, Takux kKak CIIIA, fnonmsa, Iepmanus,
Poccust, Uranus u Kwurait, Bemgyrcst paboThl 10 CO3JaHUI0 HOBBIX 3(P(EKTUBHBIX THUIIOB CEHCMO3AIUTHBIX
YCTPOMCTB JJjIs pa3/IMYHbIX YacTell HeCyInuX KOHCTPYKIUNA 31aHUNi U COOPY2KCHUI ¢ MIUPOKUM HUCIIOJIL30BAHUECM
MECTHOTO CBIPbsl, YUYHWTBIBasi WX JOJIOBpEMeHHyIo 3kcruiyaranuio [1-3]. B maHHON wnccsiemoBaTenbeKoil
paboTe paccMaTpUBAETCS 33/1a4a CEHCMOM3O/IANNN JEeBATUITAYKHOTO 3/IaHUs 101 BO3eHCTBIEM 4 Pa3IUIHBIX
PeaJIbHBIX CEHCMUYECKUX BOJIH IIyT€éM COBMECTHOI'O HCHOJIb30BAHUSA CEUCMOU30JATOPOB CYXOI'0 TPEHUd U
pPE3MHOMETAINIECKUX JAeMIidpepoB. V3ydeHo BIMAHUE CEHCMUIECKUX BOJH Ha BEJIMIUHY CIBUTOBON CHJIBI B
3JIaHUU B PE3yJIbTaTe YBEJIMUYCHUA U YMEHBIIEHUS UX KOJIUYECTBA.
1. Merox

[Iycth ropuzoHTANBHOE JABUXKEHME OCHOBAHUSI KOHCTPYKIINK 33/ITaHO B BHUJE aKCETEPOTPAMMDBI JI€HCTBUTE b=
HOT'O 3eMJIETPSICEHUsI. 3IaHue [IPEICTABUM OJHOMEPHON CIBUIOBON MOIEBIO C COCPEJIOTOYEHHBIMU MACCAMU U
OEe3BIHEPIINOHHBIMI YIIPYTUMHA CBA3aMu. JIJIs1 TaHHOI KOHCTPYKITNN TPUMEHSIEM KOHEUHbBIE 3JIeMEHTHI CMEIEeHNS,

B pe3yJIbTaTe 4ero MPUXOIUM K CJeLyomieil cucreme IpocThix AuddepeHiuaibabix ypasuenuii [4, 5]:

[M]-{U} +[C] - {U} + [K] - {U} = {Q(1)}, (L1)

{U}=0, {U}=0 uput=0,

rae [M] — mmaronasbHast marpuna mace, [K| — marpuna »xkecrkocreii; [C] = o[M]+ S[K] — marpuna

Bs3koctH, {U} — BekTOp mepemerennii. [ist ceficMOM30TOpa CyXOrO TPEHHUsI YCIOBUE B3AMMOCBSI3U MACChI
poctBepka My U CKOJIBL3AMIEro (pyHJIaMEHTa IIPUHAMAET CJICLYTOMUi BUJI;

Uy = ug — Uy, ecau |Fy| < |Fyp|, T.e. Ipu COBMECTHOM JBUKCHUI, (1.2)

Received : 15-uonp—2025, Accepted : 20—okrs6pp—2025
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Fy = Ff,, 1pu CKOJIb’KEHNH, (1.3)

IJie Uy — TOPU30HTAIBLHOE IIEPEMEIIEHIE POCTBEPKA, U, — HepeMernenne (DyHIAMEHTa, U, — BeJIUYHHA CIABHIA
B MOMEHT BPEMEHH B Hadaje TEKYIIEro COBMECTHOIO JIBIKEHUS 6e3 CKOIbKEHNST HIKHeEl JacTi yH1aMeHTa
U JIBUKEHHS POCTBEPKA, T.6. PA3HOCTb MEXKJly 3HAYCHHSMH IEPEMENeHMil HUKHeH 4acTh (dyHIAMEHTa n
pocTBepka (B HAYaJbHBIA MOMEHT BpeMeHH U, = 0 ), Fy—HEen3BeCTHOE 3HAYEHHE CHUJIbI CIEIUICHHS MEXKLy
BEPXHUM U HUXKHUM (byHIaMeHTaMU;

Fy, =sign(u, — o) - f - P. (1.4)

P — 3Hadenwue cunibl cyxoro tpenus, f — koaddunment cyxoro Tpenus; P — Bec 3manus. Eciim cyxoe Tpenue
CKOJIbYKEHUsI OCYIIECTBJISETCsI Ha OCHOBe MaTepuasia dpropomiacra-4, To f = 0.05. Ilpu coBMecTHOM JBUKEHUU

nepeMerieHne ug ONpeJielisieTcs: mo paseHcTBy (1.2) u ypasHeHue apurkenusi Maccbl My numeer sug [4],[5]:
Myiiy + kuy + crtn — ka(ug — u1) — co(ty — 1) = kiug + c1tio (1.5)

B srom ciyuae Q1 = kjug + c11p, ocrajbHbIe 3j1eMeHThl BekTopa {Q}, COOTBETCTBYOIINE MOPU30HTAJIBHBIM
HepeMeIeHusIM COCPEJOTOYEHHBIX MaCC, PABHbI HYJIIO.

CkoylbyKeHre ¢ CyXUM TPEHHEM HACTYIIAeT TOJLKO TOTMa, KOrja BhinojHsercsa ycuosue (1.3). B arom ciydae
nmemrdepHas cuta umeer BUn Fyn, = kou, + coti.. Paccmarpusaemas 3amaua (1.1), (1.2), (1.3) smisiercs
HeJIMHEHHOM 3aj1a4eii, MpPU 3TOM OTCYTCTBYIOT YCJIOBUS BBIYUCIEHUs HeM3BecTHON dyukmuu Fj, a Takke BO
BpeMsT IMHAMIIECKOTO TIPOIecca U3MeHstIoTest pasmepHoctn Marpurl [M] u [K]. IIpu ckobKeHnn nMeeT MecTo

ypasHenue jist Maccel [Mo] [4, 5]:
Myiig + koug — k1 (u1 — U,o) + cottg — 1 (U1 — UQ) = Ff,- + k‘oug + Coﬂg, (16)

rae Qo = Fyp + koug + cotig; ko, Co— KECTKOCTb M BS3KOCTb PE3UHOMETAJUINYECKOI'O H30JIATOPA, JIOIOJIHH-
TEJIbHO PAa3MEIEeHHOro MeXXIy (byHIAMEHTOM U POCTBEPKOM. Jljis perieHus 3ajadu B I[EJIOM BOCIIOJIb3YEMCs

CJIeAYIOMMM ajropuTMoM. Ha KazKIIoM mare o BpeMEHH pelraeM 3aJa9d B TPEX IMOCTAHOBKAX:
1. ¥Ypasuenwue (1.1) pemaem ¢ yciosuem (1.2);
2. Ypasuenue (1.1) perraem ¢ ycaosuem (1.3), upu Fy = f - P;
3. Vpasuenue (1.1) pemaem ¢ yciosuem (1.3), npu Fy = —f - P.

ITpu srom marpunst [M] u [K] B mepsoii mocraHoBKe MMEIOT pasMep m X m (34ech m KOJUYEeCTBO ITazKeil
3/1aHUsI), & BO BTOPOH U TpeThel mocraHoBkax (m + 1) X (m + 1). Bbibop meficTBUTEIBHOTO DEIleHnsT U3 STUX
TPeX pelleHnii OCyIIeCTBIISeTCs ClleyonmM 06pasoM. Ecin orHOCHTEIbHBIE CKOPOCTH g — Uy BO BTOPOM 1
TPEThEM YCJIOBHUAX 3aJad MMEIOT Pa3Hble 3HAKHU, IIPABHJILHOE PEIEHNE SBJIAETCS PEIIeHNeM 3a/1a9l B IIePBOM
YCJIOBUH, IIOCKOIBKY CHJIA CYXOLO TPEHHs IPHBOAUT (PYHIAMEHT B NBIKEHHE B DA3HBIX HAIPABICHUSIX, U
[O9TOMY HEU3BECTHAs CHJIa MEHBIIE [IOPOrOBOrO 3HAYMEHHS CHJIBI CYXOTO TPEHHS, TO €CTb CKOJbIKEHUS HeT.
Eciu oTHOCHTEIbHBIE CKOPOCTH BO BTOPOM U TPETHEM YCIOBUAX 33a<H UMEIOT OIUHAKOBEII 3HAK, TO PEIICHHe
[P yCJIOBUY HAUMEHBIIETO aBCOMIOTHOrO 3HAUCHIUS OTHOCATEILHON CKOPOCTH SIBJISCTCS ACHCTBUTEILHBIM, TaK
KaK CHJIa CyXOrO TPEHHs BCETa HAIPABJICHa IIPOTHB OTHOCUTEILHOIO IBUXKCHUS. Bce TpHU 3aJadu pemaiorcs

MmerozioM Heromapka [4, 5].

1.1. Pesynbrar.

IIpoananu3upyemM pe3ysIbTAThl BBIYUCIECHUN C TOMOIIBIO CAEIYIONMUX MpUMepoB. JlaHbl XapaKTepUCTUKH
9-5Ta’KHOIO 3/aHUsI, a TaKXKe JeHCTBUTEJIbHBIE ceficMOorpaduIecKue 3alKChA CJIeIYIONUX 3eMJIeTPICEeHH.
IIpubnukeHHOE COMOCTABJIEHNE PACUYETOB IPOBEJICHO C MCIOJIb30BAHUEM PE3YJIbTATOB BO3JEHCTBUSA 4 TUIIOB

3eMJICTPACCHUI:
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Nel. A6xapckoe semerpscenne (Mpam 20.06.1990) 8 6amios mo mkaite MSK-64: yckopernme — 1.93 m/c?;

ckopoctb — 0.19 m/c¢; nepemernenue — 0.0641 M, npogoEKUTEHLHOCTD — 36 CeK.

Ne2. Taznunckoe 3emyerpscenue (Ysoekucran 17.05.1978) Gosee 9 6asutos no mkasise MSK-64: yckopenue

- 7.22 M/CQ; ckopoctb — 0.62 m/c; nepemernenue — 0.18 M; IPOOJZKUTEIHHOCTD — 28 CEK.

Ne3. Bemsterpsicenue Duzce (Typrus 17.08.1999) marnutymoit 9 no mkane MSK-64: yckopenne — 3.66

M/c?, ckopocth — 0.45 m/c; mepemernierne — 0.1065 M, TIPOIOIAKHUTEILHOCTD — 36 CeK.

Ne4. Tabacckoe (pan) semuerpsicenne 16.09.1978 6asios Beie 9 no mkame MSK-64: yckopenne — 10.17

M/c?; ckopocth — 0.88 M/c; mepenmernierne — 0.3446 M; TTPOIONIAKHUTETLHOCTD — 78.398 cex.

Tabauna 1. 3emaerpscenne Nel

5 Bes RO IIpu cxkosbxenun f = 0.05

g o (1T) U 49HUC/Ie PE3UHOMETAINIECKUX AeMII(DEPOB ¢1 max (KH)
27ta | 23ta | 19ta | 15 ta 9 ta 0 ta

1 13200 11400 | 13000 | 12200 | 14300 | 13100 2350

2 11700 12800 | 14100 | 11200 | 13700 | 14200 2680

3 10700 11600 | 12500 | 10900 | 13800 | 13600 2910

4 9510 12200 | 13300 | 11400 | 13100 | 12900 3000

5 8140 12600 | 14000 | 11400 | 13600 | 12200 2900

6 6640 11700 | 11600 | 11800 | 13300 | 11700 2650

7 5040 11800 | 11700 | 12600 | 12000 | 11600 2310

8 3350 11000 | 10800 | 11800 | 13000 | 11300 1710

9 1600 7050 6850 7150 8960 7560 876
Tabnuna 2. 3emserpsicenne Ne2

é IEV— ITpu ckonbxkenuu f = 0.05

5 o (D) U 4YHCJIe PE3UHOMETAJINIECKUX 1eMII(EePOB ¢1 max (KH)
27ta | 23ta | 19ta | 15 ta 9 ta 0 ta

1 68100 14800 | 15900 | 20300 | 18400 | 16100 12300

2 61000 11300 | 13000 | 12100 | 11500 | 13800 11000

3 56300 12100 | 12700 | 13400 | 12100 | 13900 10400

4 50700 12200 | 14700 | 15300 | 11200 | 13500 10200

5 44000 11300 | 13900 | 15300 | 10600 | 14000 10000

6 36400 12200 | 13000 | 13400 | 12300 | 14700 9800

7 28700 12800 | 13400 | 12400 | 13000 | 12900 9200

8 19800 10400 | 13200 | 12500 | 11300 | 12800 7150

9 9640 6760 | 8390 | 7560 | 7410 | 8020 6400
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Tabauna 3. 3emaerpsicenne Ne3

% Bes ckoMbreris IIpu crosbxennn f = 0.05
& o (ET) U IHCJIe PE3SUHOMETAJUIMIECKUX IeMIMbEPOB ¢1 max (KH)
27ta | 23ta | 19ta | 15 ta 9 ta 0 ta
1 19400 15700 | 13900 | 15200 | 14600 | 15700 2210
2 18100 11300 | 9470 | 10000 | 11600 | 11300 2450
3 16500 11900 | 9310 | 12000 | 9890 | 11900 2670
4 14600 11400 | 8500 | 10900 | 8900 | 11400 2850
5 12500 10800 | 8380 | 10700 | 9280 | 10800 2950
6 10200 11500 | 7450 | 11600 | 10500 | 11500 2890
7 7770 9600 | 7330 | 10100 | 10700 | 14900 2580
8 5150 9070 8620 | 10000 | 9990 | 15000 1950
9 2460 5740 | 5470 | 7020 | 5980 | 9310 1000
Tabauna 4. 3emuerpsicenne Ned
§ R ITpu ckonbxkenun f = 0.05
5 o () U 4HCJIe PE3UHOMETAJUINIECKUX NeMII(PEPOB ¢1 max (KH)
27ta | 23ta | 19ta | 15 ta 9 ta 0 ta
1 131000 18700 | 14800 | 20900 | 19900 | 19300 21000
2 124000 13600 | 12200 | 13100 | 15300 | 13400 12800
3 115000 12700 | 13000 | 13300 | 14900 | 15200 14200
4 104000 12500 | 12700 | 12900 | 13900 | 15500 14300
5 90800 13200 | 13600 | 13000 | 13200 | 15300 12600
6 74900 11700 | 15200 | 13500 | 12500 | 15100 13200
7 57200 11300 | 15200 | 15400 | 14100 | 16400 13300
8 38200 11300 | 12700 | 15400 | 15300 | 15000 13100
9 18300 7510 7710 | 10000 | 10000 | 9380 8180

CyIecTByoIIye 3aUCh CUIBHBIX 3eMJIETPSICEHUH B3sTHI U3 eBpONeiicKoit 6a3bl JaHHbIX [6].
Hessarusraxnoe 3nanue cepun 76-017CII/53 umeer cieyromnye XapaKTepUCTUKH: KPYIHOIAHEJIbHOE 3JaHUe
pasmepom B miane 291.6 M?; cocpeoToUeHHbBIE MACCHI B yPOBHAX BepXHeil yacTu (byHIaMenTa u sraxeit My =
449000 xr, M7 = 379500 kr, My = 379500 kr, M3 = 379500 kr, My = 379500 kr, M5 = 379500 kr, Mg = 379500
kr, M7 = 379500 kr, Mg = 379500 r, My = 341000 kr, mpu 3TOM OOIMUIl BeC 3MaHUS, MABANINN Ha HUKHIOKO
JacTh yHmaMenTa, pasen P = 37494800 H; caBuroBble KeCTKOCTH MO 3TaXKaM OAMHAKOBEI k = 32.357 - 10°
H/M; BI3KOCTb MaTepuaJia 3JaHUs 110 TazKaM OUHAKOBA, (1; = 10.58 - 108 He /M. BHaueHns 9acTOT COBCTBEHHBIX
KoJIebaHuUil ¢ KeCcTKOi 3aeaKoil dyHmamenTa: w; = 79 ', wo = 160 ', wy = 239 ', wy = 314 ', ws = 380
T'n. s 3amuThl paccCMAaTPUBAEMOro 9 3TaxKHOTO 37IaHUS OT CEHCMUYIECKUX BOJIH, HAPSY C CyXUM TPEHUEM,
MBI UCIOJIb3yeM 27 pe3nHOMeTa/IndecKux JeMirdepon. Jemndepsr nponssogcrsa kommanuu FIP. 2Kectkocts

ommoro gemmdepa B cepun S-S 600/152 pasna ko = 0.74-10° H/m [?|. IIpoamammsupyem pesyabTaThl,
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YMEHBIIIB KOTIIeCTBO eMiidepos cootsercTierHo 10 27 (kg = 19.98 - 108 H/m), 23 (ko = 17.02 - 10° H/wm), 19
(ko = 14.06 - 105 H/m), 15 (kg = 11.1-10% H/m) u 9 (ko = 6.66 - 10° H/m), a Takke paccuntaem Bapuant 6e3
pe3rHOMeTAIInIecKoro jeMidepa. IIpu ducIeHHOM perieHnn 33/1a4 ¢ CyXUM TPeHHeM, He 3aBUCHMO OT BBIGODa
SIBHON WMJIM HesIBHON KOHEYHO-DA3HOCTHON CXEMBI, 1Al [0 BPEMEHH HEOOXOIMMO MOAGUPATH Jis 00ecredeH st

JIOCTATOYHOM TOYHOCTH. B Hammmx mpuMepax pacd eTop mar 1o Bpemenu 6b11 pasern 0.0001.

SaKJ/II04YeHHe.

B namnOii wmccienmoBaTesbcKoit paboTe HAa OCHOBE PpA3/IMIHBIX 3allCeil pPeaJbHBIX CeHCMUYIECKHUX
BOJIH IIOKa3aHO, 4YTO CelcMU4YecKasd U30JAINNAsS C COBMECTHBIM HCIIOJB30BAaHUEM CyXOI'O TpeHUd U
PE3MHOMETAJIINIECKNX HU30JIITOPOB MeHee 3(P(MEKTUBHA, [YeM CeficCMUYecKas WU30JIsIUsl TOJBKO C CYXUM
rperreM (Tabi. Vcnosnb3osanue gemndepos kommnanuu FIP s ceficMonsonsnuu 31aHuil 00X0AUTCsT JOPOTO.
Ucnosib3zoBanne droporiacrta, Marepuasa, OOECIeIHBAIONIEr0 CKOJIbXKEHUE, 3HAYUTEIHHO JIeIeBse, HYeM

JieMIibepsl.
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Protection of Buildings From Seismic Waves Using Dry
Fracture and Dempfers

Mirzayev 1., Turdiyev M.S. and Raxmatov N.B.

Abstract

In this research work, the problem of seismic isolation of a nine-story building under the influence of 4 different
real seismic waves through the joint use of dry friction isolators and rubber-metal dampers is considered. The
influence of seismic waves on the magnitude of the shear force in the building as a result of their increase and
decrease was studied.
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Analysis of the dynamics of quadratic mappings of a
simplex with skew-symmetric matrices that are not
in general position

D.B.Eshmamatova * A.A.Alimov and M.A.Tadzhieva

ABSTRACT

The Lotka - Volterra systems arise in questions of biology, population genetics, epidemiology,
ecology, economics as well as in some branches of theoretical physics, in particular, in
solid state physics. Some important questions of ecology (for example, biogens cycles) can
be studied using Lotka — Volterra mappings operating in a four-dimensional simplex with
homogeneous tournaments. In this regard, the work is devoted to the construction and study of
cards of fixed points of Lotka — Volterra mappings operating in a four-dimensional simplex in
the case of homogeneous tournaments (for arbitrary coefficients of a skew-symmetric matrix).
The card of fixed points gives us a more detailed understanding of the asymptotic behavior of
the trajectories of discrete dynamical Lotka — Volterra systems. In the paper, we show that even
if the tournaments corresponding to the Lotka — Volterra mappings are homogeneous, among
them it is possible to distinguish a class of mappings with skew-symmetric matrices that are
not matrices in a general position. It is not possible to generalize this kind of mappings; each
of them represents a map of fixed points of a different type. This is clearly noted in the work. It
is also shown that even in the case when the tournament corresponding to the Lotka — Volterra
mapping is homogeneous, the set of fixed points is infinite and the card of fixed points consists
of a convex hull of fixed points belonging to strong faces.

Keywords: fixed point; homogeneous tournament; quadratic Lotka — Volterra mapping; simplex.

AMS Subject Classification (2020): Primary: 37B25 ; Secondary: 37C25; 37C27.

1. Introduction

One of the main problems in mathematical biology, epidemiology and ecology is the study of the
asymptotic behavior of the trajectories of dynamical systems. The works [1-4] are devoted to the study
of continuous dynamical systems and the asymptotic behavior of their trajectories. The proposed work
is devoted to the analysis of the trajectories of interior points of quadratic Lotka — Volterra mappings
operating in a four-dimensional simplex that are not in a general position. Before presenting the main
results, let us start with preliminary information and a review of the literature.

Received : 05-june—2025, Accepted : 10-november—2025
* Corresponding author


 https://doi.org/10.56143/ujmcs.v1i1.4\ 

Analysis of the dynamics of quadratic mappings of a simplex with skew-symmetric matrices that are not in general position

Let .
sm1l = {x eR™ 2z = (21,0, Tp) 1 T; > O,Ziti =1}
i=1

the standard simplex in R™ and A = (ay;), k,i =1,m — is a skew-symmetric matrix with conditions
laki| < 1.
The mapping V : S~ ! — §™~! defined by equality

Vi), =z <1 + Zakixz') , k=1,m, (1.1)
i=1

is called the discrete Lotka — Volterra operator. Mappings of the form (1.1) arise in problems of population

genetics that describe the evolution of a certain population over time, and time is considered discrete [5].

Each Lotka — Volterra operator and its corresponding skew-symmetric matrix are associated with a
complete oriented tournament graph [6], [7] and a partially oriented graph [8].

A complete directed graph — tournament is constructed if the skew-symmetric matrix is in the general
position [6]. To build a tournament, let us take m points numbered 1, 2, ..., m on the plane and connect the
point with the number £ to the point with the number i with an arc directed from k to i if a;; < 0 and in
the opposite direction if aj; > 0.

So, the graph constructed in this way is called a tournament corresponding to the Lotka — Volterra
operator and we denote it by 7,,.

A tournament is called strong if there is a path from any vertex to any other according to the orientation
(direction of the arc).

A tournament that does not have strong subtournaments is called a transitive.

Definition 1.1. [9] A tournament is called homogeneous if any of its sub-tournaments is either strong or
transitive.

Theorem 1.2. A is a skew-symmetric matrix, then the sets

P={reS™"': Az >0} and Q={recS™': Ax <0}

non-empty convex polyhedra.
Theorem 1.3. If A is a generic skew-symmetric matrix, then the set P (respectively @) consists of a single
point.

2. The card of fixed points of the operator V

Let us recall the concept of a card of fixed points for a dynamic system (1.1) [9], [10]:

Leta C I ={1,...,5}. We represent the set of all fixed points {z € S* : V& = z} of the operator V as points
on the plane, then for each o C I the fixed point @, is connected by an arc to a fixed point P, directed from
P, to Q.. The resulting directed graph is called the card of fixed points of the operator I we denote it by
Gv.

It is known [11], [12] that for m = 5, only the next four tournaments are homogeneous. These are the
tournaments shown in Figure 1.

In case a), the tournament is transitive. If the tournament is transitive, then any trajectory of the Lotka
— Volterra mapping converges to one of the vertices of the simplex [10]. This means that the fixed point
card Gy coincides with the tournament itself 75. In the case of transitivity, the operator has no fixed points
except the vertices of the simplex [12]. Next, we mark the vertices of the tournaments with the numbers
1,2,3,4,5 from top to bottom, and the substructure with vertices, for example, 1,2, 5, is denoted by 125 .
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Figure 1. Homogeneous tournament.

Definition 2.1.[11] A skew-symmetric matrix A = (ay;) is called a general position matrix if all major
minors of even order are nonzero.

If the skew-symmetric matrix of general position, then the corresponding Lotka — Volterra mapping V'
with coefficients a;; is also a general position operator. The task assigned to us is to study quadratic Lotka
— Volterra mappings operating in a four-dimensional simplex that are not in a general position. That is, we
show that even if the tournament corresponding to the skew-symmetric matrix is homogeneous, but the
matrix itself and, accordingly, the operator may not be in the general position. Since the skew-symmetric
matrix of the system is not a matrix of general position, i.e. all major minors of the fourth order (there
are only five of them in this case) are zero. Fixed point cards have been constructed and studied for such
mappings, since the structure of fixed point cards gives a detailed idea of the asymptotic behavior of the
trajectories of interior points of discrete Lotka — Volterra dynamical systems.

In [12], [13] it is proved that skew-symmetric matrices of general position form an open and everywhere
dense subset in the set of all skew-symmetric matrices.

For example, the mapping of Lotka-Volterra V : $% — S3 has the form:

z1(1 + a1 — a13w3 + a1axy),

)
T2(1 — a1221 + azsxs — agary),
)
)

/
T (

’

Ty (

jg x3(1 4+ a13x1 — ag3w2 + azaxy),
:1 24(1 — a14%1 + 2472 — azax3),

where a; € [-1;1], k,i=1,4

This operator is a general position operator if and only if the coefficients ax; € [-1;1], k,i¢ = 1,4 satisfy
the following conditions:

ag; #0, k,i=1,4 and ajzass — aizags + ajgazs # 0.

Fixed point cards for the Lotka — Volterra operators were first introduced in [5] and it also introduced
the concept of a homogeneous card for Lotka — Volterra mappings. Many other useful properties of the
fixed point card are given in [12], [13]. But these papers do not consider in detail the cases when the skew-
symmetric matrix corresponding to the Lotka — Volterra mapping is not in the general position. Our goal
is to consider these cases in more detail, since these mappings can serve as a discrete model of the biogen
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cycle in an ecosystem. In [14], the Lotka — Volterra mapping is investigated, acting in a four-dimensional
simplex as a discrete model of the phosphorus and carbon cycle, depending on the nature of the card of
fixed points of this mapping. Here we show that among those operators there can also be those that are
not in general position and the set of their fixed points is an infinite set. Let us go over each case in detail.

3. Main results

a) Consider the Lotka — Volterra operator acting in
5
84 = {SU = (x13x27x37m471'5) € ]Rf)vmi > Oazxz = 1}7

=1

with the corresponding transitive tournament 7.

Figure 2. Transitive tournament.

The skew-symmetric matrix corresponding to this operator has the form:

0 —ai2 —aiz —aix —ags
ais 0 —ag3 —a4 —ass
A= aiz a3 0 —ag4 —ass
a4 Qa4 a34 0 —a45
ais a5 azs  Q4s 0

where |ax;| < 1.
It is easy to see from the classical algebra course that there are only five major minors of the fourth order
for this matrix.
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The determinant of the skew-symmetric matrix Aj!

0
a23
11 _
A =
Q24
a25

0 —a3 —azy —ass
411 azs 0 —ags —ass
1 p—
az4  a34 0 —ays
azs  azs  ags 0

—a23 —Q4  —as2s
0 —a34  —ass
a34 0 —a45
ass aqs5 0

is equal to the following expression:

2
= (a23a45 — 24035 + G25a34)".

Similarly, we can calculate the values of the remaining fourth-order minors:

22 2
A3 = (a15a34 — a14035 + a13045)°,

33 2
A3® = (a15a24 — a14025 + a12045)°,

44 2
A" = (a15a23 — a13a25 + a12a35)°,

55 2
A5® = (a14a23 — a13024 + a12034)°.

Now we can select the elements of the skew-symmetric matrix so that the values of these minors are

a2 = @13 = A14 = Q15 = A23 = A34 = A45 =

zero,

ie.
All
A22
ASS
A44

55

A5

2
(a23a45 — A24a35 + a25a34)° =

2
15034 — 014035 + A13G45
2

( )" =
(a15a24 — @14a25 + a12045)° =
( )? =

Q15023 — 013025 + 012035

(a14a23 — a13G24 + 012(134)

1 2

3 024 =03 = 3, agzs =1
(1-4+3)2=
1-2+1)%=0,
(2-3+1)*=0,
(1-3+2)?2=0,
(1-2+1)?=0.

The picture is clear here, since the tournament is transitive, the card of fixed points completely coincides

with it.

The tournament shown in Figure is strong and in its expanded form looks as shown in Figure 3.

From the Figure 3 we see that 75 has three cyclic triples 125,135,145, i.e. three strong substructures
with three vertices. It is known [], [] that if a tournament with three vertices is strong, then the mapping
corresponding to this tournament has a fixed point inside the simplex, unlike its vertices. Below we will
find the coordinates of these points.

The skew-symmetric matrix corresponding to this strong tournament has the form:

0 —aj2 —ais

a2 0 —as3
A = a3 a3 O

a14 a24 a34

—aizs a2s5 aszs

—ai14
—a24
—a34

0

a45

ais
—aszs
—ass
—Q45

0
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Figure 3. Strong tournament.

In [], the same operator was investigated when it is in a general position and it is proposed as a discrete
model of the carbon and phosphorus cycle in an ecosystem, depending on the type of fixed point map. But
as it turned out, for this operator, too, the elements of the skew-symmetric matrix can be selected so that
all major minors of the fourth order are equal to zero,

1
Q14 = Q15 = A23 = A25 = A34 = A35 = G45 = gy a13:a24:§7 a2 =1

Al = (assaa5 — azsass + assaze)® = (1—-2+1)>=0

A3? = (a14a35 — a13a45 + agsazs)® = (1 -2+ 1)* =0,
A33 (a14a25 — a12a45 + (115(124)2 (1-3+ 2)2 =0,
A44 (a13a25 — a12a35 + a15a23)2 (2-3+ 1)2 =0,
AZ® = (a12a34 — a13a24 + a14a23)* = (1 =4+ 3)* =0

The mapping in this case looks like

) =x1(1—x9 — 2x5 — tx4 + 35),

Ty = xo(1+ 21 — 3 T3 — §x4f%x5),

ry = a3(1+ 230+ fw0 — f34 — 15), (3.1)
vy =241+ Jz1 + 220 + d23 — Lap),

’

Ty = (1—7951—&— =Ty + x3—|— x4)

and it is not in the general position, since all major minors of the fourth order are zero and the card of fixed
points for this operator has the form shown in Figure 4.

The card of fixed points has the form of an undirected graph, which means that the set of fixed points
is infinite and consists of a convex hull of three fixed points that belong to the strong faces of the simplex
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125

Gvy:

145 135

Figure 4. The card of fixed point for homogeneous tournament.

I'195,T'135, '145. Now, in order to investigate the characters of fixed points belonging to the convex hull of
fixed points belonging to strong faces, we first find their coordinates explicitly by solving the equation
Va = z, according to [10]:

11 3 1 1 1 1 11
M R — M _ - _ M- - R
1<575707075>1 2<470747072>1 5<370707373>

Now let us take their convex hull:

For the considered mapping, an arbitrary fixed point belonging to this shell has coordinates of the form:

1 1oL 3

Let a = 8 =y = 1, then the fixed point has the form M (180, 5 %, 5.8,

Now we Calculate the eigenvalues for this fixed point, i.e. we analyze the spectrum of the Jacobian at
this point and get the following;:

1
A 57(90+ZV51)
Ny = (90 510)
27 90 ‘

It is easy to see that the modulo eigenvalues are greater than one. This means that the entire convex hull
consists of repulsive fixed points. The definitions describing the characters of fixed points are given in [11],
[12].

Now, let us move on to the third tournament from Figure 1 (see Figure 5).

This strong tournament, unlike the previous one, has four strong sub-tournaments, with three vertices -
135,145, 235, 245. Each of these strong triples has one interior fixed point. Let us select the elements of the
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Figure 5. The homogeneous tournament.

skew-symmetric matrix

(12 = G14 =G24 = G35 = 34 = 35 = a45 = 1, a5 = as3 =2, a;z3 =3

and then
o -1 -3 -1 2
1 o -2 -1 1
1
A=— 2 -1 -1
3 3 0
1

1 1 0 -1
-2 -1 1 1 0

we get the minors equal to zero, i.e.

At = (agqazs — aszaqs + azsazs)® = (1 -2+ 1)> =0

A3? = (a14a35 — ar3a45 + a15a31)° = (1 =3 +2) =
AR = (a12a45 — a15a24 + arsa25)® = (1 -2+ 1)> =
A7t = (a12a35 — a15a23 + a13a5)° = (1 — 4+ 3)> =

= (a12a34 — a13a24 + a14023)° = (1 =3+ 2)% =

Since in this case there are four interior fixed points belonging to strong faces, the card of fixed points
looks like a convex hull of them (see Figure 6).

Here, as in the previous case, we can explicitly calculate the coordinates of the vertices of the card and
check the characters of the fixed points belonging to this card.

The last — fourth tournament has five strong sub-tournaments, which means that the card has interior
fixed points belonging to the faces of the simplex I'124, I'134, T'135, 235 and I'ay5. Here, you can also select
the elements of a skew-symmetric matrix, so that all its fourth-order minors are equal to zero.

(12 = G13 = Q14 = Q15 = 024 = dg5 = a35 = 1, ao3 = as5 =2, az4 =3
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=
i

235 145

[
un

Figure 6. The card of fixed point for homogeneous tournament.

1 1 -1 -2 0

2
= (agaa35 — a23G45 + a25a34)° =

(1-
A3 = (a13a45 — a15a34 + argass)” = (1+2 —3)* =0,

(

(

( ) = )
A3} = (a14a95 — ar2a45 + a15a24)> = (1 =2+ 1)* =0,
Ai = (a12a35 — a15a23 + aizazs)? = (1 —2+1)? =0,
Ag = (a13a24 — a12a34 + a14a23)2 (1-3+ 2)2 =0.

The fixed points card of this operator has the form shown in Figure 7.

124
Gv:

73 134

o]
N

35 135

Figure 7. The card of fixed point for homogeneous tournament.

Inonclusion, we have constructively proved the following theorem.
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Corollary 3.1. Let give a discrete Lotka — Volterra mapping of the form (1.1). If all the major minors of
the second order of the skew-symmetric matrix corresponding to this mapping are nonzero, then

—if all fourth-order minors are nonzero, then all eigenvalues of the skew-symmetric matrix are complex
numbers and the kernel is zero,

detA#0, KerA={0},

that is, the mapping is in the general position;

— if all the major minors of the fourth order are zero, then the core of the skew-symmetric matrix will be
nonzero, i.e. KerA # {0}. The equation Az = 0 has a solution and the eigenvalues of the skew-symmetric
matrix are modulo greater than one, which means that the card of fixed points consists of repulsive fixed
points.

4, Conclusion

The main result of this paper, in contrast to works [5], [11], [12], is the study of quadratic Lotka — Volterra
mappings that are not mappings in general position. Mappings of this nature can be proposed as a discrete
model to study the biogen cycle in the ecosystem [13]. In the paper, we analyze the cases where all the
principal minors of even order are equal to zero, the set of fixed points is infinite, and the card of fixed
points consists of the convex hull of fixed points belonging to strong faces. The main result of the work is
Theorem 3, in which the kernel of a skew-symmetric matrix and its eigenvalues are analyzed. As a result,
the nature of the fixed points of the considered mappings is determined. The cases considered in this paper
can be used as a discrete model of the nitrogen cycle. We will consider the application in the next paper. In
the paper we use elements of the graph theory in order to clearly see the dynamic picture of the considered
mappings, since the use of elements of graph theory and the construction of cards of fixed points helps to
visually build a picture in problems of ecology, epidemiology etc.
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Pemenne ypapaenunss Mon:ka-Amiepa ¢ ICIOIb30BaHIEM
reOMeTPUUIECKIX IIpeodpasoBaHnii

Abaymtaasuz Aprukbaes, I'yirroza Xoamypomosa *

Annoranus

Teomerpuyeckast 3ajada BOCCTAHOBJIEHNs BBLIIYKJIOW IIOBEPXHOCTH 110 3aJaHHONR  (DYHKIUH
SKBUBAJEHTHA PEIEHUIO ONpeseeHHoro ypabhenusi Momxka-Amnepa.B stom ciyuae BHemHsst
KpUBH3HA oOlpejessiercs Kak GyHKIHA OopesieBckux MHOXKecTB. V. f. Bakenbman mocrpomt
9Ty TEOPHUIO M JIOKa3aJl CYyIIEeCTBOBAHME W €JUHCTBEHHOCTH pelleHust ypasHeHust Momxka-Amiepa
SJUTUIITHYIECKOIO THITA B OJHOCBSI3HOW BBIMYyKJONW obsactu. A. ApreikGaeB o600IIMII 3TO perreHue
Ha CjIydail HEOJHOCBSI3HOW 00JIacTH, IPUMEHssi I'eOMETPHUIO TaJjinjleeBa NIpocTpaHcTBa. JlamHas
paboTa TOCBAIIEHA AHATUTHIECKOMY DeINeHnio ypasHeHHsa Momxka-AMuepa B HEOIHOCBSIHOMN
obstacTu. BHelHsIsT KpUBU3HA [TOBEPXHOCTH OIIPE/IEIISIETCSI B HEOJHOCB3HOI 00/1aCTH, OrPAHUYEHHOM
KOHIIEHTPHYeCKUME OKpyxKHocTsimu.Ilpumensist npeobpasoBanue, mpe/icTaBiisiioniee coboil IBUKEHNE
rajimseeBa IIPOCTPAHCTBA, U IIEPEXO/] B MIOJIPHYIO CHCTEMY KOOD/IMHAT, ypaBHEHHe MOIUMHUIIPYeTCs,
B KOTOPOM MOYKHO Pa3J/IeJINTh [IePEeMEHHbIE DEIeHNs], YPABHEHUE UINETCs JJIsl CYMMBI TpeX (OyHKIHUI.
B pesynbrare mosyueH aHAJUTHYUECKHAN BUJI PEIIEHUS] B HEOJHOCBSI3HOW OOJIACTH, OTPAHUYCHHOM

KOHIICHTPHUYIECKUMU OKPY2KHOCTAMMU.

Komrouessle ciioBa: [anuneeBo nasuzkenue;ypasuenune Monxka-Amnepa; rpynna [efizenbepra; mosiHas KpUBU3HA,; IOJSPHAS CHCTEMA

KOOpauHAT.

IIpenmernas kiaccudukanume AMS (2020): Ocunosrasi: 00A00 ; Honosaurensrasi: 00B00; 00C00; 00D00; 00E00; 00F00.

1. Bsenenue

TeomeTpudeckuilt MeTOJ| perieHus SJTMITHIECKOTO ypaBHeHus Momxka-AMiepa MOKa3bIBAET IKBUBAJIEHT-
HOCTb PeIeHUsI TOI'0 YPaBHEHWsI B BBIIYKJIONH OJHOCBSI3HOW 00JIacTH 3ajade BOCCTAHOBJIEHWS BBIIIYKJION
HOBEPXHOCTH 1O BHeMNHeH kpususHe [1-4]. Vcnob3ysi TeOMETPUIO HEEBKIIMIOBBIX IPOCTPAHCTB, A. ApTHIKGaes
JIOKa3aJl CyIeCTBOBaHME WM €JMHCTBEHHOCTH pellleHus ypaBHeHusi MomxKa-AMIlepa 3JUIMIITHYECKOTO THIA B
IByCBsi3HOM obsactu [5]. B mamHo# pabore Mbl Haliziem pemenue ypasHeHns MoHzKa- AMIIEpa 3JUTUIITHYECKOTO

THUIIA B HEOIHOCBSI3HON 00JIACTH.
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* Corresponding author
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2. IlpensapurebHble CBeJIEHUS

IycTs maHa NJIOCKOCTDH 7 U Ha Hell 3aj1aHa cucreMa Koopauuar Oxy. B aroMm ciydae ymobast TOUKa IJIOCKOCTH
uMeeT CBOIO mapy KoopjamHar (z,y). Paccrosinue mex ity Toukamu A (z1,y1) u B (22, y2) pasHo [6]:

Ty —x1|, T1# T
d— ‘2 1‘ 17é 2 (21)

ly2 —y1|, =1 =22
IIycts mamo cnemytoree addunnOE MpeodpazoBaHme:

¥=x+a

(2.2)
/

vy =hzx+y+b
D10 1peobpazoBaHUe MPEJICTABIAET CODOM TrajMIeeBCKOe JIBUXKEHHE B IIJIOCKOCTH, COXPAHSIONee 3aaHHOe
paccrostaue (2.1) [7]. TanuneeBckoe JBUKEHNE OTHOCUTCS K TpyTiie peobGpasosanuit [eitzentepra, B KOTOPOIi

MATPHUIIA TIEPEXoJIa UMeeT Crerytomuii sug, [8,9]:

1 0
C = 2.3
Bl (2.3)
3nech, mockosabky det C'= 1, mioraab 00aCTH TaKyKe WHBAPUAHTHA OTHOCHATEIHHO STOTO IPeoOpa30BAHUS.

Jpmxkenue (2.2) cocTouT u3 ciaeayomux aByx dacreit [10]:

¥=x+a =z

. . (2.4)
Yy =y+b y =hr+y
ITepBriit u3 HUX — HapaJIe/IbHBIA [T€pEeHOC, a BTOPOil — moBopoT Ha Itockoctu Lasmiies. [Ipu sTom ock Oy
cOXpaHsieT CBOE HaIlpaBjeHne, a ocb Ox 3aMensiercs npsmoit y = hx + [. [eomerpudeckoe 3natenne napamMerpa
h BBOIUTCS Wepe3 MOHSATHE YTJIa MEXKIY MpsaMbIMHU. [IycTh gaHa BBITyKJIas pPeryIsipHasi MOBEPXHOCTH F. Mpbr
MOXKEM HaiiTh €€ ypaBHEHHe 110 e€ IOJHOM KpuBu3He. Haxoxk1eHne MOBEPXHOCTH IO €€ MOJIHON KPUBHU3HE, TO

€CTh KOTJ[a M3BECTHA MpaBas YacTh, SKBUBAJIEHTHO pelteHuio ypasueruns Momxka- Ammepa:

Rrxlyy — Ziy = (b(xayazvzxazy) (25)

JleBasi wacTh ypaBHeHus mpejcraBjser coboit omeparop Momka-Ammepa. Huke Mbl HaiigéMm perenne
ypaBrenust Monxka-Awmuepa (2.5) B 4aCTHOM cJIydae, UCIIOJIb3Ys peobpazoBanue (2.2), KOrja IoJIHask KPUBU3HA
apastercs (pyHKIUMEH, 3aJaHH0i Ha KOJbIEBOi obmactu. s 3TOTO, MpeXKie BCEero, HAWAEM BUJ ypaBHEHUS

Momka-AmMriepa B MOJISIPHON CHCTEME KOOPIMHAT:

3. OcHoBHOIT pe3y/bTaT

PaCCMOTpI/IM CJICJIYIOILYIO 3aMECHY:

T = pcosy
(3.1)
y = psing
IMoxcrasus a1y 3aMeny B ypaBHeHue (2.2), IOJIyduM cJlejlyIoliee ypaBHeHue:
/
T = pcosy +a
(3.2)

y' = p(hcosp +sinp) +b
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Buz, ypasnenus Momka-AMiepa B HOBOI cHCTeMe KOOPAMHAT CJI€ Ly FOIIHIA:
Zara 2y — 2y = K (2,9)) (3.3)
Huxke MBI HAXOUM YaCTHBIE IIPOM3BOIHbIE:
Zp = 2y €08 + 2y (hcosp +sinp), z, = 2p (—psing) + z, (p (—hsinp + cos ¢))
Zpp = Zarar COSZ P + 2241y €08 ¢ (h cos ¢ + sin @) + 2,1y (h cos @ + sin ©)? (3.4)

2, =z
0 T8 — i sin®p 22,0, (hsin2<p — sincos ) + 2y (cos p — hsin ©)? (3.5)

p P

Zoe Z—g = —Zyr SIN P COS Y + 251y (COS 200 — R SIN2¢) + 21y (h cos 2 — (k% — 1) sin ¢ cos gp) (3.6)
PP

W3 nux noJjydaeM CJICAYIOIYIO CUCTEMY ypaBHeHI/IfI OTHOCHUTEJIbHO ITPOU3BO/IHBIX BTOPOI'O IIOPAIKA:

z zZ
Ryl ! + thz/y/ + (h2 —+ 1) Zy’y’ = pr + ;p + LQLP

p
1 z Z z z
'y’ h,,:, _r_ %P in 2 e 22 2
Zyry! + NZyry 5 (zpp p e sin 2¢ + ) 2 cos 2¢p (3.7)
Zarar + 2hzgry + (B2 — 1) 2y = (zpp _Ze_ Z“’;) cos 2 — 2 <ZW - Z‘;) sin 2¢p
p p p P

U3 (3.7) momyuaem:

h%+1 1—h?
zz,z,:+<zpp+zg+zpﬁp>+< 5 cos2<p—hsin2gp> (pr_,z,,_z?)_k

2 PP
3h% —1
+ < sin 2 — 2h cos 2gp> (ZW - Z“;) (3.8)
2 PP
h ( Zp | Zpgp ) sin 2¢ + h cos 2¢p < Zp Z<PSO> _ Zpp 2o
Zary = —— | 2pp+ 4+ 5 | + ———————F [ 2,p — = — = | + (cos2¢p — hsin2yp) | == — =
. 2\ p o p? 2 p o p? p P
(3.9)
1 Z z cos 2¢ Z Z z z
Zyy == | 2 +p+w>— <z —p—w>+sin2¢(p¢—“’> (3.10)
vy 2(’”’ p o p? 2 o p? p o p?
Ecoin mosicTaBuTh HalileHHBIE BRIDAsKEHUS B ypaBHeHne MoHXKa- Amriepa, To Hafi/ileM ero ypaBHEHWE B MOJISIPHBIX
KOODJIMHATAX:
2 2
2 _ Zp ZW)) (ZW Z<ﬁ) (h +1 . < Zp Z<p<p> h*+1 < Zp wa))
Zylg! Zyty! — Zgrgr = Z —+— |+t |(— = sin2¢ | zp, + — + 5~ | — Zop— — — —5 +
Tz Yy z'y PP ( P) p2 P) pz 4 prp P) p2 4 rp p p2
2
h? —1
+ (Z,mp - Zﬁ) ( sin?2¢p — COSQQL,O) (3.11)
PP 2

Orcrosia ciielyer cJiellyloniasi OCHOBHasl TeOpeMa;:

Teopema 3.1. Eciu nosoxxunresibHasi HenpepblBHAasS MYHKIWS 33/1aHa POPMYIIOit
) (\/mz +42 — b2, a2 — 22 — yz)

oTpeiesienHoi Ha Komblesoi obmactn 2 + 3% = a® n 2% + y? = b2 (b < a), obmIee pelTeHue TATTHICCKOTO

ypasuenus Momxka-AmMrmepa:

Raxlyy — Zgy = (\/302 +y? — b2, \/&2 —z2 —yQ)
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UMeeT CJIeJIyIOIIee:

Z(p,w)=/

rae, z (p, ) =z (\/1‘2 + y%arctg%), u Ac,d; —const,i=1,2.

JlokazaresbcTBo TeopeMbl. Perenue uimem B coemytomeM suje [11,12]:

dp + p(c1cosp+ casing) + do (3.12)

\//\2+d1+/2p-<1)(\/p2—b2,\/aQ—p2>dp

z(p,p) = (f(p) +g(p))p (3.13)

Zp =pf'+f+y, Zp =g, Zpp =pf" +2f, Zop =pg", Zpp = Zpp =9
Eciiu nopcrasuTh HaiijieHHbIE BRIPAsKEHMsI B IIPABYIO 4acTh pasencTsa (3.11), To nosydmm ciesyioniee:

(7 2r) (545436 +0)) =0 (V=2 V=) 10

YIpocTuB 3TO BBIpazKEHUE, MOy TIM:

0@ (VPPN =)~ (of +2f) - (of + )

1
+ = 3.15
g g pf// +2f ( )
riae, A — const.
O6mee pemmenne nesoit gactu (3.15) umeer cieayrommit Bu:
g(p) =crcosp+ cosinp + A (3.16)
VIIpOCTHB IPaByIo 9aCThb, MOJIYIHM:
(o + 140 = [ 200 (V=B Va = )dp-4 2 4
3 3TOr0 ypaBHEHHsI MBI MOJIYYa€M TOJIBKO OJHO PENIeHue:
(pf + )+ A= \//2p-<1> (Vo =9 a2 = ) dp+ X2 + dy
13 sToro,
(pf) =2+ \//2/)'@ (\/p2 —1%,\/a? *pz)dp+k2+d1
Wnrerpupysi, moaydaeM cjeAyloliee ypaBHeHHe:
1 do
Fo)=-A+ 20® (\/pQ—b2,\/a2—p2>dp+)\2+d1 dot = (3.17)

IMoxncrasngas ypasuenus (3.16)-(3.17) B Boipaxkenue (3.13), nomydaem ciemyiomee obiee perenue (3.12):

dp+ p(c1cosp+ casing) + da

Z(p,w)Zp(f(p)ﬂLg(sD)):/{\/A“rdl+/2p-<1>(\/p2—627\/a2—p2)dp

Teopema nokazaHa.
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4. 3ak/odeHue

B nannoii pabore moJiydeHo oblee pereHue JUIUITUIeCKOro ypasaerus Momxka- AMnepa B HEOHOCBAZHOM
00JTaCTH C UCTTOJIB30BAHNEM T€OMETPUH HEEBKJINIOBBIX MPOCTPAHCTB 1 peobpaszosanuii Lammies. [amnreeBckoe
JABH2KEHUE IIJIOCKOCTH IIPUMEHSACTCA JIJIgd PEeIIeHUd YpaBHEHUA MOH}Ka—AIVIHepa. Pe3yJIbTaT pacainpsgdeT
opeapLayiue uccjaeJg0BaHusd, JAEeMOHCTPUPYA S(bd)eKTI/IBHOCTb IIPEIJIO2KEHHOT'O I'eOMEeTPHUYIECKOI'0 IIOJAX0Ja K

pertennio ypasuenust Momxka- AMiepa.
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Solving the Monge-Ampere Equation using Geometric Transformations

Abdullaaziz Artykbaev, Gulnoza Kholmurodova

Abstract

The geometric problem of recovering a convex surface from a given function is equivalent to solving a certain
Monge-Ampere equation. In this case, the extrinsic curvature is defined as a function of Borel sets. I. Ya.
Bakelman constructed this theory and proved the existence and uniqueness of the solution of the Monge-
Ampere equation of elliptic type in a simply connected convex domain. A. Artykbaev generalized this solution
for a non-simply connected domain applying of the geometry of Galilean space. This paper is devoted to the
analytical solution of the Monge-Ampere equation in a non-simply connected domain. The extrinsic curvature
of the surface is determined in a non-simply connected domain which is bounded by concentric circles. By
applying the transformation which is the motion of Galilean space and the transition to the polar coordinate
system, the equation is modified, in which it is possible to separate the variables of the solution, the equation is
sought for the sum of three functions. As a result, an analytical form of the solution in a non-simply connected
domain bounded by concentric circles is obtained.
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1. Bsenenue

Teopernveckne u IKCHEPUMEHTAJIbLHBIE OCHOBBI IPOSBJICHUS HEJTUHEHHBIX PEOJIOTUYECKUX CBOWCTB B
Pa3JIMYHBIX 3JIEMEHTaX CTPYKTYPHO-HEOHOPOIHBIX, CJIOKHBIX MHOI'OCBSI3HBIX ODOJIOUEYHBIX KOHCTPYKIIUN
u30KeHbl B DyHIaMeHTaIbHbIX padorax [1-12]. HecmoTpst Ha 9T0, OlleHKa HANDSKEHHO-1e)OPMAPOBAHHOTO
COCTOSIHUSI ODOJIOUEYHBIX KOHCTPYKIIUH € y9YeTOM HEOTHOPOJIHBIX, BA3KOYIPYTHUX CBOICTB OCYIIECTBJISETCS
TOJIBKO B paMKax JWHEHHOH BA3KO ymnpyroctu. B mocsiemmee Bpemst omyOamkoBaH s pabor [13], B KOTOpBIX
YUIUTBIBAETCS MPOSABJIEHIE YIPYTUX, BA3ZKOYIIPYTUX JTUHEHHBIX U HEJIMHEWHBIX CBONCTB MaTepruaja 000J0IeTHBIX
KOHCTPYKIWII TIPU JUHAMUYIECKUX BO3eicTBuAX. KpaTkoe M3/I02KeHne HEKOTOPBIX M3 HUX MPUBEICHO HUZKE.
B [13] mpencrasiena pacderHas momesb gedopmanuil ocHOBaHUs (DYHIAMEHTa, OCHOBAHHAA HA METOJE
ITOCJIOHOTO CYMMMPOBAHUS C yIETOM KOMIIOHEHT JIEBHATOPA U TEH30pa IMapoBO JedOpMaIyuu, COOTHOIIEHNE
MEXK/y KOTOPBIMH pa3JIMYHO B pa3HBIX TOYKaX (QyHIaMeHTa. PaccMaTpuBajoch HejuHeiHoe 0O0beMHOe
JedopMupoBanre rpyHTa BO BPEMEHHU C yIE€TOM YILUIOTHEHUS HECYINEro Cjiosi rpyHTa. V3ydena aunaMudecKast
peaknusl TPYHTOBBIX IUIOTHH [13] ¢ y4eToM HeJMHEeHHBIX M BSI3KOYNPYTUX CBOHCTB IPYHTA, YCTAHOBJIEHA
3aBUCHUMOCTDH [JUHAMHYECKNX PpEAKIMiI OT HArPYy3KHM M MEXaHMYeCKHX CBOICTB rpyHTa. Ha ocHoBanuun
pPe3yJIbTATOB IKCIIEPUMEHTOB IIOCTPOEHBI JIOKAJIbHBIE 3aKOHOMEPHOCTH B3aMMOJEHCTBUS IIPOTSIKEHHBIX
[IO/I3€MHBIX TPYOOIPOBOJOB M (PPArMEHTOB HAPYKHOW ITOBEPXHOCTH IIOJ3€MHBIX COODYXKEHHUIl € TI'DyHTaMU
HAPYIIEHHOH U HeHapyeHHol crpykTypsl [14]. B [15] ¢ ucnoib3oBannemM HeJMHEHHBIX PEOJIOrTIECKUX MOJIEIel
HCCJIEJIOBAHO HAIPSYKEHHOE COCTOSTHUE TJIOTUHBI. BO3MOYKHOCTH MCIOJIB30BAHUS MOJIETN TTPOJIEMOHCTPUPOBAHA
IyTeM CpPaBHEHWS UUCJEHHBIX PE3YJIHTATOB C PE3yJIbTaTaMu JIaOOPATOPHBIX UCITBITAHUIA.

B [16] mpemoxkeHbl 0GOOIIEHHBIE PEOJOIMIECKIE MOJIENN HEHACBIEHHBIX W BOJ| HACBIIIEHHBIX T'PYHTOB
U BBIBEJIEHBI COOTBETCTBYIONINE YPaBHEHUS, UCIOJIb3yeMble JIJIsi KOJUIECTBEHHON OIEHKHU JIOMOJTHUTETbHBIX
OCTATOYHBIX JedopManuii u HanpsKeHuil B rpyHTe. Pemrena omsoMepHas 3ajada KOHCOJIMJIAIMH CJIOS He
[IOJTHOCTBIO BOJ[ HACKIIIEHHOTO I'PYHTA IIPU ITUKJINIECKOM M3MEHEHU! BHEIIHeH HArpy3KH.

B paGore [17] upemioxKenbl Molesb U HAGOD OIPENEJISIONMX COOTHONIEHHUI IJisi PEOJIOrMIeCKON MOmesn
CJIa0bIX TPYHTOB. BO3MOXKHOCTH WCIOJIB30BAHUS ITONH MOJMEIN IOATBEPXKIECHA PSAOM SKCIEPUMEHTOB IIO

PEOJIOrNYEeCKO KOHCOJIUJAINN IIPU PA3/IMYHbIX CKOPOCTAX HarpyzKeHHBIE.
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B [18] nmokazana TeHJeHIMs K yBEJMYCHUIO MIHOBEHHOI'O MOJLYJIs JieDOPMAIUK ¢ POCTOM noJsydectd. st
MATKHAX IPYHTOB IIPEJJIOYKeHa HeJIMHetHad MOJIeJIb 013y YeCTH, B KOTOPO 3aTyXaHue I10JI3YyYeCTH OIIUCHIBAJIOCH
HeJIMHEHON (DYHKIMe! yIpouHeHus 1 KOI(MMUIUEHTOM BI3KOCTH, & HEJIMHEHHbBIE KPUBBIE MIOJI3YIeCTH XOPOIIIO
COTJIACYIOTCS C SKCIEPUMEHTAJIHLHBIMU JTAHHBIMHU. lloBe/leHMe KOHKPETHBIX KOHCTPYKITAN, WCIOIb3YIOIIIX
HaCJEe/ICTBEHHYIO TE€OPHUIO BSI3KO YIPYTOCTH, IIPU JUHAMUYECKOM HarpyzKeHHbIEe U3y4eHO HeJI0OCTATOYHO, XOTs 1
MIAPOKO TIpejicTaBieHo B aureparype [19-20]. [Topasasitomnee unciio nyOInKaImit, HOCBSIIEHHBIX THHAMIIECKIM
3aJlaUaM HACJIEJICTBEHHON TEOPUHU BsI3KO YIPYTOCTH, MOCBAIIEHO pacdery (JAMHEHHBIX M TeOMETPUIECKH
HEJIMHEHHBIX) TOHKOCTEHHBIX KOHCTPYKIMI — 6asiok, miacTud u obosodek (12, 20].

Cxema pelreHus JUHAMUYIECKUX 33Jia9 BS3KO YIPYTOCTU JIJIsi TOHKOCTEHHBIX KOHCTPYKIUN JTOCTATOYHO
craHgapTHa. BbIOOpOM KOODAMHATHOW MOYHKIMH, VIOBJIETBOPHAIONIENl TI'DAHUIHBIM YCJIOBUSAM, WCXOTHAS
3a7a4a MOXKET OBITh CBeJeHa K 3a/ade O KOJeOAHWSX CHUCTEMbI C KOHEYHBIM YHCJIOM CTeleHell CBODOIbI,
TO €CTh K CHCTE€ME JIMHEHHBbIX WA HeJWHEHHBIX WHTEerpo-nudepeHIuajlbHbIX YPaBHEHUN C OIHOMI
He3aBUCUMON BpeMeHHON mepemenHoii [12, 20]. B kauecTBe KOODJMHATHBIX (QYHKIMH, KaK [PABUIO,
UCIIOJIB3YIOT TPUTOHOMETPUYECKHe WM 6Oajiounble (yHKIuU. Takoil BBIOOP KOOPAMHATHBIX (QYHKIUI
OTPAHUYUBAET KJIACC PelIaeMblX 33/1a49 KOHCTPYKIUAMHU IIpocTeiimux KoHuryparuii — 6ajsKaMu IOCTOSHHOI'O
CeveHnsl, TPSIMOYTOJLHON ILIACTUHON, IMJIMHADPUYIECKOH o6osmoukoit [12]. Aproper stmx myGuiukanmi,
JIONyCKasi Psij HETOYHOCTEH B BBIOOpE KOODAMHATHBIX (DYHKIMUH, MBITAJINCH HOBBICUTH TOYHOCTH DPEIIeHUsT
cucreMbl WHTErpo-auddepenmanbubix  ypasaennit. OHAKO [JIsT KOHCTPYKIUI € peajbHON TreoMeTpueit
mo100paTh AHAJUTUYECKHE KOODIWHATHBIE (YHKIIAU, VIOBJETBOPAIONINE TPAHUIHBIM YCJIOBUSM 3aJad4H,
HEBO3MOXKHO. [IpuBeieHHbI BhIlIe 0030 M3BECTHBIX PAOOT MMOKA3BIBAET HEOOXOIMMOCTH OIEHKU HAIPSZKEHHO-
J1e(bOPMUPOBAHHOIO COCTOSIHUSL U JUHAMHUYECKOIO IOBEJEHUS CTPYKTYPHO-HEOIHOPOIHBIX 000JI0YeTHBIX
KOHCTPYKIIMHI TPYHTOBBIX COODYXKEHUI C YYeTOM HE€ TOJIBKO PEOJIOTHYECKUX CBOHCTB 000J0UETHBIX
KOHCTPYKIIMI, HO M OCOOEHHOCTE! HEOJIHOPOIHONW CTPYKTYpPbl W peasibHOM reomeTpuu. B jmamHOi pabore
IIpeJicTaBJIeHbl METO/Ibl, aJlOPUTM M Pe3yJbTaTbl HCCJIEIOBAHUA JUHAMUYECKOIO IIOBEJICHU:A MHOI'OCBA3HBIX
CTPYKTYPHO-HEOITHOPOJIHBIX 000JI0YE€YHBIX KOHCTPYKIUI C Yy4YeTOM BS3KOYIPYIHUX CBOWCTB MaTephaJia IIpPU

Pa3/IMIHBIX JTUHaAMHUYIECKUX BOSﬂeﬁCTBHHX.

2. Metompl nccaeI0BaHnsa

MHorocBsi3able KOHCTPYKINN, HATPY2KEHHbBIE BHEITHUM JIABJICHUEM HA IUJIMHIPUIECKAE IACTH, UCCIIEILYIOTCS
Ha ycroitunBocTb. llmimHanpudeckne o00OOJIOYKH, OJWH W3 TOPIOB KOTOPBIX 2KECTKO 3aIleMJIeH, B 00enx
KOHCprKHI/IHX nMeEernT O,ILHy u Ty Xe I‘eOMeTpI/IIO

L1 L

== =1 R/h, =400. (2.1)

3&,[[&‘1& CBOJUTCHA K IIOUCKY MHHHUMAJIBHOT'O 3HAYCHUA KpI/ITI/I‘{eCKOIU/I HaIr'PyY3KU BHEIIHEr'O JaBJIC€HUSA, KOTOPYIO

OyIeM OIpeesThb 10 (hopMyJsIe

q9=£&qc, (2.2)
rie
w6 E h? L1 -?)

AL R (Sl 2.3
=9, 1= r ° VRh (2:3)

Hpe)K,ae YeM HEIoCpeJCTBEHHO Hepef[TI/I K aHaJIU3y Bceit KOHCTPYKIIUU, PaCCMOTPUM ITOBEJACHNE OTACJIbHBIX

9JIEMEHTOB KOHCTPYKIUHU. O6HL&H JJIMHa H‘I/IJ'[I/IH,U,pI/I‘IGCKOI;'I JaCTU KOHCTPYKIIMH DpPaBHa 2L, HO B CHJY

IIOJIKPEIJIEHNs] B CepeJInHe €€ KOJIBIEBOIl IIACTUHON, KOTOpPas HMMeeT OOJIBIIYIO YKECTKOCTb B PaJHajIbHOM
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HAIPABJIEHUH, MOYKHO OIPAHIUYATHLCST PACCMOTPEHUEM TOJIBKO TUJIMHIPUIECcKoil obostoukn jutnHoi L. Ocraercs
BOIIPOC O BBIOOPE TPAHUYHBIX YCJOBHU B MECTE CTBHIKA KOJIBIIEBOW ILIACTUHBI W IUJIXHIPUIECKON dTacTh

KOHCTPYKIUH. DTU YCJAOBUS HOCAT YIIPYTUil XapaKTep, KOTOPHIE MOT'YT OBITH JTIOOBIME OT ITAPHUPHOTO OITUPAHUST

Ilg:w=M1=T11=90=0 (2.4)

JI0 KECTKOT'O 3aIleMJIeHUST

IMiw=0=u=9=0. (2.5)

st KoMOMHAIUI U3 STUX TPAHUYHBIX YCJIOBUI HA TOPIAX IUJINHIPUIECKON 0D0JI0YKN B MIUPOKON 00IaCTH
U3MEHeHHsi OTHOCHTEJIbHOM JIIMHBL Z U3 paboThl [2] cieflyer, 4TO 3aBHCHMOCTH KPHUTUIECKOTO HapamMerpa &*
npu z > 10 npakTUYeCKHu COBIAIAIOT C MYHKTUPHBIMU JUHUAMA Ha puc.l, nmosydennbivu H.A.Ajdyrosbim Ha
ocHoBe 110J1y6e3momenTHOl Teopun B.3.Biacosa. C yyeToMm peasibHOM XKECTKOCTH CThIKA KPUBasl, OIIMCHIBAOIIASsT

3aBUCUMOCTb KPUTHYIECKOTO TTapaMeTpa £ 0T OTHOCUTEBHON JITHHBI 000JIOUKH Z, OY/IeT JIeyKATh MEXK/IY STUMU

JIMHUAMM.
é*
7iTe
16. . . _
12. f .
a8, | | [ 1| | . | |
1 2 YY) 20 40 6080100 =

Puc. 1

[ToBeierne KOIBIEBO# IIACTUHBI CO CBOOOIHBIM BHYTPEHHUM KPAeM OT PAIUAIHHOIO C2KATHUS 110 BHEIITHEMY
Kparo €aab0 U3ydeHO, MOITOMY OBLIO IIPOBEIEHO MCCJIEIOBAHNE YCTOWIMBOCTH KOJIBIIEBON IIACTUHBI C JIBYMs

BapUaHTAMU I'DAHNYHBIX yCJIOBUN Ha BHEITHEM KPAaro
F2:W=91=T11=19=O, (2.6)

F6ZW=M11=T11=19=0. (27)
Besmmunna KPUTHUYIECKOI'0 YCUJINA OIIpe/esisdIach o (bOpMyJIe
2
Eh, R ro\3
T=-g (] (14 2) 2.8
¢ (1-v?%) (hn) R (28)

3aBucuMocTu KPUTHUYIECKOI'O ITapaMeTpa g* B L[II/IpOKOIU/I 00/1aCTH U3MEHEHUSsI BHYTPEHHOI'O DaJuycCa JJjIsd
Pa3JIMIHBIX 3HAYEeHU BOJIH B KOJIBIIEBOM HallpaBJICHUU IIPpE/CTaBJICHbI Ha pI/ICQ(a)
B CJlIydae NIapHUPHOI'O 3aKPEIlJIEHU A (27) MUHUMaJIbHOE 3Ha4YCHHEe KpI/ITI/I‘{eCKOfI Harpy3KHu IOJy4YaeTCd IIpU

0CeCHMMMEeTPHUYHOI noTepe ycroitauBoctu n = 0, HO pu rg — R, KOIia IUIaCTUHA MOXKET paboTaTh KaK KOJIBIIO,
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— Ehn E 2 T3
=~ 0oy () A +D
125 |
\ /
100 k\ f
\¢-
0.75
2.50

0 0.25 250 0.75 PO/R

(a) (b)

Puc. 2

BO3MOYKHO UHOE 3HAYUEHNE KPUTUIUCKON HATPY3KU ¢ HEOCECUMMETPUIHON hopMoit moTepu ycroitausoctu n > 0.

B srom ciryuae neoOxonMO BBIYUCIUTD KPUTHIECKYIO HAIPY3KY JJIs IIACTUHBI 110 CX€Me KOJIbIa 1 = 2

R—}”())3

R+ ro (29)

T=2hnE~(

U CPaBHUTH C MOJyYEHHBIMU 3HavYeHusMHu 13 (2.8). MuHnMasbHOe 3HAUEHHE U3 HUX M ONPEJEIUT UCTUHHYIO
BEJINUAHY DPACYETHONO KPUTHUYECKOrO ycuiamsi. IIpm paccMOTpeHMM TpaHUYHOro yeiobust (2.6) Besnmunna
napaMeTpa KPUTHYECKOH HAIPY3KU 3HAYUTEIBHO YBEJUIMBACTCS, IPUYEM MHUHUMAJILHBIE 3HAYCHHS €ro
HabJofaorcd Kak 1pu ocecumMerpudanoil (ro/R < 0.5), tak u upu Heocummerpuunoit (rg/R > 0.5) morepe
yeroitunsocTu. B cirydae HEOCECHMMETPHYIHON TIOTEpH yCTOWIMBOCTH MHCJIO BOJH B OKPY?KHOM HAIPABJIEHUM

pactér ¢ yBenuueHueM ro/R.

Pesynbrater u O6cyxieHus

B pesyabrare HCCIeIOBaHUA YCTONYMBOCTH BCEH KOHCTPYKIMK IO DPaspabOTAHHOMY METOJY MHOJIyYEeHBI
3aBHCHMOCTH ¢, OTHOCSIIUECS K COOTBETCTBYIOIINI reOMeTpHHI KOJIbIeBoi mtactunbl (puc.3.(a)). Ha puc.3.(b)
npuBeJieHbl (OPMBI [TOTEPH  YCTONYUBOCTH 3jeMeHTOB KoHCcTpyKumu. Popma, orMedenHas Iudpoii 1 Ha
puc.3.(b), moKa3bIBAET, YTO YCTONIMBOCTH TePsieT NPEUMYINECTBEHHO IJIACTHHA. B 06jacTu reoMerpuu, rje
B IIOTEPE YCTONYUBOCTH yUYACTBYIOT SIBHBIM 00pa3soM Bce 3jeMeHThl KoHCTpyKimu (dopma 2 Ha puc.3.(b)),
BEJINUNHA KPUTUIECKON HAIPY3KU MPAKTHIECKUi He n3MeHsieTcs, hopMa OCTAETCst TOCTOSIHHON ¢ 00pa30BaHueM

13 BosiH B KoJiblleBOM HampaBiennn. OOgacTy KPUTHIECKUX 3HAYEHUI &* NMPAKTHYECKUil COBIAJAIOT CO
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‘ n=13
@/ Omax
r=300(p= I
0.1 . ) <
05 " \
s N
7 Ly T
/T \
0 0
00 200 30 T, S
05 AL L s
\ \\ 4
1 M -10
100 200 300
(JJn/(ﬁmax o5 0
: | {fﬂ
12 16 h/hy
(a) (b)

Puc. 3

3HAYEHUSIMU ITOrO IIAPAMEeTPa JJId MUJIXHIPA JJIMHONW L, y KOTOPOro peajm3yercs IpaHudnbie ycaosus (2.4)
u (2.5). Dro mogrBepxKIaeT TOT HAKT, ITO JJisl UCCIEJAOBAHUS YCTONIMBOCTH PACCMATPUBACMON MHOTOCBAZHOM
KOHCTPYKIIMKM MOYKHO HCIIOJB30BATh PE3YJIbTaThl PAOOTHI [2], KOTOpBIE IIPeCTaBIEHbI HA PHC.1, COBMECTHO C
dopmysoit (2.2). B obnactn mapaMeTpos KOHCTPYKIH, TJie TPEUMYIIECTBEHHO TEPSIET YCTORIMBOCTD IIACTHHA,
CJIEJyeT YCTAHOBUTD KAKOW MJIM KAKAME 32BUCUMOCTSME MOYKHO OIPAHUIUATLCA B UCCIICIOBAHUN YCTONYIUBOCTH
KOHCTPYKIUH. JIjIsT 3TOrO BBIACHUM B KaKOH CBS3M HAXOMATCH 3aBUCHMOCTH KPUTHYECKHX BEJMYUH JIJIST
wiactubl (2.8) u (2.9)c KpuTHYECKUM JaBjaeHueM Jyis Beeil KoHcTpyKuuu. OlpeesiuM U3 PelleHnsl 3a1a9n
MPOYHOCTH YCHJIUS TPUXO/ISINEECs Ha BHEIMHWI Kpail IUIACTHHBI B 3aBUCAMOCTH OT BHEIIHETO JABJIECHUS ¢ IS
Pa3JINYHON reOMeTpUU IIACTUHBI. B pesysbrare nposejenus pacdéro Ha puc.2.(b) npuBeseHbl 3aBUCHMOCTH

mapaMeTpa 17, Iepe3 KOTOPLIil OIpeesseTcs NeHCTByIOee Ha MIACTHIHY YCIIIE
T =ngR (2.10)

Tenepb 13 PacCMOTPEHUsI KOHKPETHOTO KPUTHYECKOIO JABJEHUs, JJId KOTOPOrO W3 BbipakeHuil (2.8) wu
(2.9) ¢ yuerom (2.10) omnpeensitoTcss KpUTHIECKUe 3HAUCHUS] YCUIIMsl JIJIsl UIACTHHBI, CJIEJYeT, UTO 3HAYEHHe
KPUTHYECKOTO YCUIIUS COBIIAIAET ¢ KPUTHIECKUM YCUJIMEM JJIsl INIACTUHBI ¢ TPAHUIHBIME ycaoBusMu (2.6) Ha
BHEIIHEM Kpae U onpejiensiercs o dopmysie (2.8). VHbIMEA ct0BaMu, TMINHAPUYIECKHE 0G0JOYKA IIPU TIOTEPE
YCTONYUBOCTH ILIACTHHBI HE MO3BOJIAIOT €if n3rubaThcd Ha BHEITHEM Kpae.

Takum 06pazoM, Jyisi aHAJIU3a MHOTOCBSI3HOM OCECUMMETPUIHON KOHCTPYKImK (puc.3.(a)) H10CTaTOYHO UMETh
3aBUCAMOCTU IapaMeTpoB &*, * um n or reomerpum KoucTpyKuuu (puc.l, 2) u Boipaxkenus (2.2), (2.8)
u (2.10). MunuMaibHOe 3HAYEHHE HAIDY3KH Ul BCell KOHCTPYKIMHU OyJeT MeHbIlee U3 JBYX JABJICHHUIA,
COOTBETCTBYIOIUX KPUTHYECKOMY BHEINIHEMY JABJIEHHIO JUIA IAIAHAPA JUIMHON L ¢ TPAHUIHBIMEU YCJIOBUSIME
(2.4) u (2.5), xoropoe onpegensierca 1o dbopmyse (2.2) ¢ yuerom 3aBucuMocTd £ Ha puc.l, wiM BHEIIHEMY

JAaBJICHUIO, BBI3bIBAIOIIIEMY IIOTEPIO YCTOfI‘II/IBOCTI/I IIJIaCTUHDBI 1 O6,Qe.HSIeMOMy7 COI'JIaCHO (28)7 BbIpa2K€HUEM

_ . —1 E hn3 7'03
q=-={n 'W'(F)'(“E)’ (2.11)

rie (* G6epercs ¢ puc.2.(a) Juist TpaHnIHOrO yesosus (2.6) Ha BHemHeM Kpar. PopMma moTepn yeToHunBOCTH
KOHCTPYKIIUY IpUHUMAaeT By, Kpusoil 1 win 2 Ha puc.3.(b) B 3aBUCHMOCTH OT TOTO KaKasl 4acTh KOHCTPYKIAH

IIPEUMYIIECTBEHHO TepsieT YCTOMYNBOCTb.
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3. 3akJiroueHue

Takum 06pazom, B 370 paboTe MOy I€HbI COOTHOIEHNS U 3aBUCUMOCTH, KOTOPBIE MOT'YT OBITh MCIIOJTb30BAHBI
IpU aHAJW3€ U IIPOEKTUPOBAHWM TOJOOHBIX KOHCTPYKIMIT B JOBOJIBHO INMUPOKON O0JACTH W3MEHEHUs!
reOMeTPUYECKUX MapaMeTpoB KOHCTpyKIuu. [lorydeHHbIe PE3Y/IBTATHI MIO3BOJISIOT CIIEJIATh BBIBOJ O TOM, UTO
IIPEJIJIOZKEHHBIE TEOPETUIECKHE IIPEIIOCHLIKA € JOCTATOYHON TOYHOCTHIO MOJEJIMPYIOT JUHAMUKY PeaIbHBIX
00bekToB. PaspaboTrannble MeTO/IMKA, AJTOPUTM W IPOTPAMMa pacdeTa OOECIeYUNBAIOT IOJIyUIeHNEe PEeNTeHUs

3aJ1a91 ¢ HeOOXOIMMOIl TOYHOCTBIO.
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Study of Stability of Cylindrical Shells Connected to an Annular Plate

Sadullaeva Mavjuda, Salimov Shoolim Muzaffarovich, Mavlonov Tolkin

Abstract

The paper presents the statement and methods for solving dynamic problems of multiply connected structurally
inhomogeneous shell structures, which make it possible to reduce the problem of calculating a wide class of
engineering structures to computer-aided design tasks. On the basis of numerical experiments and multi-
parameter analysis of the system as a whole, a number of fundamentally important applied problems
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have been solved for calculating the dynamic characteristics of oscillations (frequencies, modes, determinant
resonant amplitudes and damping coefficients) of special structures depending on the parameters of structural
inhomogeneity. The stabilities of cylindrical shells connected to an annular plate under the action of dynamic
loads are also considered. A methodics for comprehensive assessment of deformation properties is proposed in
order to obtain the most rational mechanical and geometric characteristics based on mathematical modeling
of deformation and relaxation processes.
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JByxXToueunasg KpaeBas 3ajada I CUCTEMbl
byHKIMmoHaIbHO- TN depeHInaIbHbIX YPaBHEHUN ¢

MaKCUMYyMaMHn

T. K. FOupames*, M. A. Tieybeprenosa, A. K. Tankeepa, A. MosibibailKbI3bI

Annoramnusa

B mammoit crarpbe paccMaTpuBaiOTCS BOIMPOCH KPAEBOH 3aJadi C JBYXTOYEIHBIMHU TDAHIIHBIMUI

VYCJIOBUSIMU JIJIsi CHCTEMbI OOBIKHOBEHHBIX IM(D(MEPEHITNATBHBIX yPABHEHWII IEPBOTO IOPSIKA C

MaKCUMYyMaMU. HCHOJ’H:ByeTCH METO/ ITapaMeTPU3AI[UH. HOJ’Iy‘IeHbI ycjaoBud CXOJIUMOCTU U TOCTPOECHBI

AJITOPUTMbI pPEHICHUA. YcraHoBIeHBI HeO6XOILHMLIe n J0CTaTOYHBIEC YCJIOBUA Ha KOS(l)(bI/IHI/IeHTbI

JJIsd  KOPPEKTHOCTU pa.CCManI/IBaeMOfI 3a/1a'9M. B JOKa3aTeJIbCTBe OﬂHO3Ha‘IHOIU/I Pa3penmnmMoCcT

bYHKIMOHAJILHO-MHTEIPDAJIBHBIX YPaBHEHUN B IIPOCTPAHCTBE BD([O,w],R”) HCIIOJIb3YeTCsl MeTO/L

COKUMAIONINX OTOOparKeHuil.

KiroueBble cioBa: KpaeBasi 3agada, cucrema OOBIKHOBEHHBIX JguddepeHInaabHbIX YpPaBHEHUN, MeTOJ [apaMeTpU3alliu,

HeOGXO,E(I/IIVIbIe U JOCTATOYHBIE YyCJIOBHUH, CYIIECTBOBAHNE U €IUHCTBEHHOCTb PEHICHUA.

Ipenmernas knaccudukarme AMS (2020): Ocuosras: 34A30; 34A45; Tononuurensuas: 34B05; 34B10.

1. Bsenenne. [loctanoBka 1mpo0ieMbl

Paccmorpum snHefiHy 10 ABYXTOUEYHYIO KPAEBYIO 3a0a9y

d

%x(t) = A(t)z(t) + Bt)max {z(r) : 7 € [t — b, t]} + f(t), x€R",

z(§) = ¢(&), &€[=h,0]

BQI(O) + Col'(T) = l)o7

te(0,7), (1.1)

(1.2)

(1.3)

rjge 0 < h = const — 3amasgsBanue, A(t), B(t) u f(t) menpepsiusl Ha [0,7], By u Cy — 3amannsie (n X n)

matpunnl, Dy — 3amannbiii n-mepubiit Bekrop, ¢(t) € C[—h, 0].

O6o3uaunm uepe3 C ([O, T, R”) 6aHaXOBO [IPOCTPAHCTBO, COCTOSIIEE U3 HEIPEPHIBHLIX BeKTOP-QyHKImit (1)

C HOpMOiA

n

l® ooy = | 2 masx 5]

j=1

Received : 8—okTsa6pp—2025, Accepted : 10-H0s16pp—2025
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Mp1 ucnosb3yem smneitanoe npocrpancrso BD ([0, 7], R™), koropoe siBisiercs 6aHAXOBBIM IPOCTPAHCTBOM CO
caenyromeil HopMoi
=) oo, = 12@®) lleo,ry + 2112 () o7y »

riae 0 < h = const.

IMycrs X(t) — dynmamenranpuas Mmarpuna uddepeHnIuaibHOr0 ypaBHeHus % = A(t)X. Torma us

ypasuenus (1.1) nosydaem

() = /X(t)X_l(s) (A(s)x(s) + B(s)max {z(r) : 7 € [s — h, 5]} + f(s))ds. (1.4)
0

OnnozHavHyI0 pa3pemuMocTh ypasuenus (1.4) mbl qokaspiBaem B npocrpancrse BD ([0, T], R™).

Ormerum, uro pemenue 3agaun  (1.1)—(1.3) — 310 byukmua z*(t) € C([O,T],R"), HEIPEPHIBHO
muddepentmpyemas wa (0,7) u ymosrersopsiomas juddepennuanbaomy ypasaernio (1.1) u rpanmasoMy
yciosuio (1.3).

Kpaesble zamaan st auddepeHnnanbHbIX ypaBHEHHI MMET IMUpPOKuil crekTp npumeHenmit [1]-[19].
B pa6orax [2]-[8], [10, 12| mcnonb3yroTcss pasauvIHBIE METOAbI KAveCTBeHHON Teopum muddepeHnnaabHbIX
ypasHeHuil. Ha OCHOBe 3THX METONOB OBLIM YCTAHOBJECHBI YCJOBUSA Pa3pEHIMMOCTH KpaeBbIX 3aJad W
[PE/JIOZKEHbl [IPAKTUYECKUe CIocoObl ux pemrenus. B paborax [9, 11] ocoboe 3madenue npuobperaior
OpUOJMZKEHHBIE U YHCJEHHBIC METONBI IIOCTPOCHHS PEIIeHUIl KpaeBbIX 3aJad IJI CHCTeM OOLIKHOBEHHBIX
nudbdepeHIuaIbHBIX YPABHEHHI.

JlaHHAas CTAThs HOCBAIIEHA YCTAHOBICHUIO KPUTEPHEB eIMHCTBeHHON Pa3pelIIMOCTH IBYXTOYEUHBIX KPAEBbIX
3a7a49 I CHCTeMbl OOBIKHOBEHHBIX AudpepeHIuanbHEIX ypaBHEHHI ¢ MaKCUMyMaMH U IIOCTPOEHHIO
METOJIOM NapaMeTpu3anun Tpubmxkennoro pemenns 3agaqan (1.1)—(1.3). Cremyer oTMeTuTh, 9TO METOJ
napamerpusanuu 6pu1 paspaborad Bo muorux paborax JI. C. JIxxymabaeBa U ero y4eHUKOB (CM., HAIIpEMED,

[20]-(32]).

2. O paspermmmoctn ypashenus (1.4)

Bocnonb3yemcest caeyioreit ieMMOit.
Jemma 2.1 (33]). Jdnst pasocTn nByX DyHKIMI ¢ MAKCAMYMAME CIPABEINBA CIIEYIOMAst OIEHKA
|lmax {z(7) : 7 € [t — h,t]} —max{y(r) : 7 € [t — h, t]}||o <

< latt) = y0) o+ 1 | 2 0) - (o)

)

c
rme 0 < h = const.

Just ypasrenust (1.4) paccMOTPUM CJIeJ YOI UTEPAIMOHHBIL IIPOIIecc:

20 =gl = [ XOX T Of (s, te(0.1],
0

2F ) = g(t) + /X(t)Xfl(s) (A(s):ck(s) + B(s)max {z*(r) : 7 € [s — h, s]})ds, (2.1)
0

rme k=0,1,2, ...
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Teopema 2.1. IlycTh BBIOJIHEHDI CJIEIYIONIHE YCIOBUS
¢
JIXOX Ol 11210 w0 {14 et 1B lepor s < €,
0

T0 PYHKIUOHAJILHO-UHTErPaJIbHOE ypaBHenue (1.4) umeeT elMHCTBEHHOE pellleHue B Kiacce B D([O, 7], R”), rie
0 < Cy = const < oo, |lg(t)|| < go < 00, go = const u p = max{C’Q;Cg} <1,0< Cs u 0 < C3 onpeensiorcs
dopmysnamu (2.5) Huxke.

HoxazaresascrBo. Mbl ucnosnb3yeM urepanuonnstii nporecce (2.1). Torpa mosydyaem cieiyiomue OneHKu:

t
1220 0.1y < No@llcpo.z = / IXOX S 101y210.m) I Ollctods < go. (2.2)
0

t
[#4410) = " Ol gy < [ IXOX Ol 17010m) 14O letom
0

Xka(S) — xk_l(S)HC[O,T] + 1B(s)llco,1 H max {sr:k(T) T E[s—h,s|}—
— max {zkil(T) :T € [s—h, s]}HC[QTst < Cq [ka(t) — xkil(t)Hc[O’T}+
+H max {xk(T) (T Et— h,t]} — max {:ckil(T) (T Et— h’ﬂ}HC[O,T]]

IIpumensig jiemmy 2.1 K moceIHEMY HEPABEHCTBY, MOJTYYaeM

_ d _
[2558) = 2 (O o,y < O [Qka(t) =~ Ol ooy + 1 Hﬁ(xk(t) -~ o) HC[O,T]] S
Awnasiornuno, u3 ypasuaenus (1.1) BoiBogum
d _
Hﬁ(xkﬂ(t) B xk(t))Hc[o,T] = HA(t)HC{OvT]ka(t) - a" 1(t)HC[07T]+
+||B<t)HC[O,T]|| max {l‘k(T) iTE[t— h,t]} — max {xk_l(T) CTEt— h,t]}HC[O’T] <
_ d _
< (Il + 1B a0 = 2l gy +IBON| GO =), o @)
O6o3naunM
Cz = max {200 [ AW | oz + 1BO| ooz} Co = max {hCu3 0 [ BO|| oo 7 J- (2.5)
Torna u3 onenok (2.3) u (2.4) noxyvaem
kaﬂ(t) - xk(t)”BD[O,T] S pka(t) - xkil(t)HBD[o,T]’ (2.6)

e p = maX{Cg;Cg}. U3 onenok (2.2) u (2.6) csemyer, uro onepaTop B IpaBoit yacTu ypasHeHusi (1.4)
SIBJISIETCsT COKUMAIOIIMM OTOOpaykeHneM, u ypabHenue (1.4) mMeeT eJMHCTBEHHOE DeIleHHe B NPOCTPAHCTBE

BD[0,T]. Teopema mokasama. O
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3. HpaKTH‘{eCKI/Ie CII0COOBI HaXO2KJI€HUA €JIMHCTBEHHOI'O PEIICHU A

BeiGepem Hekoropwiit mar hg >0, Takoii yro Nho=T (N €N), u pasobem unrepsan [0,7) Ha

IIOABIHTEPBAJIbBL:
N
0,7) = J [(r = Do, ho).
r=1

O6o3naueno uepes C ([O,T]7 ho, RN ) 6aHaxoBO TIPOCTPAHCTBO HENPepLIBHBIX BekTop-bynkmmit z(t) € R™Y ¢

HOPMO
[2(t) [lx = max sup [z (£)
r=1:N
te [(rfl)ho,rho
rie li]rln Oxr(t) st Bcex 7 =1, N — xoneuno. O6osnaunm uepe3 x,(t) = {xT(t) =ux(t), t € [(7“ -
t—rho—

1)hg, rho), r=1, N} orpanundenue BeKTop-pyHKImy x(t) Ha T-ii nHTEPBA [(7“ — 1)hy, rho) U CBEJIEM 3a71a9y

(1.1)—(1.3) x 9KBHBAJEHTHO}! MHOIOTOYEUHON KpaecBoil 3a1ade:

%xr(t) = A(t)z, + B(t) max {x, (1) : 7 € [t — b, t]} + f(t), t € ((r — 1)ho,Tho), (3.1)
z(§) = o(&), & €[=h,0], (3.2)

Boxl(O) + C(] tﬁ]l\ilrigfo I'N(t) = D()7 (33)

lim z;(t) = zi+1(lho), 1=1,(N-1), (3.4)

t—lho—0
rue (3.4) — ycioBus, cs3biBaromiue perterne 3aga4u (1.1)—(1.3) Bo BHyTpeHHUX TOUYKaX pasOHeHHsi HHTEPBAJIA
[0,T]. IIyctp A, — 3HavdeHue dyHKIMN T, (t) B Touke t = (1 — 1)hg. IIponssons 3ameny u,(t) = z,(t) — Ap, r =
1, N ma unrepsaJe [(r — 1)y, rho), u3 (3.1)—(3.4) nosygaeM MHONOTOYEYHYIO KPAEBYIO 3a/ady C IaPAMETPAMMU:

L (1) = (A) + BO) A+
AW ur(t) + Bty max {up(r) 1 7 € [t — hyt]} + (1), t€ ((r — 1)ho, Tho), (3.5)
up(§) = ¢o(§), &€ [-h,0], te[0,ho—nh] (3.6)
ur((r = 1)hg) =0, r=2,N, (3.7)
Bohi +Cody +Co_lim_ ux(t) = Do, (3.8)
Nt dim () =M, 1=TN-T (3.9)

IMapa (A*,u*(t)) csmemenramu A* € R™N w*(t) € C([0,T], ho, R™Y) stsisiercs pemennenm sanasn (3.5)(3.9).

3aech dyHKIms vk (t) sBasercs pemnterneM 3a1a4au (3.5), (3.7) mpu A, = A5, r =1, N. Jna X u , 1i£n Ou:(t),
—1rho—

r =1, N BemonnHsiorcst paseHcrsa (3.8), (3.9).
Eciu x*(t) siBnstercst perrenneM 3amaqan (1.1)—(1.3), To mapa (A\*,u*(t)) siBisiercst perrenneM 3aga4u (3.5)—
(3.9). Haobopor, eciu mapa ()\,a(t)) sBygerca permenueM 3auaan (3.5)—(3.9), To dynkuus

T(t) = A+ up(t), te|[(r—1)ho,rho), r=1N

apsiercs pereruneM 3aga4an (1.1)—(1.3) u z(T') = Av 4+ lim upn ().
t—Nho—0

Ut
[\
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st najbHeAIero W3J0XkKeHus HUCHOJb3yeM Cjelyiomue o00o3HadeHus: nycrb P(t) — mnpou3BoJibHAs
KBaJlpaTHas MaTpHUIla, HeIpepbIBHAs Ha WHTepBaJe [(rf l)hg,rho) U uMeoIas KOHEYHBI Ipejiest

, liin 0P(L‘)7 r=1,N. Bosbmem unciio v € N u obosnaunm uepes B, (A(:), P(-),t) cymmy
—Trho—

t S2

[ i / don [ Ploatsata s
-1

(r—1)ho (r=1)ho (r—1)ho
¢ Su_2 su-1

+ / A(s1) ... / A(sy-1) / P(sy)ds,ds,—1...ds1, t € [(r — 1)h0,rho), r=1,N.
(r—1)ho (r—1)ho (r=1)h

Cymma E, . (A(:), P(-),t) nenpepsisaa Ha [(r — 1)ho,7ho) 1 UMeeT KOHEUHBIl Ipeiest

lim E,,.(A(-),P(:),t) = E,.(A(-), P(-),rho) mnsa Bcex v € N, r =1, N.

t%Tho*O
Ouesnnno, uro E, ,(A(-), P(),t) = lim E,,(A(-), P(-),t) aBigeTcsa cyMMOil paBHOMEPHO CXOISINErOCs PLa
vV— 00

Ha [(r — 1)ho,Thg), 1 9Ta CyMMa HelpepbIBHA HA HHTEpBAJIe [(r — 1)hy, rho) U UMeeT KOHEYHBIN 1Ipe/iest

lim B, (A(), P(-),t) = B, .(A(-), P(-),rh), ©=T1,N.

t—rho—0

g dbuxcupoBannoro 3nadenusi napamerpa A, r = 1, N, u3 ypasaenus (3.1) moiydaem uHTerpajbHOE

ypaBHeHne BoabTepphl BTOPOro poja:

t t t

u(t) = / [A(s) + B(s)| A\pds + / f(s)ds+ / A(s)u,(s)ds+

(r—1)ho (r—1)ho (r—1)ho

+ / B(s)max {u,(1): 7 € [s—h,s]}ds, te€ [(r—1)hg,rho), 7=1,N. (3.10)
(r—1)ho

IMoacrasisis upasyo 4acts (3.10) B u,-(s) B (3.10) u moropss sror npomecc v (v € N) pas, moiydaem
csieptyiolree nupezcrasienue GyHKIUN u,(t):

ur(t) = Fyp (A + Gop(tir, t) + Hy o (up, t) + K, (), t € [(r —1)ho,rho), 7 =1,N, (3.11)
rae

Fu,r(t) = EV,T(A(')’ A() + B(')?t)’ Ku,r(t) = EV,T(A(')’ f(')’t)v Hu7r(t) = El/,r (A()7 B() maX{uT(T)},t),

Gpr(ur,t) = / A(sy)... / A(sy)ur(sy)ds, ...dsy, te€ [(r — 1)h0,rh0), r=1,N.
(T—l)hg (T—l)ho

-0
(3.8),(3.9) u ymuoxkas (3.8) cieBa Ha hg > 0: Nhg =T, nosydaem cucreMmy JUHEHHBIX ajIre0PanIecKux

Ompenesum li}rln up(t), r=1,N u3 dopmyist (3.11). Iloacrapiss COOTBETCTBYIONINE BbIPAXKEHUS B
t—rho

YPaBHEHHIT OTHOCUTEJILHO ITapaMeTPOB:

Qu(ho)A = =K, (ho) — Gy (u, ho) — Hy(u, ho), X €R™,

(@1
&
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rae Qu(hO) =
hoBo o o o hoC()(IJrF,,’N(Nh(]))
I+ Ky,1(ho) —I ] ] ]
O I+K,,,2(2h0) -1 o] o
K
o ] ] —I ]
o o O ... I+K,n_1((N—=1)ho) -1

I :R"™ - R™ — equununas marpuna, O : R™ — R™ — nyseBas marpura,
K, (ho) = (= hoDo + hoCoF,,n(Nho), Ky1(ho), ..., Ky n—1((N —1)hg)) € RV,
Gy (u, ho) = (hoCoGuy,n (un, Nho), Gy (ur, ho), -+, Gy n—1(un—1, (N — 1)hg)).Hy (u, ho).
Mper HaxomuM pemtenne (A, u(t)) MHOrOTOUEIHON Kpaesoii 3amaun ¢ napamerpamu (3.1)—(3.5). IIpeamonoxum,
qTO M 3aJaHHBIX v, hg Marpuria @, (ho) : R™Y — R™Y mveer obpatmyro.

a) Haiinem nauasbHOe npubirzkeHue i HapamMerpa A0 = ()\(10),)\50),..., )\g\(,))) € R™W, pemas cucremy
ypasuenuit @, (ho)\ = —F,(h).
b) Ompesenum KommonenTst cucremsr dymkmuii u(® (t) = (ugo)(t), ugo)(t)7 cey ug\?) (t)) o opmyam

u(t) = F, (AN + K, . (t), te [(r—1ho,rhy), r=1N.

¢) Haiinem creyromee npubiKkenne napamerpa A = ()\gl), )\gl)7 RN )\5\})) € R"N,| pemas cucremy
ypaBHeHI’If/.I QV(hO))\ = _KV(hO) - Gu(u(o)v hO) - HV (U(O)a hO)
d) Onpesennm koMmonenTs cucreMbl dymximit ull) (t) = (ugl)(t), uél)(t), cey ug\})(t)) 1o opmysiam

uﬂl)(t) = FI,,T(t))\gl) + K, )+ Gy (ugo),t) +H,, (u&o)), te [(r — 1)hy, rho), r=1N

u Tak jasiee. Ilpomosmkast 9T0T porecc, Ha k-M Iare aJrOpuTMa, MbI [IOJIY9aeM [apy (/\(k), u(k) (t))7 k=0,1,....
Beuty sxsuBasentaoctr 3a1a4 (1.1)—(1.3) u (3.1)—(3.4) mosydaem, 4To cpaBeyinBa. CJIEJYIONAs TeOPEMa:

Teopema 3.1. Kpaepast 3amaua (1.1)—(1.3) umeer eimHCTBEHHOE DeNIeHHE TOTJA U TOJBKO TOIJA, KOIIA
Jutst 3asi@aHHor0 hg > 0: Nhg =T (N € N), x € (0,1] cymecrsyer v = v(hg, x) (v € N) Takoe, uro marpuna
Q. (ho) : R™ — R"N o6paruma, n BLITIOIHEHBI YCJIOBUs TeopeMbr 2.1.

3akaroYecHue

B pabore wmccremoBaHbl CymIeCTBOBaHWE U €JUHCTBEHHOCTDL PEIEHUsT CHCTEMbl OOBIKHOBEHHBIX Ird-
depennnanpubix ypasuenuii (1.1) ¢ HemsBecrnoit dbyunkumeil nox 3nakom Makcumyma. Cucrema (1.1)
usy4daercs upu Hadaabubix (1.2) u kpaesbix (1.3) ycnoBuax. Meros czkuMaomux oTobpazkenuii UCIoIb3yercs
JUIsL JIOKA3aTesbCTBa  eJUHCTBEHHON paspemmmMoctun 3ajgadn (1.1)—(1.3) B upocrpancree BD ([0,w], R™).
Ipakruyaecknii crocob pemenusi 3aqaan (1.1)—(1.3) ¢ momMompr MeToja IapaMeTpU3ali CBOJUTCS K
UCCIIeIOBAHMIO paspemuMocTi cucreMbl ypasaenuii (3.1)—(3.4). ITocrpoen asropurm perrennst 3agaan (3.1)—

(3.4).

PuHaHCHPOBaHIE

JlanHoe uccienoBanue moepkano MUHICTEPCTBOM BBICIIIETO U CPEIHErO CIIENUAIbHOIO 00pa30BaHusl, HAYKU

U MHHOBAIIMOHHOTO paspuTusi PecryGiuku Ys6ekucran (rpant F-FA-2021-424).

Hammune maHHBIX 1 MaTepHUasioB

He npumenumo.

NGt applicable.
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Kounkypupyitorue narepecs

ABTOpBI 3agBIISIOT 06 OTCYTCTBUU KOHMJINKTA HHTEPECOB.

ABTOpBI 3agBJISIOT 06 OTCYTCTBUN Y HUX KOH(JIMKTA HHTEPECOB.

Bxkram aBropa

Bce aBrophl BHecsiM paBHBIM BKJIaJ[ B HAIMCAHUE JAHHOW CTaThbu. Bce aBTOPBI HPOYUTAIN WU OF0OPUIIN
OKOHYATeJIbHbIII BAPUAHT PYKOIIUCH.
Bce aBrophl BHec/m paBHBIM BKJIaJ[ B HAllICAHUE 3TOW CTaThu. Bce aBTOpPbI HpOYUTANN M O70OpUIN

OKOHYATEJIbHBIII BADUAHT PYKOIUCH.
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Two-point boundary value problem for a system of functional-differential
equations with maxima

T. K. Yuldashev*, M. A. Tleubergenova, A. K. Tankeyeva, A. Molybaikyzy

Abstract

This article considers the questions of two-point boundary value problem for a system of first-order ordinary

differential equations with maxima. The parametrization method is using. The convergence conditions are

obtained and the algorithms of solving are built. The necessary and sufficient coefficient conditions for the

well-posedness of considered problem are established. The method of contracted mapping is used in the proof

of unique solvability of functional-integral equations in the space BD([O, wl, ]R”).
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Structure-preserving scheme for two-phase convection
reaction diffusionsystem

A.Elmurodov and A.Sotvoldiyev

ABSTRACT

In this paper, we introduces a novel structure-preserving explicit numerical scheme for a two-
phase convection reaction diffusion system featuring a dynamically evolving interface. Holder
norm a priori estimates are established for the free boundary and the solution. Uniqueness of the
solution is shown and qualitative properties of the solution are investigated. Furthermore, we
conduct a comparative analysis of three discretization strategies: the upwind implicit method,
the Crank Nicolson scheme, and the newly proposed explicit approach. Extensive numerical
experiments confirm the robustness of the method, even in regimes dominated by strong
advection and highly nonlinear reaction Kinetics. The robustness and physical accuracy of the
scheme make it well suited for modeling complex interface phenomena occurring in a variety
of fields, including osteointegration around dental implants, biological invasion in ecological
systems, and the dynamics of sharp interface phase transitions.

Keywords: free boundary problem, advection, reaction, diffusion, structure-preserving method, stability, numerical simulation.
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1. Introduction

Convection reaction diffusion equations constitute a cornerstone in the mathematical modeling of diverse
and intricate processes across the natural physical, chemical, biological and engineering disciplines. In recent
years, they have been routinely used to describe species distribution in ecology [1, 2, 3, 4, 5], concentration
dynamics in chemical reactions [6, 7, 8], signal propagation in population biological tissues [9], aand more
recently, the evolution of tissues around biomedical implants [10, 11]. They have also been used to describe
other similar processes. Generally, in a one-dimensional space, the convection reaction diffusion equation with
a nonlinear term can be written in the following general form

dw=V-(DVw) —c-Vw + f(w)

where w denotes the concentration or population density of the substance, ¢ the advection (mass flow) velocity,
D the diffusion tensor, and f(w) the nonlinear reaction term encoding the local kinetics.

This work focuses on a two-phase convection reaction diffusion system, where two distinct components
occupy complementary spatial domains separated by a moving interface s(¢). The full convection reaction
diffusion model reads as follows

Uy — Uxx — Crix = u(ay — bu), (x,t) € Dy, (1.1)

Received : 18—september—2025, Accepted : 20—november—2025
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Vi —Vax — C2Vy = v(az — bav), (x,1) € Dy, (1.2)

u(x,0) =up(x), —-€<x<s0)=0, v(x0) =vo(x), s0)=0<x<¢, (1.3)
u(=,t) = p1(t), u(s(r),t) =v(s(),t) =0, v({,1)=¢(t), 0<t<T, (1.4)
5(t) = —aux(s(1),t) + Bve(s(t),1), s(0)=0, 0<t<T, (1.5)

where the domains are defined as D1 = {(x,#) : 0 <t <T,-C <x <s(t)}and Dy = {(x,1) : 0 <t < T,s(t) <
x < {}, with parameters satisfying a;, b;, @, 8 > 0 and ¢; € R. The boundary functions data ¢1, ¢» belong to
C'*/2([0, T]) and remain strictly positive, while the initial profiles u, vo are assumed smooth and compatible
with the boundary conditions

up(0) =0, ug € C*([~¢,0]), vo(0) =0, vp € C**7([0,¢]),
up(x) >0, xe€[=60), uo(=0)=¢1(0), vo(x) >0, xe(0,€], vo(f) = ¢2(0).

Here, u(x,t) and v(x, t) represent the concentrations of two substances or populations, such as invasive and
native species or interacting biological components. The parameters c1, ¢ denote advection velocities, aj, az
represent growth rates, b1, b, indicate internal competition intensities, and «, 8 are proportionality coefficients
in the Stefan condition. The initial functions ug(x) and vo(x) are smooth and positive, consistent with the
boundary conditions.

In practice, many physical and biological systems don’t unfold within a single uniform phase; instead, they
develop across distinct regions separated by an interface that shifts over time. Consider osseointegration around
dental implants—a case that keeps coming up in both clinical and modeling studies. Here, the titanium implant
behaves as a passive, non-reactive phase, whereas the adjacent bone tissue remains metabolically active and
dynamically responsive. The two never truly blend; all their interaction is confined to a moving front—the
interface—whose motion is steered by biophysical feedback mechanisms [10].

This kind of two-phase layout isn’t unique. It shows up again in tumor growth models, where malignant
tissue pushes against healthy surroundings [12], and even in textbook examples like water freezing into ice,
where phase change propagates along a sharp, evolving boundary [13].

Mathematically, these situations fall under the umbrella of free boundary problems—most classically, Stefan-
type models—where the speed of the interface isn’t prescribed but tied directly to the fluxes of the underlying
state variables. That coupling isn’t just a technical detail, it’s what encodes the actual physical or biological
driver behind the boundary’s motion, and without it, you’d struggle to capture how the system behaves over
time.

Yet, simulating such two-phase convection reaction diffusion systems numerically is far from straightforward.
For one, the free boundary has to be tracked—or recomputed—at every time step, which means your mesh
can’t stay fixed; it has to evolve along with the solution. Then there’s the issue of nonlinear reactions: take the
familiar logistic term w(a — bw), for example. In many standard schemes, this very term can quietly erode
positivity, trigger unphysical wiggles, or even send the whole simulation off the rails [14]. And finally, even
though each phase follows its own PDE, they’re stitched together through nonlinear interface conditions, so
your numerical method needs to handle the whole domain in a coherent, globally consistent way.

It’s no surprise, then, that recent efforts have leaned heavily toward structure-preserving—or more
specifically, positivity-preserving—numerical approaches [15, 16, 19]. The idea isn’t just to get close to
the true solution, but to do so while honoring core physical constraints: non-negativity of concentrations,
natural bounds on population densities, and the tendency to settle into equilibrium when the driving forces
fade.

Finding an exact analytical solution for systems of this kind is rarely feasible—the moving boundary
alone introduces enough complexity to make closed-form expressions all but impossible. And yet, getting the
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interface motion right is absolutely essential, without it, any description of the system’s behavior quickly loses
credibility.

With that in mind, we adopt a front-tracking strategy that brings together three numerical approaches: the
upwind implicit scheme, the Crank—Nicolson method, and a new explicit scheme introduced here. The latter
is designed specifically to preserve positivity and respect the underlying structure of the model. Our main
goal isn’t just to build faster algorithms, but to develop schemes that remain faithful to the physics—robust,
efficient, and consistent with the core properties the continuous problem demands.

2. A priori estimates

In this section, we establish the Holder norm a priori estimates that are essential for proving the global
solvability of the problem. In particular, the maximum principle, as discussed in [19], plays a key role in our
analysis.

One of the main difficulties in developing a nonlocal theory for nonlinear problems lies in obtaining suitable
bounds for the first derivatives of the solution with respect to the spatial variable. Various techniques have
been proposed in the literature to address this challenge.

In this study, we adopt the approach outlined in [6, 5, 19] to derive the necessary a priori bounds, and we
follow the notations and conventions introduced in [21, 22].

Lemma 2.1. Let the triplet (s(t),u(x,t),v(x,t)) be a classical solution to the system (1.1)—(1.5). Define the

2 2
Iy _ up (x) ! _ vo(x) )
positive constants N1 and Ny as N1 = max { sup ( _x ) ey ( N> = max 4 sup ( > ) s (-
—0<x<0 0<x<¢
If the initial conditions satisfy 0 < ug(x) < %, 0<vo(x) < Z—Z, then there exist positive constants

My = % M, = Z—; and M3 = aN1 + BN», independent of T, such that the following estimates hold
O<u(x,t) <My in (x,1)eD1, O<v(x,t) <My, in (x,t) €Dy, 0<s(t)<M;, 0<t<T.

Proof. We begin by applying the parabolic maximum principle to equations (1.1)—(1.2). The reaction
terms fi(u) = u(a; — bru), fo(v) =v(az — byv) satisty f;(0) =0, and each f; is Lipschitz continuous.
Given that ug(x),vo(x) >0, and the boundary conditions u(s(t),7) = v(s(¢),t) =0, u(=¢,t) = ¢1(¢) = 0,
v(€, 1) = ¢a(t) = 0, it follows from the maximum principle (see, e.g., [19, Theorem 2]) that

u(x,t) >0 in D, v(x,1) >0 in D».
If up(0) = vo(0) = 0 and up, vo # 0, then by the strong maximum principle,
u(x,t) >0 in D1, v(x,t)>0 in Dy, t>0.

u(x,t), (x,t)€ D1,
v(x,t), (x,1) € Dy,
the reaction term takes the form f(x,t,w) = w(a; — bjw) (i =1,2). Since w =0 and w = Z—j are sub- and
supersolutions, respectively, the maximum principle yields

To derive the upper bounds, introduce the auxiliary function w(x,t) = { for which

0<u(x,t)< Z—i =M, (x,t)€ Dy, 0<v(x,it)< Z—i =M, (x,t)€ Ds.

Next, to estimate the gradients near the free boundary, consider the auxiliary function

U(x,1) = Ni(s(t) —x) — u(x,1),
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where N1 > 0 is a constant to be determined. Then U satisfies

2

a
Ui —Uyxx — 11Uy chNl—b—l >0,
1

U(x,0) = N1i(=x) —up(x) > 0,
U(=¢,1) = Ni(s(1) + ) — 1(2) 2 0,
U(s(t),t) =0.

By the maximum principle
U(x,t) >0 in Dq
which implies u(x, 1) < N1(s(z) —x), —{ <x<s(1).
Hence, taking the left-hand derivative at x = s(¢) yields

—N1 < u,(s(1),1) <0.

A similar argument for the second phase gives 0 < vy (s(¢),t) < Nj.
Finally, from the free boundary condition (1.5),

0 < s$(t) < aNy + BNy = M3,

which completes the proof. O

To obtain upper bounds for uy, vy, and for the Holder norms |u|(Q2+7) and |v|(QZ+"), we first transform the

moving spatial domains into a fixed reference domain. Following the approach in [6, 19], we introduce the
change of variables

x+< for D ; x—C
= 5 : T = 5 = .
€+ s(t) 2 Y SIS0
This transformation maps both regions onto the fixed cylindrical domain Q = {(y,7) :0<y<1,0< 7 <
T}.
Define the new dependent variables U(y, ) = u(x,t) and V(y,7) = v(x,t). Then U(y, 7) and V(y, 7) satisfy
the following boundary value problems:

forDi: 7=t Yy

U = AlUyy + Fl(U’ Uy)’ (y’T) € Qa
U(y,0) = Uy(y), 0<y<1, (2.1)
U(l,7)=0, U0,7)=¢i(7),

Ve = AVyy + F2(V,Vy), (y,7) €0,

V(y,0) =Vo(y), 0<y<l, (2.2)
V(0,7) =0, V(1,7)=¢2(7).

Here, the transformed initial functions are Uy(y) = ug(y(£ + s(t)) =€), Vo(y) = vo(y(£ — s(¢)) + £) and

. . 201 (£+: -2s( 4
the coefficients are given by .Al = m, Ay = (g_:lw Fi = c1( “é;ﬁi(ﬂ‘)&’“” ) Uy +U(ay -
b1U), F= [_ZCZ(K_S((T{»)_)S_)ZzS(T)(x_f)] Vy +V(az = baV).

ByLemma?2.l,wehave 0 <u < My, 0<v <M, 0<s(t)< M. Moreover,since s(z) € [0, smax) With
Smax < €, the terms ¢ + s(¢) are strictly positive.

Consequently, the coefficients A; and F; remain uniformly bounded in Q. For any ¢ € (0, 1), denote the
interior subdomain Qs = {(y,7) : 6 <y<1-6, 6§ <7t <T}.
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Theorem 2.1. Assume that U(y,7) is a classical solution of (2.1). Then there exists a constant My =
My(Mq, 6) > 0, independent of T, such that

Uy(y, DI <My, (,7) € Qs.

If; in addition, U|s,0 = 0 on the parabolic boundary 8,0 = {t = 0} U {y = 0} U {y = 1}, then the estimate
holds throughout the entire domain Q

|Uy(y,7)| SM4(M19A10)’ (yaT) € Q’
where A1y = inn{Al} > 0.

Proof. Since U(y, 1) is bounded by M; and the coefficients A1, F; are uniformly bounded in Q, the interior
gradient estimate for quasi-linear parabolic equations (see, e.g., [22, Theorem 2.1]) implies

Uy (y, 7)| < My, (y,7) € Q5.
To extend this bound to the boundary, define W(y, t) = U(y, ) — Up(y). Then W satisfies

W(y,0) =0, W(0,7)=0, W(,7)=0,

where G1 = Fl(U, Uy) - Al(UQ)yy.
Since Up(y) € C?*7(]0,1]), its second derivative (Uo)yy is bounded, and thus G is also bounded in Q.
By applying the global gradient estimate for parabolic equations ([22, Chapter III, Theorem 4.1]), we
conclude that Uy, is bounded in the entire domain Q. The same argument applies to V(y, 7). m|

{WT = MW,y + G1 (W, Wy),

Returning to the original variables, the estimates for U, and V), yield
|ux(x’ t)l S C1M4’ |vx(x9 t)l S C2M4a

for all (x,¢) in the interior subdomains Df and Df ,
boundaries x = +£.
To derive the higher-order Hoder estimates, consider, for example, the equation for v

which are separated from the initial time and fixed

Vi =Vax +q(v,vy), g(v,vy) =v(az — bav) + cpvy.
From Lemma 2.1 and Theorem 2.1, we have |v| < M and |v.| < M4. Hence, for some constant
R = R(M3,c3) >0,
lg(v,v.)l S ROV +1).
Theorem 2.2. Suppose v € L%(Dy) and its weak derivatives satisfy Vyx, Vix € L%(Dy). Then there exists a
constant Ms = Ms5(M>, R) > 0 such that

w032 < M,

Moreover, if the linearized equation

a(y, Dywyy +b(y, t)wy + (v, 1)w —wr = f(y,7)
has Holder-continuous coefficients satisfying

(y)

~1(¥) 7 (¥)
alg’ + 11

o
and if w = 0 on the parabolic boundary, then (see [22, Theorem 5.3])

+lel) +1717) <0, azag>0,

2 ~
|w|22+7) <C (|f|(Q7) + rnan|w|) = M;.
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Proof. Applying this result to U(y, 7) and V(y, 1) yields
UG <My VIS < My
Transforming back to the original variables gives
WG <CMg, IR < CMy,

where C depends only on ¢, M3, and 7y, but not on 7. Thus, the required a priori estimates for u,, v, and for
the Holder norms |u|2*), |v|(®*?) are fully established. O

3. Uniqueness of the solution

To establish the uniqueness of the classical solution for problem (1.1)—(1.5), we begin by considering the
following integral representation of the free boundary s(z) (see [19]):

s(t) 0

4
S(t)=ﬁ/V(§,t)d§—ﬁ//D V(az—sz)dédT+a/u(f,t)df—a/uo(f)df
s(1) 2 Ze Ay
3.1

t t

€
+,8/v0(.f)d§-‘—a/‘//0 u(al—blu)dfd‘r—ﬁcz/v(f,T)dT—aclfu(—f,T)dT.
0 1

0 0

Theorem 3.1. If the initial and boundary conditions are satisfied in the form specified above, and the
assumptions of Lemma 2.1 hold, then the classical solution to problem (1.1)—(1.5) is unique.

Proof. Assume that there exist two classical solutions (s1(¢), u1(x,1),v1(x,¢t)) and (sa(2), up(x,1),vo(x,1)).
Define the auxiliary functions y(¢) = min{s1(¢), s2(¢)} and h(¢) = max{s1(z), s2(¢)}.
Since both solutions satisfy (3.1), subtracting the corresponding identities yields the estimate

y(t) ¢
Is1(2) = s2(1)| < CY/ lu1(&,1) —ua(&, D) dE+B | [vi(§,1) —va(§,1)| dE+
-t y()
) £ R
+C¥// |u1(a1—blul)—Mz(al—blu2)|d§d7+a/ / lui (a1 — byu;)| dédr+
0 "¢ 0 y(7)
t ¢ t h(r)
+,3/ / [vi(az = bav1) —vz(az—bz\/z)ldfd7+ﬁ/ / [vi(az — bavi)| dédnr, (3.2)
0 y(7) 0 y(7)

where, in the intermediate region between y(z) and A(¢),

(u1(x, 1), vi(x, 1)), if s2(2) < s1(1),
(ui(x’ t)’vi(-x’t)) =
(uz(x,1), va(x, 1)), if s2(2) > 51(1)).

We next introduce the difference functions U(x, 1) = uy(x,t) —uz(x,1), V(x,t) =vi(x,t) —va(x,1).
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These functions satisfy the following boundary-value problems

U —Uxx —c1Ux + A1(x, 1)U =0, (x,t) € DI,
U(x,00=0, —-¢<x<0, U(-t1=0, 0<t<T, (3.3)
|U(y(t),1)] < My max [s1(7) —s2(7)], 0<t<T,

<7<t

Vt_vxx_c2vx+A2(x,t)V:0’ (xvt) ED*’
V(x,0)=0, 0<x<l V(i1)=0, 0<t<T, (3.4)
V(y(1),1)] < Ms max Is1(7) —s2(7)], 0<t<T,

<7<t

where A1(x,t) = a1 — b1(u1 +up), Ax(x,t) =ar—by(vy +vp)and My = max lux|, M5 = max |vy| are the
1 2

bounded constants obtained from Lemma 2.1 and Theorem 2.1.
Since the above equations are linear with bounded coefficients, the parabolic maximum principle (see [19])
ensures that
|U(x,0)| < Ny max [s1(7) = s2(7)[,  [V(x,1)| < N2 max |s1(7) — s2(7)], (3.5
0<t<t O<t<t

where N1 > 0, N, > 0 depend only on the initial data and system parameters.
We now estimate the terms in (3.2) using (3.5). For example, the first integral satisfies

y(t)
[ 10tenlde < M€+ 300 max 1 (1) = s2(0)] < 268y ax I (1) = s2(0).
-

Similarly, each remaining term in (3.2) is proportional to 0max |s1(7) — s2(7)|. Consequently, we obtain the
<7<t

integral inequality
t

5100 = 5201 < Vs [ max [s1(1) = sa(r)| o
) o

where N3 > 0 is independent of $T.

Applying Gronwall’s lemma gives maxg<:<7 |s1(f) — s2(¢)| = 0 which implies s1(¢) = s2(¢). Substituting
this into (3.3)—(3.4) yields homogeneous boundary conditions, and by the maximum principle once more, we
conclude that U = and V = 0.

Hence, the two classical solutions coincide completely, and the solution to problem (1.1)—(1.5) is unique.
This proof follows the methodological framework used in [5, 19]. m|

4. Existence of a solution

To establish the existence of a classical solution for problem (1.1)—(1.5), we build upon the a priori
estimates derived in the previous sections. By applying a suitable transformation of variables, the moving
boundary is mapped onto a fixed domain, leading to the reformulated systems (2.1)—(2.2).

Theorem 4.1. Assume that the a priori estimates stated in Lemma 2.1 and Theorem 2.2 hold. Then the problem
(1.1)=(1.5) admits a classical solution satisfying

we CHIREY), e CHIITRDY), e R[0T,
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Proof. The proof is based on an iterative construction. We begin with an initial approximation of the free
boundary, taking s©)(¢) = 0. For each k > 0, suppose that s%)(¢) is known. We then solve problems (2.1)—
(2.2) for U**D and V**+1) ynder the boundary conditions corresponding to s (¢). Next, we update the free
boundary as

sV (1) = UV (1, 0) + VIV (<1,0),  s*D(0) = 0.

From Lemma 2.1 and Theorem 2.2, the sequences U®), V(K) and s(X) are uniformly bounded in Holder
norms. In particular, there exists a constant N; > 0 (i = 4, 5, 6), independent of k£ and T, such that

2 2 1 2
|U(k)|(Q+7) < N4, |V(k)|(Q+7) < Ns, |s(k)|EO,+]2/]/ ) < Ne.

Here, the constant N; depends only on the initial data and fixed parameters ¢, a;, b;, ¢;, «, 8,7y, but not on
the iteration index k or the time interval 7.

By the Arzela—Ascoli theorem and the compactness of embeddings in Holder spaces, one can extract
convergent subsequences {U%)}, {V(¥)} and {s(¥)} such that

v v, v sy s

uniformly on compact subsets. Passing to the limit in the equations and boundary conditions is justified by
standard arguments of functional analysis (see, e.g., [22, Chapter V]).

Thus, the limiting functions (U, V, s) constitute a classical solution of the transformed problem. The original
variables are recovered by inverse transformation, yielding a classical solution (u,v,s) to the initial free
boundary problem (1.1)—(1.5).

Finally, since all the a priori estimates are uniform with respect to 7', the solution can be extended step by
step in time, thereby ensuring global existence for any 7' > 0.

Because the obtained a priori bounds are independent of T, the solution is not only locally existent and
unique, but also globally extendable to arbitrary time intervals. Hence, the free boundary system (1.1)—(1.5)
admits a global classical solution. This result provides a rigorous mathematical foundation for the numerical
simulations developed later, since the physical relevance of numerical results is guaranteed only when a
well-posed (i.e., existent and unique) solution is ensured. O

5. Numerical methods

The two-phase advection—reaction—diffusion system (1.1)—(1.5) is highly nonlinear and involves a moving
free boundary. Therefore, numerical approximation requires special attention to mesh dynamics, interfacial
coupling between phases, and nonlinear reaction terms. In this section, we construct two stable and widely
used schemes— the upwind implicit scheme and the Crank—Nicolson scheme— both of which incorporate a
dynamic update of the free boundary s(z) at each time step.

The computational domain is defined as [—¢, £] X [0, T]. We introduce the spatial step & = Ax = % and the
time step k = At = % The discrete grid points are given by

x;=—C+ih, i=0,1,...,M, t"=nk, n=0,1,...,N.
The approximate solutions are denoted as
u! ~u(t",x;), forx; <s", vi = v(t",x;), forx; > s", s~ os(t"),

where s" represents the approximate location of the moving interface. We assume that x; < s" < x; 41.
According to the boundary condition (1.4), the interface values are determined via linear interpolation:

h

s = Xig

u(s", ") =0 = ul"S +0(”Z+1 —uZ_) =0, 6 = ,
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and similarly for v(s",#") = 0. In practice, it is often sufficient to enforce only the left-phase condition u!' =0,
since the right phase is treated as an inert medium.

5.1. The upwind implicit scheme

The presence of advection terms may cause artificial oscillations or numerical diffusion. To mitigate such
instabilities, we apply an upwind discretization that follows the direction of the flow

c
o (Wi —w;-1), ¢>0,
C

7 (Wis1 —wi), ¢<0.

Assuming c¢1 > 0 (flow directed rightward in the left phase) and ¢, < 0 (flow directed leftward in the right
phase), the corresponding schemes can be written as follows.
For the left phase (x; < s"*1)

n+l n n+l n+1 n+1 n+l n+l
Wt — oyt wM = 2u + o u™ —u’
i i i+1 i i—1 i i-1 _  n+l n+l . _ . .
T - 2 - h =u; (a1 =bwu;™), i=1,...,is-1; (5.1)
For the right phase (x; > s"*1)
prtl _pnynal_gpndl g ntl yn+l _yn+l
i i i+l i i-1 i+1 i _ ,,n+l _ n+l ] _
. 2 1) ; =vi"(ax—=bvi"), i=ig+2,....M-1. (5.2)
The boundary conditions are given by
+1 +1 +1 +1 +1
ug” =1 (t"), Vi =™, uilt =0. (5.3)

Equations (5.1)—(5.3) form a nonlinear algebraic system, which can be solved using Newton’s method or the
Picard iteration. The scheme is implicit, providing unconditional stability even for large time steps. Moreover,
the resulting matrix is diagonally dominant, ensuring the existence and stability of the numerical solution.

5.2. The Crank Nicolson scheme

The Crank Nicolson scheme provides second-order accuracy in time by averaging diffusion and advection
terms at the mid-time level *+1/2_ It is particularly effective in diffusion-dominated regimes, offering both
high accuracy and energy conservation.

For the left phase (x; < s"*1)

n+l _ . n n+l _ n+1 n+1 n _ n n n+l _  n+l n_ ,n
U; wi 1wy = 2uit +u L lin 2ui +u | er | i M T Mg
k 2 h? h? 2 h h
5.4)
1
+1 +1 : :
—E[ul'-’ (a1 — byul )+u?(a1—b1u?)], i=1,...,ig—1.
For the right phase (x; > s"*1)
n+1 n n+l _ n+l n+l n _ n n n+l _ ,n+l n _,n
Vit TV 1 Vi v v 4+ Jixl 2vi +vily | Vm TV i TV
k 2 2 2 2 h h
h h (5.5)
1
+1 +1 . .
=§[v? (ap — byv} )+v?(a2—b2v?)], i=ig+2,....M-1.
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Boundary conditions are the same as in (5.3). Although the Crank Nicolson scheme also yields a nonlinear
system, it achieves higher temporal accuracy compared to the upwind scheme. However, in advection-
dominated cases (|c;| > 1), spurious oscillations may occur, highlighting the robustness of the upwind
approach.

Accurate evaluation of spatial gradients is crucial for updating the moving boundary s*!. Since the interface
typically lies between grid nodes (x; < s" < x;41), we employ Lagrange extrapolation. If x; < s" < x;41, a
symmetric point ¥;_1 = 25" — x;_1 is introduced, and the value u(%;_1,¢") is estimated using a three-point
Lagrange polynomial. The gradient is then computed as

h

s —Xx;

2(1+d
ux(s",1") = %[PL()@'—O —ui 4], d=

A similar procedure is applied to compute v, (s", "). The updated interface position is obtained from the
Stefan condition:

s = gy k[—auy(s",t") + Bvy(s", t")]. (5.6)

If the new interface s"*! crosses into a new spatial interval, the corresponding index iy is updated, and

boundary conditions (5.3) are recalculated accordingly. This process is repeated at each time step, producing a
dynamically adaptive computational mesh. The resulting algorithm provides a stable and consistent framework
for solving the two-phase free boundary problem numerically.

6. Proposed Numerical Scheme

Classical numerical methods, such as the upwind and Crank Nicolson schemes, often encounter difficulties
when applied to nonlinear reaction systems with free boundaries. In such settings, these schemes may produce
unphysical results, including negative concentrations or spurious oscillations, which undermine the reliability of
the computed solution. This issue becomes particularly critical in biological and biomedical models, where the
positivity of solutions carries essential physical meaning. Therefore, the development of structure-preserving
or positivity-preserving numerical schemes is of fundamental importance.

In this section, we propose a new explicit structure-preserving numerical scheme for the two-phase
advection—reaction—diffusion system with a moving boundary, inspired by the approach of Chen, Charpentier,
and Kojouharov [23]. The proposed scheme naturally preserves the fundamental physical properties of the

model
a ar
b1 by’

ensuring that the solution remains positive and bounded at all time steps. Moreover, the scheme converges

O0<u<—, 0<v<

correctly to the steady states and, due to its explicit formulation, offers high computational efficiency.

The key idea is to reformulate part of the nonlinear reaction term into the denominator, which guarantees
positivity even in an explicit setting. This allows the diffusion and advection terms to be treated explicitly,
while the nonlinear reaction term is handled in a semi-rational form—its linear part treated additively and the
nonlinear part incorporated in the denominator. This balance preserves the physical structure of the underlying
equations without sacrificing computational simplicity.

For the left domain (x; < s"*1), the proposed scheme is given by

ul ;= 2ul +ul ul —ul

i+1 i—-1 i—1

n n
ul +k i +cq A + aiu;

W+l = T c =1 -1, 6.1)
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Similarly, for the right domain (x; > s™*1),
i =207 47 it =yl
1 -1 1
1 Vit k|2 hzl ot l+h ~ +axv!
n+ s
pitl = , I=ig+2,....,.M-1. 6.2
! 1+ kbyv" ’ (02)
The boundary conditions are imposed as
u6l+l = 1 (tn+1), vnM+1 — 902([n+1)7 u;:'—l — vZ—:ll =0. (63)

Since the functions # and v are discontinuous across the free boundary x = s™*!, the conditions

uZ” = v?t}l = 0 are imposed to reflect the physical separation between the two phases. The free boundary
itself is updated according to the general Stefan-type condition given in (5.6).
The following theorem establishes the consistency of the proposed scheme with the continuous differential

model.

Theorem 6.1. Assume that u(x,t) is a sufficiently smooth solution of equation (1.1), such that u € C>'. Then,
the numerical scheme (6.1) is first-order accurate in time and second-order accurate in space. In particular,
if k = O(h?), the total truncation error satisfies O (h?)

Up = Uy + Clx + aru — bru® + O(k) + O(H?).

Proof. To analyze the truncation error, we expand the discrete terms in (6.1) using Taylor series:
2 h2 h3
=ul + kup + —upy + - ul sy =ul £ huy + —Uxx £ —Uyxx +
i t ) tt > i+1 i — X 2 xx = XXX .

6
Substituting these expansions into the right-hand side of (6.1) and expanding the denominator as
1+ kbiu! =1+ kbiu + O(k?), we obtain, in the limit k, 1 — 0,

r_1+1

u;

Up = Uxy + Clllx + a1u — biu® + O(k) + O(h?),

which recovers the original continuous equation. Thus, the scheme achieves first-order accuracy in time
and second-order accuracy in space—consistent with classical parabolic finite-difference formulations. The
influence of boundary terms is neglected in this local analysis, and stability was verified numerically in
subsequent experiments. O

In this section, we analyze the stability and positivity-preserving properties of the proposed explicit scheme.

While many classical schemes require restrictive conditions on the time and spatial steps to maintain
numerical stability, the present method remains stable and physically consistent for all practical discretizations.

The stability is verified through the standard von Neumann analysis, and the preservation of positivity is
shown by direct induction.

Theorem 6.2. The proposed numerical scheme (6.1)—(6.2) is unconditionally stable; that is, the stability
condition holds for all k — 0 and h — 0.

Proof. To examine the stability, we linearize the advection-reaction—diffusion system around its steady state.
Let
n _ = n

u; =i+ €,
where ii = % denotes the equilibrium point, and €' represents a small perturbation. Substituting this into (6.1)
and neglecting nonlinear perturbation terms gives the linearized scheme

€' —2e' + € el — €
i+l ; il +C1 ! i1 + (a1 — Zblﬁ)ef
e+l h h
! 1+ kbt
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Since a1 — 2b1ii = —ay < 0, the reaction term contributes a damping effect. An analogous analysis applies
to the right-hand domain with v = 72.

We now assume a Fourier mode of the form €' = £ "¢191h and obtain the corresponding amplification factor:

4 in(0h
14k |-— sinz(%h) - iq%h) + (ay - 2b1i0)

hz

&1 = 1+ kbyi

Since the magnitude of the numerator is always less than or equal to that of the denominator, it follows
that |£]| < 1 for all k£ > 0 and /2 > 0. Therefore, the scheme is unconditionally stable and preserves numerical
monotonicity even for relatively large time steps. O

Theorem 6.3. Let the initial conditions satisfy u? >0 and v? >0, and assume the boundary conditions
01(t) = 0 and @y(t) = 0. Then, the approximate solutions obtained from the scheme (6.1)—(6.3) remain non-
negative for all spatial indices i and time levels n:

ul >0, vi > 0.

Proof. The proof proceeds by mathematical induction. Assume that u}' > 0 at some time level . From (6.1),

it is evident that _
u!' + k(non-negative terms)

‘ 1+ kbu!

{1+1 _

Because the denominator satisfies 1+ kbju} >0 and all terms in the numerator are non-negative, we
conclude that u?” > 0. A similar argument applies to vlf”l. Hence, the scheme preserves positivity at every time
step. This property ensures that the computed solution maintains its physical meaning, preventing unphysical
negative concentrations in biological or chemical applications. O

Remark. It is worth noting that, although von Neumann analysis provides a formal verification of stability,
the unconditional positivity of the scheme offers an even stronger guarantee of practical robustness. Because
the method is explicit and structure-preserving, it maintains both numerical stability and physical consistency
without the need for any additional restrictions on the discretization parameters. Such positivity-preserving
explicit schemes have become a modern standard in the numerical treatment of nonlinear diffusion-reaction
systems (see, for example, [23]).

7. Numerical example

In this section, we present numerical experiments to demonstrate the accuracy, stability, and efficiency
of the proposed structure-preserving explicit scheme. The considered test problem models a two-phase
advection—reaction—diffusion system that describes the process of osteointegration around a dental implant. In
this framework, the left region corresponds to the bone tissue, the right region represents the implant, and the
moving interface denotes the boundary of interaction between the two media.

The computational domain is chosen as the spatial interval [-¢, £] = [—1, 1] and the temporal interval [0, T]
with T = 2. The physical and model parameters are taken as follows:

ay = ap =1 growth rate, b1 = by =1 intraspecific competition coeflicient, ¢; = 0.5 rightward advection,
¢y = —0.3 leftward advection, @ = 8 = 0.1 free-boundary velocity coeflicients, ¢1 () = ¢p(¢) = 1 dirichlet
boundary conditions.
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The initial conditions are defined as

) 1-x2, -1<x<0, ) 0, x <0,
uog(x) = volx) =
0 0, x>0, 0 1-x2, 0<x<1.

These initial profiles satisfy both the continuity condition at the interface (1(0,0) = v(0,0) = 0) and the
positivity requirement (g, vo > 0 inside their respective domains).

The computational mesh consists of M =200 spatial nodes and N =400 time steps, corresponding to
h = 0.01 and k = 0.005. For comparison, three numerical schemes were tested: (i) the upwind implicit scheme
(5.1)—(5.3), (ii) the Crank—Nicolson scheme (5.4)—(5.6), and (iii) the proposed structure-preserving explicit
scheme (6.1)—(6.2).

The proposed method successfully preserved nonnegativity at all time steps, i.e., u!' > 0 and v’ > 0.

The free boundary s(¢) evolved smoothly and monotonically, reaching approximately s(2) ~ 0.38 at the final
time.

The upwind implicit scheme also maintained positivity but was computationally slower, yielding s(2) =~ 0.37.

In contrast, the Crank Nicolson scheme produced small negative oscillations for ¢ > 1.2, with a minimum
value umin = —0.03, which violates the physical interpretation of the model. As a result, the interface velocity
in that scheme exhibited non-monotonic behavior over time.

Figure 1 shows the evolution of the moving boundary s(#) for all three schemes. Only the proposed structure-
preserving method consistently maintained positivity and monotonic interface propagation throughout the
entire simulation.

s(t)

—— Proposed explicit scheme - - - Upwind implicit scheme - Crank—Nicolson scheme

Figure 1. Time evolution of the free boundary s(#) for different numerical schemes.

The obtained results are in full agreement with the physical interpretation of the process: the interface always
moves toward the implant region, indicating continuous tissue growth (s(z) > 0).

The proposed explicit scheme demonstrates high computational efficiency and excellent stability while
preserving both the physical and biological consistency of the solution.

To evaluate the accuracy of the proposed scheme, a highly resolved numerical solution with M = 800
grid points was used as a reference benchmark. The performance comparison among different schemes is
summarized in Table 1.
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Table 1. Comparison of numerical schemes in terms of computational cost and accuracy.

Scheme Computation time (s) | Average error (L)
Proposed explicit 1.2 21x107°
Upwind implicit 8.7 1.8x1073
Crank-Nicolson 6.5 1.5%x1073

Remark. The proposed scheme demonstrates the fastest computational performance due to its fully explicit
formulation. In contrast, both the upwind implicit and Crank Nicolson methods require solving a nonlinear
system at each time step (typically using Newton iterations), which significantly increases the computational
cost.

Additional numerical experiments confirm the robustness of the proposed scheme under various parameter
settings. When the advection intensities were increased (¢ = 2, ¢z = —1.5), the upwind method remained
conditionally stable, whereas the Crank—Nicolson scheme produced strong oscillations and eventually lost
physical consistency. The proposed structure-preserving method, however, maintained stability and accuracy
under all tested conditions.

Similarly, when the nonlinear reaction terms were intensified (b1 = by = 5), only the proposed method
successfully converged to the correct equilibrium value (# — 0.2), while other schemes exhibited spurious
overshoots.

Figure 2 illustrates the time evolution of u(x, 7). The proposed scheme preserves the logistic upper bound
(u < 1), ensures smoothness near the moving interface x = s(¢), and avoids artificial oscillations. In contrast,
the Crank—Nicolson method generated nonphysical negative values after t ~ 1.2 (upmin =~ —0.03), violating
the positivity constraint, while the upwind scheme, though stable, exhibited slower propagation and loss of
resolution.

The numerical experiments clearly demonstrate that the proposed structure-preserving scheme
unconditionally maintains positivity, delivers physically realistic results, and remains computationally efficient
due to its explicit nature. Even under strong advection (c1 = 2, ¢; = —1.5) or intensified nonlinear reaction
terms, it remains free from unphysical oscillations and instability.

In contrast, the Crank Nicolson scheme produces excessive oscillations with |u| > 1.2, violating physical
constraints, while the upwind method, though stable, significantly underestimates the interface dynamics.
These results confirm that the proposed approach provides a robust and efficient numerical tool for simulating
realistic biological and physical processes, such as osteointegration near dental implants, ecological invasion,
and phase transition phenomena.

8. Conclusion

In this study, we have developed mathematically rigorous and computationally efficient numerical methods
for a two-phase advection-reaction—diffusion system with a free boundary. By establishing a priori estimates,
we have demonstrated the boundedness and positivity of the solution, as well as derived upper and lower bounds
for the velocity of the moving interface. These results provided a solid theoretical foundation for proving the
existence and uniqueness of a classical solution to the problem.

In the subsequent analysis, three numerical approaches were examined in detail. Although the classical
upwind implicit and Crank Nicolson schemes offer certain advantages in terms of accuracy and stability, they
exhibit several limitations when applied to nonlinear reaction systems with free boundaries—such as the loss
of positivity, excessive computational cost, and the appearance of artificial oscillations.
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Comparison of u# and v profiles for three numerical schemes

[
X =§(1)
1 u(x,1) Pty N v(x, 1) 8
(left phase) ,," N (right phase)
0.8 | ’,I “““““““ \~\ —
= 0.6 P . i
:%: , “...‘ ..'t.t\
p 04 [ "1 .".o .'?.\. |
"'¢ g . ‘.\\"..
02f }
0 | | | | | | | | | i
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X
— Proposed explicit - - - Crank Nicolson ------ Upwind implicit

Figure 2. Comparison of u and v profiles obtained by different numerical schemes. The proposed explicit scheme (red) maintains smoothness and positivity across the
moving interface x = s(t), while Crank-Nicolson (green) shows oscillations and Upwind (blue) is more diffusive.

To overcome these shortcomings, a new structure-preserving explicit scheme was proposed. The scheme
unconditionally preserves positivity, converges correctly to the equilibrium states, and maintains stability even
in the presence of strong advection or nonlinear reaction effects. Due to its explicit formulation, it is also
computationally efficient. Numerical simulations confirmed the robustness and reliability of the proposed
method, showing that it produces physically meaningful and biologically realistic results. In particular, the
scheme was successfully applied to simulate osseointegration around dental implants, ecological invasion
fronts, and phase transition dynamics.

Future research will focus on extending the proposed scheme to multidimensional cases, incorporating
spatially variable coeflicients and stochastic effects, as well as implementing adaptive mesh refinement
techniques. Furthermore, the approach may be effectively adapted for other nonlinear systems such as the
Brusselator and Fitz Hugh Nagumo models.

Overall, this work demonstrates the importance of structure-preserving approaches for free boundary
problems governed by nonlinear parabolic systems. The proposed method provides a reliable and efficient
computational tool that can be applied to a wide range of modern scientific and practical problems.
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Asymptotic Properties of the Wilcoxon-Mann-Whitney
Statistics

Shomurodov Nozmbek * To’rayev Alimardon

ABSTRACT

Random variables seen in many practical problems of statistical physics, quantum field theory,
and reliability theory are associated connected random variables. This article focuses on
nonparametric estimates for statistics constructed by associated random variables. It proves a
theorem for a sequence of stationary associated random variables with two identical marginal
distributions.

Keywords: associated; statistics; stationary; sequence.

1. INTRODUCTION

It is well-known that independent random variables have been extensively studied in science. However, in
nature and technology, random variables are often dependent. Therefore, the study of dependent random
variables, specifically associated random variables, under certain conditions, and demonstrating their
applications in practical problems has been the focus of many prominent experts. In this field, renowned
mathematicians such as Newman, Prakasa Rao, Harris, Fortuin, Lebowitz, Hoeffding, Wilcoxon, Mann,
Whitney, and their students have achieved fundamental results. Currently, with the development of several
directions in mathematical statistics, the importance of the theory of associated random variables has
significantly increased, which is well-known among specialists. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.

Definition 1.1. Let (X,Y) be a random vector with E[X?] < co and E[Y?] < oo. Define
H(x,y) =P(X <x,Y<y)-P(X<x)P(Y <Y).

Recall the Hoeffding identity:
cov(X,Y) = / H(x,y)dxdy.[8]]
R2

This identity was extended to the multivariate case by Block and Fang (1988) using the concept of cumulants
for random vectors. Yu (1993) generalized Newman’s (1984) earlier work by extending the covariance identity to
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absolutely continuous functions of the components of the random vector X. Cuesta-Molina (1992) generalized
the Hoeffding identity to semi-monotonic functions K (+) in the following form:

K(x',y') = K(x,y") = K(x',y) + K(x,y) > 0 [9]]

for all x < x’ and y < y’. This was proven as:
EIK(XY)] - EK(C)] = [ HG K (),
R2

where X* and Y* are independent random variables with the same marginal distributions as X and Y,
respectively. These results were further generalized by Yu (1993), Cuesta-Molina (1992), and Prakasa Rao
(1998) to the multivariate case. Cuadras (2002) showed that if a(x) and 8(y) are functions with finite variation,
then:

cov(@(x).6) = [ Hixatdnpidy.

This result is a special case of (1.2.4). From this, we can see that cov(Xy, X;;) — 0 as n — oo. In particular,
we have:
sup |cov(Xy, Xp)| < o0.
n

Using the association property of X1, . .., X,;, we observe that cov(X1, X,;) > 0 and obtain:
0 < cov(X1, X;) = [cov(X1, X;)]*?[cov(X1, X;)]'? < [sup cov(X1, X,)]*[cov(Xy, X;)]3.

Therefore,
n

> cov(Xy, Xj) < [sup cov(Xy, ;)12 > [eov(Xy, X)]' < o0,
=2 =

Let R1, Ry, ..., R, be the ranks of X1, Xo, ..., X,,. The Wilcoxon signed-rank statistic is defined as...

1.1. Preliminaries

Let {X,,n > 1} be a sequence of stationary random variables. We can express T as a linear combination of
two U-statistics (Hettmansperger (1984)):

7= 4 (;)Uff), ®)
where
U = $(X0),
i=1
n
(Z)U,S” = D, v X)), ©)
1<i<j<n
and
y(x,y) =I1(x+y>0). (10)

For a stationary sequence {X,,,n > 1}, we have:
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1 1 < .
E(WUY) = o Pij = WZ(" —j+Dp1, (11)
~ 2) j=2

where p;; = P[X; + X; > 0]. Define:

o= [ [ wenarearo.

6= / / U (e y)dF()dF (y) = 1 - / F(—x)dF(x), (12)
vi(n) = E((x1.x2)) = / w(x1.x2)dF (x2) = 1 - F(=x1). (13)
Then,
R (x1) = v (x1) - 6, (14)
and
R (x1,x2) = ¥ (x1, x2) = Y1 (x1) — Y1 (x2) + 0 = Y (x1,x2) + F(=x1) + F(=x2) =2 + 6. (15)

The Hoeffding decomposition (H-decomposition) for U,(,z) is given by (Lee (1990)):

U =60 +2H" + HY, (16)
where H,(Lj ) is the j-th degree U-statistic based on the kernel 4/, j = 1,2:

1

HY = mZmﬂ(xil,...,xi_,.), (17)
J
with the sum taken over all subsets 1 <iy <...<i; <nof{1,...,n}.
1.2. Variance Decomposition
Here, the sum is taken over all subsets {1, ...,n}for1 <i; < ... <i; < n.Considering the H-decomposition,
we obtain the following:
Var (U,(lz)) = 4Var (H,(,l)) + Var (H,(f)) + 4Cov (H,(,l), H,(lz)) . (18)

Now, consider the following equality (Dewan and Prakasa Rao (2001)):

Var (H,<11>) - %(0'12+2i0'12j)+0(%), (19)

j=2
where
o} = Var (F(=X1)),

o1, = Cov (F(=X1), F(~X14))) - (20)

Using Newman’s inequality and (2.1.5), we can write:
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Dot = > Cov (F(=X1), F(-X1.))) < o. o
Jj=2 j=2
Additionally,
2 n\ 2
Var (Hr(l )) — (2) Z Z Cov {h(z)(Xi,Xj), h(z)(Xk,Xl)} , (22)
1<i<j<nl<k<I<n
where

Cov {h? (X, X;), h? (Xi, X1) } = Cov {y(Xi, X;), ¥ (Xi, X1) } +

+Cov {y/(X;, X;), F(-Xk)} + Cov {y(X;, X;), F(-X;) } +
+Cov {Y (Xk, X1), F(=Xi)} + Cov {y (Xk, X1), F(=X)) } +

+Cov{F(-Xi), F(=X;)} + Cov{F(-Xx), F(-X;)} . (23)
Using Newman’s (1980) inequality, we obtain: Using Newman’s (1980) inequality, we obtain:

|Cov (F(=Xx), F(=X1))| < sup (f(x))* Cov (Xx, Xi) (24)

Due to the boundedness of the density function, the following result from Bagai and Prakasa Rao (1991)
holds:

|Cov (v (Xi, X)), ¥ ( Xk, X)) =

=|P[X;+X; >0, X+ X, >0] —P[X; + X; > 0| P[Xx + X; > 0]| <

< C[Cov (X + X;, Xi + X;)]'° =

= C [Cov (X, Xi) + Cov (X;, X¢) + Cov (X;, X)) + Cov (X;, X;)]"°. (25)

LetZ = X; + X;. Then, ¢ (X;, X;) = I(X; + X; > 0) = I(Z > 0). Note that this function has a jump at z = 0.
From equation (5), we can conclude that:

|Cov (w(Xi, X)), F(X))| =

:’/ (P[X:+X; <0, X <x| - P[X; + X; <0] P[Xx < x]) dF(x)| <

< / IP[X; + X; <0, X <x] — P[X; + X; < 0]P[ Xy <x]|dF(x) <

< C/ [cov(X; + X;, Xp)]Y3dF (x) = C[cov(X; + X, X;)]'/® =

= C[cov(X;, Xx) + cov(X;, X;)]'/3.
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Using equations (24), (25), and (26) in equation (23), we obtain the following

‘cov {hm(Xi, X;), h® (X, Xl)}‘ <

< C [cov (Xi, Xk) + cov (X}, Xk) + cov (X;, X)) + cov (X, X)) ]
+ [cov (X;, Xi) + cov (Xj,Xk)]% + [cov (Xi, X)) + cov (X}, X) |
+ [cov (Xi, X;) + cov (Xp, Xi)]3 + [cov (Xi, X;) + cov (X1, X;) ]
+cov (X;, Xi) + cov (X, Xg) + cov (X;, X;) + cov (X;, X;) <

< C [cov (X;, Xk) + cov (X, Xi) + cov (X, X;) + cov (X, X,)]% +

+ [cov (Xi, X;) + cov (Xl,Xi)]% + [cov (Xk, X;) + cov (X1, X;)]

= [cov (X, X;) + cov (Xl,Xi)]% + [cov (Xk, X;) + cov (X1, X;) |

r=(i-=klD+r(j=klD)+rdi=1]D)+r[lj-1
3 r(k) < oo, (28)

Therefore, from Serfling’s (1968) theorem, we obtain as n — oo

var (H,(,Z)) =0 (%) . (29)

Using the Cauchy-Schwarz inequality, the following follows

1
cov (H,(,l), H,(lz)) =0 (—) . (30)
n
Using equations (18), (19), (29), and (30), we can write

O\ _ 4l 2. N2 1
var (UY) = 4|0 +2) 07, +0(;). (31)
j=1
To obtain the limit distribution of the U-statistic, we introduce the following theorem

Theorem 1.1. Let {X,,,n > 1} be a sequence of associated random variables. Suppose

[e9)

Z r(k) < oo holds. Then, as n — o0,
k=1

nl/2 (U,(,Z) - 9) £ N(0,1)

W=

W=

W=

W=

1
C [cov (Xi, Xk) + cov (X;, Xk) + cov (X, X;) + cov (X, X)) |® +

WI=

+

+

(32)
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2 _ 2 0 2
where o, = o} + 22].:1 o1

modifications in the remaining relations: Using Newman’s (1980) inequality, we obtain

**Proof.** Here, we also use relations (12)—(23), and make appropriate

|cov (F(=X;), F(=Xx))| < sup (f(x))? cov(X;, X). (33)

Due to the boundedness of the density function, the following result follows from Bagai and Prakasa Rao’s
(1991) theorem:

[cov (4 (Xi. X)), v (X, X)) | =
=|P|Xi+X;>0,X; + Xk >0] - P [X; + X; > 0] P[X; + Xx > 0]| <

<Cr(li-1]).

Let Z = X; + X;. Note that the function ¢ (X;, X;) = I(X; + X; > 0) = I(z > 0) has a discontinuity at z = 0.
Now, from equation (5), it follows that

leov (w(Xi, X;), F(Xx))| =
= ’/M(P [Xi+Xj SO,Xk SX] _P[Xi"'Xj SO]P[X]( Sx])dF(x) <

s/ |P[X:+X; <0, X <x] - P[X; + X; <O] P[Xx < x]|dF(x) <

[

=Clr(i-kD+r(j-kD]. (34)
Using equations (33) and (34) in equation (23), we obtain

|cov (h(z) (X, X;) ,h?) (Xk,Xl))’ <

=r(li—kD)+r(j—kD+r(i=I)+rj-10). (35)
Z r(k) < oo.
k=1
From this and Serfling’s (1968) theorem, we obtain as n — oo
@) 1
var(Hn ) =ol|—-]. (36)
n
Using the Cauchy-Schwarz inequality, the following follows
1
cov (Hr(,l),H,(LZ)) =0 (—) . (37)
n
Using equations (18), (19), (29), and (30), we can write
var(U,(Lz))zél 0'2+2i0'2. +o0 1 . (38)
1 / 1j n

Jj=1
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2. Conclusion

It

is well-known that independent random variables have been sufficiently studied in science. However, in

nature and technology, random variables are often dependent. Therefore, the study of dependent variables,
specifically associated random variables, under certain conditions, and demonstrating their applications in
practical problems has been the focus of many prominent experts. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.
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3ajlaga co cBOOOHOI IpaHulieil s ypaBHEHUSI
HeJInHeHoN Juddy3un

Pacynos Mupoxkugaun Cobupzkonosua™ ¥Ymupxonos Macyaxon Typaxon yrm

Annoranus

B nannoit pabore paccmarpuBaercs 3amada tuna Credana ¢ aByms CBOOOIHBIMU T'DAHUIIAMU JIJIst
HEJIMHETHOrO ypaBHEHUS TEIJIONPOBOIHOCTH B OJHOMEDHOM ciydae. VccienoBaHue HeJIMHEHHBIX
3aJlad CO CBOOOJHBIME TPAHUIAMHM METOJIOM, OCHOBAHHBIM Ha IIOCTPOEHUU AIlPUOPHBIX OIEHOK.
B cBs3u ¢ 9TMM CcHadajia yCTAHABJIMBAIOTCS HEKOTOPbIe HadvajbHbIE AIPUOPHBIE OIEHKU JIJIsi
pEeIIeHusT PACCMAaTPUBAEMOI 3a/1adn. 3aTeM 3a/lada CBOJNTCS K 3ajade ¢ (PUKCUPOBAHHON IpaHUIEi
gepe3 3aMeHy mepeMeHHbBIX. llosydenHasi 3ajiada MMeeT 3aBUCSIINE OT BPEMEHH U TIOJIOXKEHUS B
IpoCTpaHCcTBe KOIDMUIMEHTHI ¢ HEJIMHEHHBIMU cJIaraeMbIMu. Jlajiee TTOCTPOEHBI AllPUOPHBIX OIEHOK
tuna [[laynepa juis perreHust ypaBHeHUsT ¢ HEJMHEHHBIMU CJIATA€MBIMU U 3aKPEIJIEHHONW TpAHUTIEH.

Ha ocHoBe mory4eHHBIX OIEHOK YCTAHOBJIEHA PA3PEITUMOCTDb UCXOTHON 3a/1a4M.

Kirouessle ciioBa: kBasnanHeHOe MapabondecKoe ypaBHEeHne; CBOOOIHAsS IPaHNUIlA; AallpHOPHBIE OIIEHKH; TeOpeMa, CyIIieCTBOBAHUS

U €IUHCTBEHHOCTH.

TIpenmernas knaccudukamme AMS (2020): 35K20, 35K59, 35R35

1. Benenne

VpaBHeHusi HeJIMHENWHOI i dy3un ¢ yCaoBUSIME CBOOOIHON IPAHUILBI [IPEJICTABJISIOT COO0il BayKHBIN KJIacc
MaTeMaTU4YEeCKUX MO)J,eJ'[eI‘/JI7 IIIUPOKO HCIOJIB3YEMbIX JJIgd OIIMCaHUdA IIPOIECCOB B @I/IBI/IKQ7 6I/IO.J'IOI‘I/II/I7 XM
U TeXHUKe. DTH yPABHEHUS XapaKTepU3yIOTCs HEJUHEWHON 3aBUCHUMOCTHIO TOTOKA OT I'DaJMeHTa HMCKOMOM
BEJIMYMHBI, & CBOOOJHAA TPAHUIA J00ABJSET IONOJHUTEIBHYIO CJIOYKHOCTH, CBSI3aHHYIO C JIMHAMAYECKUM
n3MeHeHneM o00JacTH, B KOTOpoil mnpoucxomuT muddysus. Takme 3a7a9u BO3HUKAOT, HAIPUMED, IIPU
MOJIEJIMPOBAHUHN PACIPOCTPAHEHUS TEILIA B Cperax C (DA30BBIMHU IE€PEXOmaMu, (QDUIBTPAIMHA KHUIKOCTEH B
MIOPHUCTBIX CPeax, PaCIpPOCTPAHEHUs OMOJOTMYEeCKUX TOMYJISIUN WM XUMUYIECKUX PEAKINIA ¢ TTOMBUKHBIMA
TDAHUIAMUA.

B macrosiiee BpeMsi u3ydeHne 3ajad CO CBOOOJHONM TpaHUIEil MHTEHCHUBHO BEJETCS C PA3JIMYHBIX CTOPOH
(9KCIIEpUMEHTAIBHBIX, IMCJIEHHBIX U TEOPETHYECKUX), IPEJMeT MOCTOSHHO HAXOIUT HOBBIE OCHOBAHUS sl
MIPUJIOXKEHUHT, TIPOJIOJIZKAIOT BO3HUKATH HOBBIE (DYHIAMEHTAJIBHBIE TEOPETUIECKHE BOIIPOCHI. JTH pa3pabOTKH,
B YAaCTHOCTH, TPEOYIOT HOBBIX AQHAJUTUYECKHX W YHUCJIEHHBIX METOJOB, & TAaKXKe YCOBEPIIEHCTBOBAHUS
CYIIECTBYIOMIUX AJI'OPUTMOB U MHCTPYMEHTOB JUJIs DElleHHsl YPe3BblUailHO CIOXKHBIX 3aza4 |7, 13, 14, 21].
B paborax mmpoko m3ydasmch HOBbIe Kiaccehl 3a7ad Credana, KOTOpble BO3HHUKAIOT IIPU MOIEJIMPOBAHUI
[IPUPOJIHBIX MIPOIECCOB, BKJIIOYAIOIINE YPABHEHUS HEJIMHEHHON nuddy3un ¢ AByMs MOABUKHBIMUA IDAHUIIAMUA

[5, 6, 9, 15, 16, 19].
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Bo muorux uccienosanusx repmut quddysus spiserca jgubeitabiv [3, 4, 8]. Onnako B nesom Ha nuddy3uio
TaKzKe BJIMseT INIOTHOCTh KOMIIOHEHTOB, YTO, B CBOIO OU€DPe/ib, IIPUBOJIUT K HesimHeiinoi nuddysuu [1, 2, 22, 20].
Hanpumep, B pabore [18] aBTopbl ucciemoBajm 3aga4y €O CBOOOIHON TpaHUIlel sl ypaBHEHUs PEaKIHsi-
muddy3us ¢ HeJTMHEHHBIM 1jIeHOM uddy3un.

B sroit pabore paccMOTpuM KpaeByr 3alady Jjis KBa3UJIMHEHOIo MapaboJIndecKoro YpPaBHEHUs! C JIBYMs

HEU3BECTHBIMU I'PaHUITaMU:

a(u)u = (d(w)u),, (tz)€ D, (1.1)
w(0,2) = ug (z), h(0) <z < s(0), (1.2)
w(t,s(t) =0, 0<t<T, (1.3)
w(t,h () =0, 0<t<T, (1.4)
S (8) = —pug (b5 (1), 0<t<T, (15)
W) = —pus (0 (1), 0<t<T, (16)

rne D={(t,z):0<t<T,h(t)<x<s(t)}; z=h({t) u x=s(t)—cBobogupie (HEM3BECTHBIC) TIDAHMUIIBL,
KOTODBbIE OlIpeiesisiioTcs BMecte ¢ dbyHukueit u (¢, ).

OTHOCUTENLHO JAaHHBIX 33129 IPEII0IAral0TCs BLITOJHEHHBIMI CJIeIyIONIUe YCIOBHSI:

a). dyukuuu a (u) u o (u) oupeseneHbl g JIOOOr0 3HAYEHUS APIyMEHTa U OIPDAHUYEHbI HA JIOOOM
3aMKHYTOM MHOXKECTBE aprymeHTa, npudeM a (u) > ag > 0;

b). d(u) € C*T(D), 0 < a < 1, d(u) > do > 0, dy = const;

). So, [t — TOJIOKUTEJIbHBIE IOCTOSIHHBIE;

d). uo (z) >0, hog <z < sg; h(0) =ho = —s0, s(0) = s0; ug (ho) >0, up (ho) =0, uf (so) <0, ug (s9) =0;

uo(x) uo(®) _ .

lim 2= =0, lim
T—rSo So—% ’ z—ho z—ho

2. AnpuopHbie oreHKHT

B »sTom paspmese ycTaHOBUM HEKOTODBIE AIPUOPHBIE OIEHKH IIAYJEPOBCKOTO THIIA, KOTOPHIE OYIyT
HCIIOJIB30BAHBI IIPU JTOKA3ATEIbCTBE IIO0AILHON PA3PEIIMMOCTH 3a/1a49M7.

CHavasia ¢ MOMOIIBIO METO/Ia, OCHOBAHHOTO HA TIOCTPOCHUS AIPUOPHBIX OIEHOK OMPEAC/INM OrDAHUICHUN
Ha TIapaMeTphl 33J[a4uu, IPU KOTOPBIX OHA II00AJIBbHO pasperiuMa. llepBast, ocHOBOIIOIAraoOasi OMEHKA, TaeT
Ty HaYaJbHYI HH(MOPMAINIO, OTIIPABJISASICh OT KOTOPOI MOYXKHO ITOJIy4YaTh Iar 3a IIaroM, JBUTasiCh BBEPX IIO

IIKaJjie DAHAXOBBIX IIPOCTPAHCTB, BCE 0oJ1ee IOJIHBIE U TOYHDIE CBEJJCHU A 00 N3y9Ia€eMOM DEHICHUU.

Teopema 2.1. ITycrs BeimosHens! ycuosus a)-d). Torma gus pemenust u (t, ), h(t), s(t) 3amaun (1.1)-(1.6)

CIIpaBeJINBLI OTIEHKN

0<u(t,z) <M, (t,x)€D, (2.1)
0<s'(t), 0<—=h'(t), 0<t<T. (2.2)
Kpome toro -£d (u) > 0, o
s(t)< My, 0<t<T. (2.3)
() <Mz, 0<t<T. (2.4)

Hoxazarenpcro. U3 3amaqn (1.1)-(1.6) o IpUHIMIY MaKCHMyMa IIOJLYIHM OleHKa (2.1).
Obnactb D ycJIOBHO pa3iesiuM Ha JIBE YaCTH

Dy ={(t,z):0<t<T,0<z<s(t)}, Da={(t,x):0<t<T,h(t)<z<O0}.

tstu.uz/en/pub/UJMCS
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Paccmorpum 3agauy mis u (¢, z) B obaactu Dy

a (u) Ut = (d(u)ux)xv (t,(ﬂ) € Dy,
u(0,z) = up (x), 0<z<sp,
u(t,0) >0, 0<t<T, (2:5)
u(t,s(t) =0, 0<t<T.

C yuerom yciosmit (1.3) m monoxkurensHoctn dbynknun u(t,x) B obmactu D, maxomuMm uy (t,s(t)) <O0.
Crenosarensno, u3 (1.5) moayunm s’ (t) > 0.
Tenepb oneHuM CHU3Y Uy (t, s (t)). Jost aToro B 3amade (2.5) nponssesst 3aMeHy

v(t,x) =u(t,x) + N1 (z — s (t))

" IIOJIyYUM

a (v) vy ()vm—(%d(u)) vm:—(a(v)s’(t)—i—%d(u)) Ny, (t,z) € Dy,
U(O,x)—uo( )+ N1 (z — s9), 0 <z <sq,
v(t,O)—u(t 0) — Nys(t), 0<t<T,
v(t,s(t) = 0<t<T.

uo(z) M,y
so—x? So

3a cuer BeIOOpa Ny > {max } Berogy B Dy umeem v (¢, ) < 0. Orcriona
xr

u(t,r) < Ni(s(t)—x), 0<z<s(t).

CresioBaTesibHO, Uy (t, S (t)) = uy (¢, s (t)) + N1 > 0. Torna n3 ycnosusa Credana (1.5) umeem s’ (1) < uNy = Ms
BO<t<T.
A reneps jokaxeMm HepaseHCTBO (2.4). Paccmarpusaercs 3aaua

u)uy = (d(u)ug),, (t,x) € Do,

a(

U(O,JJ ZUO(x)7 ho <z <0,
w(t,0) > 0, 0<t<T,
w(t,h () =0, 0<t<T.

C yuerom ycaosuit u (¢, h (1)) =0 n u (t,z) > 0, HAXOHUM Uy (£, h (t)) > 0. Ocranock mokaszars, aro h’ (t) >

— M3 st 0 < t < T. Jlast 9Toro BBems PyHKIIUIO
w(t,x) =u(t,x) — Na(z — h(t)) (2.6)
TIOTyIUM 33Ty

a(w)vy — d(w)wg, — (d%d(u)) Wy = (a (w) b (t) + d%d(u)) Ny, (t,z) € Do,

w (0,2) = ug (r) — Na (z — ho), ho <z <0,
@mfu@m+NM() 0<t<T,
w(t, h(t)) = 0<t<T.

Tak kak h'(t) <0, To a(w)w; — d(w)wyy — (%d(u)) wy <0 B Dy. Tem cambiv dynkimus w (t,z) He

MOXKET JIOCTUTATH OJIOXKHUTEJIHLHOrO MakcuMyMa BHyTpu objactu Do. Eciim Ny > max {max"_(,fg Ailo }, TO

JIETKO JIOOUTHCs HEIOJIOKUTEIBHOCTH w (t, ) Ha JIeBOil IpaHuIle M B HadaJbHOH MOMEHT BpeMeHH. Taxmm
obpasoM, w (¢, x) Henosokutenbha B Do. Ho Torma wy (¢, h (t)) < 0. CienoBaresbno, ¢ yaeToM (2.6) HaxomuM
Uy (t,2) < Ny, uro sxksuBasentro h' (t) > —uNy = M. O

tstu.uz/en/pub/UJMCS 84
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Yro6bl o1eHUTh |Uu, (¢, )| npeobpasyeM He3aBUCHMbBIE [IEDEMEHHBIE

2801 s(t)+h(t)

=L VST h s —h()

S0-

Torna obnactu D coorsercryer obiactb Q = {(t,y) : 0 <t < T,—sy < y < S}, a orpaHndeHHas HyHKIUS

v (t,y) = u (t, ) siBIIsIeTCsI PEIEHNeM 3aa4K

Ut = A (t7yﬂv) Uyy + B (t7y7v7vy) 9 (t7y) 6 Q7 (27)
v(0,y) =vo(y), —so <y < so, (2.8)
v(t,s0) =0, 0<t<T, (2.9)

v(t,—so) =0, 0<t<T, (2.10)

’ q2
rne A (t7y,v) = a(v)P(t)v B (t,y,v,vy) =@ (t) Uy + 'Z((:))p(t) U§7 14 (t) = (s(t)iiz(t))%

B s (t) =k (t) s(t)+h(t) s (t)h(t)+s(t)h (t)
20 = R (“ S(0) h(t)) G

P 2sop " s Ty — 2501 v —so
s (t)_ S(t)—h(t) y(tv 0)7 h (t) S(t)—h(t) y(tv )

TIpu yciosuu d). 6e3 orpanudenuii OOUHOCTH MOXKHO IPEIIIOIaraTh, 9To vg () = 0.

Teopema 2.2. Ilycts mempepbisHasg B @ dymkmma v (t,y) ymoBaeTBopseT ycaoBusM sazaqm (2.7)-(2.10).
Ipenosoxum, 1to orpanuyentsie bynkun A (t,y,v), B (t,y,v,v,) 114 (t,y) € Q, |v| < M; u 1pOU3BOIBLHBIX
Uy YOOBJIETBOPSIOT YCIOBUSIM

|B (tayvvvvy” 2
— 7T I 0. 2.11
A(t,y,v) <K (vy+1), K> (2.11)
Torma
oy (t,y)| < My (My, Ao, 6),  (t,y) € Q°. (2.12)

Kpowme Toro, eciu A (t,y,v) < A; B obmactu {(t,y) € Q, |v] < M, |v,| < My} To
[wI$" < M5 (M, A1 K, 9). (2.13)
Iycts v (t,y) obiaamaer 0OOOIIEHHBIMY IPOU3BOIHBIME Uy, Uyy € Lo (Q), TO
|2 < Mg (M1, A1, K,5), 0<v<1, (2.14)

Ecmn [

y=tsp) = 0; TO OLEHKH (2.12)-(2.14) cupasemmussr u B Q. rae A =mind, Q° =
’ Q

{(t,y) : 0< 0 <t<T,0—s9g<y<d+so}, I'(t =0,y = =+s9) —napaboanyecKkas rpaHUIA.

JokazaTenbcTBo. BHyTpeHHmE OneHKE B 061acTh (Q° yeTAHABINBAIOTCS KaK U B [10].
Teneps mepeiizeM OEHKH BIUIOTH A0 IpaHuil. Tak Kak v |y=1s, = 0, HO9TOMY Ipomo/KuM HyHKIHUIO v (t,Y)

qepes 6OKOBBIG CTOPOHBI IIPAMOYTOJIBHUKA Q 110 IIpaBUJIY
v(t,y) =w(t 250 +y), —3s0<y< —so, (2.15)

v(t,y) =w(t,y—2s0), s0=<y=3s0. (2.16)

Ipenmonaraem, uro koabdunuenTs ypapsHeHus (2.7) mnpomo/nkeHbl 1o y mo 3akoHy (2.15), (2.16).

Hosast dynkuus (coxpanum 3a Hell obosHavdeHme wu(t,y) BO BCEX TOUKAX NPAMOYTOJBHUKOB Ri =
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{ty):0<t<T,
ypaBHeHHuIO BHa (2.7) T.e

y+ %so| < %so} UMeeT HelpepLIBHYIO IIPOU3BOMHYIO U Y/IOBJIETBOPSIET IPOIOJIZKEHHOMY
we = A(t,250 + y,w, wy) wyy + B (t,250 + y,w,wy) , —3s0 < y < —S0,

w =A(t,y — 250, w, wy) wyy + B(t,y — 250, w,wy), S0 <y < 3s0

C TEeMH K€ CaMBIMH CBOHCTBAMM, YTO U B YCJIOBUAX TeopeMbl 2. Vcnoub3ys pesysbrarsl paborst [10], mosmygum
OLEHKY IJIA |Uy| B IPAMOYTONBHUKAX, OObeIUHeHnNe KOTOPLIX comepkKuT (). Tak Kax mosIydenme BHYTPEHHUX
OIEHOK OCHOBAHO Ha TPUHIMIIE MAKCAMyMa, TO YTBEPXKJEHHS TEOPEMBI IIOJIHOCTBIO COXPAHSIOTCS, KOTJIA
dyuxuus v (t,y) HempepblBHA B (), IMEET HENMPEPLIBHYIO IIPOU3BOAHYIO Uy (t,y) U YIOBIECTBOPSET yPABHEHHIIO
(2.7) B Q BClOy 3a UCK/IIOYEHUEM TOYEK KOHEYHOTO YUCJIA MPAMBIX Y = Const.

ITepexomum Teneps K JOKa3aTeIbCTBY OLEHKY | (T, y) \%_ - ocrte Toro Kax oreHeHbl HOPMbI vy \f‘? ypaBHEHHE

(2.7) MOXKHO paccMaTPUBATL KaK JUHEHHOe ypaBHeHUe
ve = A(t,y) vyy + B (L,y)

C OrPAHUYEHHBIMU U HENPEPBIBHBIME TI0 leibiepy Koa(hdUImeHTaMu U UCIOIb30BATH [IJIsI OIEHOK WM ITPOYUX
Ka4eCTBEHHBIX MCCJIEJOBAHUM €TI0 PENIeHN COOTBETCTBYIONINE TEOPEMBI 110 JTUHEHTHBIM YPABHEHUSAM O JIMTHEHNHBIX
YPaBHEHUSIX.

YT06BI MOTyYIUTH OIEHKY BILUIOTH JIO0 IPAHUIBI, KAK W BbIIIe, IPOJoJKUM v (t,y) mo npasuiy (2.15), (2.16).
Hasnee, 7u1s1 pelieHnst MPOJIOJKEHHOTO YPABHEHUST NMEIOT MECTO BHYTPEHHHUE allpHOpHbIEe OleHKH Bua (2.14),
B IPSMOYTOJBHUKAX, OXBATBIBAIONIUX MPIMOYTOIbHUK Q. IIpm sTom mpumensttorest pesyabrarsl pabotst ([10]

Teopema 3) 1o LesbaeposocTn o6obmennoro pentenus. CieoBaTenbHo, ToTydaeM onenky (2.14) B Q. O
A oneHKM IS CTAPIINX IPOU3BOHBIX IIOJYIMM O Pe3yJIbraTaM Jjis JUMHeHHbIX ypasHeHuit [11, 12].
Teopema 2.3. Ilycts KO3pDUIEHTHI ypaBHEHUS
@ (t,y) vy +b(Ly) vy +E(ty) v —ve = f(t,y), (ty) €Q, (2.17)
YJIOBJIETBOPSIOT yCJIOBUAM [esibaepa
12 + (52 + 129 + |19 < 00, @(t,y) > ao > 0.

Hycrs v (t, y) ects pemennst ypasenus (2.17) ¢ vlp_g 1) =0, |U|?+,Y < 4oou M =max = |v(t,y) | Torma
) E a

olg,, < C (IfI? + M) = M. (2.18)

3. EuHCTBEHHOCTD M CYIIECTBOBAHUA PEIIEHUS

st mokasaTenbCeTBa €IMHCTBEHHOCTH DEIeHnsl UCIIOIb3yeM nuien paborst [17].

BeiBosiM nHTErpasibHOE npejicTasienue sxpuBagenTHoe K (1.1). Iepenmmenm (1.1) B Buze
(¢ (w), = (d(uw)uz), (3.1)
rae ¢ (u) = [y a(§)de.

Wurerpupys ypasuenue (3.1) no obactu D ¢ ygerom ycsouii (1.2)-(1.6) umeem
S0 s(t)
s =h(0) =20+ s [ @)t o [owino)ds (32)

—So0 h(t)
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Teopema 3.1. Ecsu ciipaseusbt onenku (2.1)-(2.4), (2.18). Torga pemenue 3amaun (1.1)-(1.6) equacTBeHHO.

Hoxazaresscrso. IIyers (hy (), s1 (¢),u1 (t,2)) u (ha (t),s2 (t),usz (t,x)) saBustorcst pernernsimu 3ajadn (1.1)-
(1.6) u, Kpome TorO,

y1 () =min (s1(¢),s2 (), 21 (t) =min(hy (t),h2(t)),

y2 (t) = max (s1 (t),s2 (t)), =22 (t) = max(hy (t),ha(t)).

Torna, ¢ yderom (3.2), umeem

z2(t) y2(t)

51(8) =52 (0] + n ()~ ha (0] < 51 / ol de + ol / o (us)| dé+
z1(t) y1(t)
y1(t)
o
s / o () — o (un)] dE (3.3)

zZ2 (t)

rie u; (i = 1,2) — pemenust Mmexxy y1 (t) u ys (t) (coorsercTBenno 21 (t) U 29 (t)).
ITo Teopeme 1 momyuaem

luy (t,y1 (t) —ua (t, 91 ()] < Nilsi(t) — s2(2)]

lur (t, 21 (t)) —uz (t,21 (t))| < Na|h1 (t) — ha (¢)] .

Pacemorpum  dyexnuio U (t,x) = uy (t,2) —uz (t,2). Torma ama U (t,x) nonyduM ypaBHEHHE C

OTPAHMYEHHBIMIA KOIDPUIMEHTAME U 3a0aTy

b1(t,2)Us = by (t,2) Upy + b3 (6, 2) Uy + by (¢, ) U, (t,x) € D,
U(0,z2) =0, —s0 <z < 50,
Uty (1) < Nlolg% Is1(n) —s2 ()], t>0,
Ult,zi(t) < N2OI£3§ |h1 (n) — ha (n)], t>0,

rie Ko OUINEHTH ypaBHEHUsI HEIPEPLIBHBIE H OT'PAHUYIEHHbIE (DYHKIIAN.

OTcroa Mo TPUHITAITY MAKCHMYMa,
U (t < N7 max — + Ny max |h —h .
U (t, )] < 10S%t|81 () — 52 (n)] 20§3<t| 1(n) — ha (n)]

B cwry orpanmuennoctn dbyukuuii u (¢, x), a (u), a’ (u) onernm cocrapastomume dhopmyasr (3.3):

) (t)

__H , B . - )
Il_d(O) / o (us)| dé < My |22 (t) — 21 (t)lorgggt\hl (n) h2(n)\§M701£%|h1 (1) — ha (0)]?,
Zl(t)
y2(t)
_ K , B B - ,
L=50 o (wi)l € < M Jyz (1) =y (1)] s [s1 (n) = sz (n)] < Ms max [s1 (n) = s2 ()%,
y1(t)
y1(t)
"
Iy = _ .
5= 40 / |0 (u1) = ¢ (u2)| d€

Z2 (t)

Hastee, uctonb3yst uien u pesyabrar |9, 18], 70Ka3aTeNbCTBO TEOPEMBI 3aBEPIIAETCSL.

O
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3agada co CBOOOIHOM IpaHUIeid. ..

Cy1ecTBoBaHue pereHus.

Teopema 3.2. IlycTh BBIMOMHEHbI yeaosusa Teopembl 3. Torma cymectsyer B D pemenne u (t,x) € C*t7(D),
s(t) € Y7 ([0,T)), h(t) € C*7 ([0, T]) samaam (1.1)-(1.6).

HokazarenbcrBo. iisi  moKa3aTebCcTBa pPAa3peIMMOCTHA  HEJIMHEHHON 3aJadl  MOXKHO —BOCIIOJIB30BATHCS

Pa3/IMIHBIMA TeoOpeMaMU N3 TeOpHu HEJIMTHENHBIX ypaBHeHI/II‘/'I7 IIOMHA, YTO [JId Hee CIpaBeajinBa TeopeMa

CIMHCTBEHHOCTH KJIACCUYICCKOI'O PECIICHUA. BOCHOJIBSyel\’ICH IIPUHITATIOM ﬂepe—Hlay;Lepa [12]7 YCTaHOBJICHHBIM I10

AIIPHOPHBIM OIEHKAM | * |44 JJIsl BCEX BO3MOXKHBIX DellleHni HeJMHeHHbIX 3a71a1, U TEOPEMOii 0 Pa3pernuMOCTH

B Kjaccax ['énbaepa /s TUHEHHBIX 3a/1aM.
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Free Boundary Problem for a Nonlinear Diffusion Equation

Rasulov Mirojiddin Sobirjonovich and Umirkhonov Masudkhon Turakhon ugli

Abstract

In this paper, a Stefan-type problem with two free boundaries for a nonlinear heat equation in the one-
dimensional case is considered. The study of nonlinear problems with free boundaries is carried out using
a method based on constructing a priori estimates. In this regard, some initial a priori estimates are first
established for solving the problem under consideration. Then, the problem is reduced to a problem with
a fixed boundary through a change of variables. The resulting problem has time- and position-dependent
coefficients with nonlinear terms. Next, a priori estimates of the Schauder type are constructed for solving the
equation with nonlinear terms and a fixed boundary. Based on the estimates obtained, the solvability of the
original problem is established.
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ABSTRACT

This paper investigates the problem of local bifurcations in the vicinity of spatially homogeneous
equilibrium states of reaction-diffusion systems in a bounded domain with homogeneous
Neumann boundary conditions. The main results focus on studying Turing bifurcation and
Andronov-Hopf bifurcation under conditions of multiple degeneracy in the linearized system.
In the considered case the codimension of the bifurcation does not match the multiplicity
of eigenvalues of the corresponding linear operators, which significantly complicates the
analysis. The paper provides a detailed examination of cases leading to multiple bifurcations,
establishes conditions for multiple degeneracy, and develops approaches for studying stability
and bifurcations near equilibrium states under these conditions. The key result consists of the
investigation and characterization of the solution manifold structure arising from bifurcations
in reaction-diffusion systems. Potential directions for extending these results of the study of
multiple bifurcations are also discussed.

Keywords: reaction-diffusion, equilibrium state, stability, bifurcation, Turing, Andronov-Hopf

AMS Subject Classification (2020): Primary: 35B32, 35K57, 37G15; Secondary: 35P05, 37C20.

1. Introduction and Problem Statement

A large portion of works is usually devoted to the study of reaction-diffusion systems due to their wide range
of applications (see, for example, [1]-[3] and the bibliography therein). One of the most important research
directions for such systems is the study of critical phenomena and associated bifurcations leading to the
emergence of dissipative structures (Turing bifurcation) and autowave processes (Andronov-Hopf bifurcation)
in the vicinity of equilibrium positions. The emergence of such solutions is related to the fact that the
eigenvalues of the corresponding linearized system cross the imaginary axis: through the value A = 0 for
dissipative structures and through A = iw (wWhere w # 0) for autowaves.

The wavenumbers corresponding to these bifurcations often result in the linear operator having eigenvalues
whose multiplicity does not coincide with the bifurcation’s codimension. Appearance of such situations
significantly complicates the application of standard bifurcation analysis methods. Typically, known works
on bifurcations in reaction-diffusion systems focus on cases where the multiplicity of eigenvalues and the
codimension of bifurcations coincide [4]-[10]. The study of situations where the multiplicity of eigenvalues
and the bifurcation codimension differ remains a poorly explored topic. This work discusses some aspects of
Turing and Andronov-Hopf bifurcations in such situations.
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The main object of study is the reaction-diffusion system (see, for example, [2]-[10]), described by the

differential equation
d
d—v::A(,u)w+DAw+h(w), we RN, (1.1)

where A(u) is the Jacobian matrix smoothly depending on the parameter u, D is a non-zero diffusion matrix
2 2

with non-negative elements, A is the Laplace operator: A = — +...+ —-,
Oxy X,

satisfies the relation: ||h(w)|| = o(||w]|) as w — 0. Equation (1.1) is studied in the parallelepiped

and the nonlinearity A (w)

Q={x: 0<x1<m, 0<x<m, ..., 0<x,, <7}

Neumann boundary conditions are considered:

ow
on

=0. (1.2)
B!

The system (1.1)-(1.2) has a stationary zero solution w = 0; it is a solution to the boundary value problem

ow

A()w + DAw + h(w) =0, —
on

=0. (1.3)
0

2. Basic Concepts and Notation

Let Ly(€Q) denote the Hilbert space of functions v(x) defined on Q, and sz(Q) the Sobolev space with the

norm
12
e = ([ 2 0P a)

|a|<2

olal
here D¢ is the differentiation operator: D¢ = s al=ar1+ar+...+a,, ||| is
the Euclidean norm in R". Let C(Q) and Cz(Q) denote the spaces of continuous and twice continuously

differentiable functions, respectively. Define also the set

ov
C3(Q) = c*: —| =0;.
0(&) {v © on|sq }
92 92
The Laplace operator A = ﬁ +...+ 6_2 : Cg — C can be (see, for example, [5]) extended to a closed self-
x] X

adjoint operator A : L, — Ly with the domain G, formed by the closure of CS(Q) in WZZ. The spectrum of the
operator A consists of isolated eigenvalues A = —k% + k% + -+ + k2, of finite multiplicity (k; are non-negative
integers).

Solutions of the system (1.1)-(1.2) are functions w(x, t) that:
— for each fixed value of ¢ are elements of the space WZZ(Q);
— for each fixed value of x € Q are continuously differentiable functions of #;
— satisfy equation (1.1) and boundary conditions (1.2) for all # > 0 and x € Q.

An equilibrium point w = vg(x) of the system (1.1)-(1.2) is called (see, for example, [3]-[4]) Lyapunov
stable if for every & > 0 there exists 6 > 0 such that if ||ug(x) — vo(x)llwzz < 6, then the solution w(x, ) of
the system (1.1)-(1.2) satisfies the inequality ||w(x,1) — vo(x) ||W22 < gforallt > 0; here w(x, ) is the solution
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of the Cauchy problem for the system (1.1)-(1.2) with the initial condition w(x,0) = ug(x). If, in addition,
[lw(x,1) = vo(x)|ly2 — 0 ast — oo, then the equilibrium point w = v((x) is called asymptotically stable.

The stability of the zero equilibrium point w = 0 of the system (1.1)-(1.2) is determined by the properties of
the spectrum of the linear operator

S(u) = A(u) + DA = Lr(Q) — L2(Q), 2.1)

with a domain G dense in Ly (). The operator (2.1) is closed, its spectrum is discrete, consisting of isolated
eigenvalues of finite multiplicity (see, for example, [11]). If all eigenvalues of the operator (2.1) have negative
real parts, then the equilibrium point w = 0 of the system (1.1)-(1.2) is asymptotically stable. If this operator
has an eigenvalue with a positive real part, then the equilibrium point w = 0 will be unstable. Accordingly, if
the operator (2.1) for some u = o has an eigenvalue with a zero real part, then pg will be a bifurcation point.

We say that the value u = pg is a Turing bifurcation point of the system (1.1)-(1.2) if the operator S(ug) has
an eigenvalue A = 0, while its other eigenvalues have negative real parts.

We say that the value y = pg is an Andronov-Hopf bifurcation point of the system (1.1)-(1.2) if the operator
S (o) has a pair of purely imaginary eigenvalues 41 » = +iw, while its other eigenvalues have negative real
parts.

Remark 2.1. The requirement that the other eigenvalues of the operator S(uo) have negative real parts is related
to the following circumstance. If we allow the operator S(ug) to have an eigenvalue with a positive real part,
then the dissipative structures or autowaves arising from the bifurcation will be inherently unstable. Note, in
particular, that a necessary condition for both types of bifurcations is the requirement that the matrix A(ug)
be stable. A discussion of these issues is given in [6, 11].

Note the validity of the following statements (see, for example, [9, 10]).
Lemma 2.1. The Turing bifurcation for the system (1.1)-(1.2) is possible only for N > 2.
Lemma 2.2. The Andronov-Hopf bifurcation for the system (1.1)-(1.2) is possible only for N > 3.

3. Auxiliary Matrices

Below, a real square matrix B will be called stable if all its eigenvalues have negative real parts.
The set of eigenvalues of the operator (2.1) coincides with the set of eigenvalues of the matrices

Bk(ﬂ):A(ﬂ)—(k§+k§+...+k2m)0, 3.1)

where k ; are non-negative integers, and k denotes the multi-index k = k1, ka, ..., kp,. If all these matrices are
stable, then the equilibrium point w = 0 will be an asymptotically stable solution of the system (1.1)-(1.2). If
at least one of the matrices (3.1) has an eigenvalue with a positive real part, then the equilibrium point w = 0
will be unstable.
The concepts of Turing and Andronov-Hopf bifurcations can be reformulated using the matrices (3.1). Define
the numbers
pk=kI+ks+... + ki (3.2)

We say that the value u = g is a Turing bifurcation point of the system (1.1)-(1.2) if:

T1) for some multi-index kO = kq, ko, ..., k,,, the matrix Bo = Bjo(up) has an eigenvalue A = 0, while the
other eigenvalues of the matrix By have negative real parts;

T2) the matrices By (uo) for k # k° are stable.
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We say that the value u = uo is an Andronov-Hopf bifurcation point of the system (1.1)-(1.2) if:

H1) for some multi-index k° = kq, ko, ..., k,,, the matrix Bg = Bjo(uo) has a pair of purely imaginary
eigenvalues A1 » = +iwg, while the other eigenvalues of the matrix By have negative real parts;

H2) the matrices By (1) for k # k° are stable.

The Turing bifurcation scenario is associated with the fact that as the parameter u passes through pg, non-
zero spatially inhomogeneous equilibrium points w = w(x, u) arise in the system (1.1) in the vicinity of the
equilibrium point w = 0. Correspondingly, the Andronov-Hopf bifurcation scenario is associated with the fact
that as the parameter u passes through p, non-stationary periodic solutions w = w(x, t, u) arise in the system
(1.1) in the vicinity of the equilibrium point w = 0.

4. Properties of the Set of Numbers (3.2)

Comparing the above definitions of bifurcation points, based on the properties of the operator S(u) defined
by (2.1) and the matrices By (u) defined by (3.1), leads to the following question. Let 1o be an eigenvalue of the
matrix Byo(uo) for some multi-index k° = k1, k2, . .., k,,,. Then Ao will also be an eigenvalue of the operator
S(up). But will the multiplicity of this eigenvalue be the same for both operators?

To discuss this question, we introduce the following notations:

— Z. is the set of non-negative integers;

— Zp(m) is the set of numbers of the form (3.2);

— Z1(m) is the set of numbers p € Zg(m) for which there exists a unique multi-index k = k1, k2, ...,k
such that p = k%+k§+...+k%1;
— Z»(m) is the set of numbers p € Zy(m) for which there exist two or more multi-indices k = k1, ko, ...,k

— 12412 2.
such that p = k7 + k5 + > + I.cm,
_Z(m) = {p' p=mj=, J :071’25"'}'
By construction, we have:
Zi(m) U Zy(m) = Zy, Zi(m)NZy(m) =0, Z(m) C Zo(m).
The following inclusions hold:
Zi(m) c Z(m), 4.1)
Zo(m) +Zy for 1<m <3, Zo(m)=Z, form>4. 4.2)
The equality in (4.2) follows from Lagrange’s theorem on the representability of any natural number as a sum

of four squares.
Let us discuss the properties of the sets Z;(m) and Z,(m) for various m. We have:

m=1 = Zi(m)=2Z(m)={0,1,4,9,....k%,...}, Zo(m)=0;

m=2 = Z(m)=1{0,2,818,32,72,98,128,162,...}, Zy(m) ={1,3,4,5,...};
m=3 = Zi(m)={0,3,12,...}, Zo(m)={1,2,4,5,...};

m=>4 = Zi(m) ={0}; Zy(m)=27Z,/{0}={1,2,3,4,...}.

The properties of the sets Z;(m) and Z;(m) show that if the matrix B;o(uo) has an eigenvalue of multiplicity
1, and the other matrices By (1) for k # k¥ do not have the eigenvalue Ay, then the operator S( 1) also has the
eigenvalue 1y, whose multiplicity coincides with [ (or rl), if p € Z1(m) (orif p € Z>(m) and p is representable
in r different ways).

From this, the following statements follow:
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Lemma 4.1. Let pg € Z1(m) and let k° be the corresponding unique multi-index. Let Ao be an eigenvalue
of the matrix (3.1) for the multi-index k°. Let, finally, the matrices (3.1) for other multi-indices not have the
eigenvalue Ag. Then the operator (2.1) has the eigenvalue Ay with the same algebraic and geometric multiplicity
as the matrix (3.1) for the multi-index k0.

Lemma 4.2. Let pg € Z»(m) and let it correspond to exactly two different multi-indices k° and I°. Let 1y be an
eigenvalue of the matrix (3.1) for the multi-index k° (or, equivalently, for the multi-index [°), with algebraic and
geometric multiplicities v and », respectively. Let, finally, the matrices (3.1) for other multi-indices not have
the eigenvalue Ag. Then the operator (2.1) has the eigenvalue Ay with algebraic and geometric multiplicities
2v and 2x, respectively.

Similar statements hold in situations where the number pg € Z,(m) corresponds to more than two different
multi-indices.

By Lemmas 4.1 and 4.2, in the bifurcation problem, the multiplicity of the eigenvalues of the operator
(2.1) and the codimension of the corresponding bifurcations may not coincide for m > 2. To illustrate this
fact, consider the case m = 2. Suppose that for some multi-index kY = kq, ko such that ki # kp (then the
corresponding p = k% + k% € Zy(m)), the matrix By = Bjo(uo) has a simple eigenvalue A = 0. Let the other
eigenvalues of the matrix By and all other matrices By (1) for k # k¥ and |k| # k% + k% have negative real
parts. Then yg is a Turing bifurcation point of the system (1.1)-(1.2). In this case, the codimension of the
bifurcation is one. However, the multiplicity of the eigenvalue A = 0 of the operator S(ug) will be greater than
or equal to two.

Note that for m = 1, the multiplicity of the eigenvalues of the operator (2.1) and the codimension of the
corresponding bifurcations coincide.

5. Main Result

Let us discuss the bifurcation problem in the system (1.1)-(1.2) in the case when the multiplicity of the
eigenvalues of the operator S(up) and the codimension of the bifurcation do not coincide. We will limit
ourselves to considering the Turing bifurcation problem. For the Andronov-Hopf bifurcation problem, the
reasoning is similar. For simplicity, let m = 2.

Let yo be a Turing bifurcation point of the system (1.1)-(1.2), i.e., the following conditions hold:

P1 The matrix Bg = Bo(up) for some multi-index kY = ko, lp has a simple eigenvalue A =0, with
p = k% + 1(2) € Zr(m), ko # lp, and the number p corresponds to exactly two different multi-indices
k% = (ko, lo) and [° = (Iy, ko). Let the other eigenvalues of the matrix By and all other matrices By, (10)
for k # k° and k # I° have negative real parts.

Then the operator S(uo) has an eigenvalue A4 = 0 of multiplicity 2. Let ep and e be the eigenvectors of
the matrix Bjo(uo) and the transposed matrix B’;{O (mo), respectively. The corresponding eigenvectors of the
operator S(uo) and the adjoint operator S* (o) will be the functions

{ up = eq cos kox cos loy;  up = ep cos kox cos lpy; 5.0)

vo = eq cos lpx cos koy; vy = eg cos lgx cos koy.
We can assume that ug = 0. Let E€ denote the two-dimensional subspace in L,(£2) whose basis consists of

the functions ug and vy.
Along with (1.1), we will also consider the extended system

{ w; = A(u)w + DAw + h(w),

’ 52
o, (5.2)
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Let A denote the one-dimensional subspace of the parameter y. Define two linear spaces
H={(w,u): wely,peA}, E,={(w,u): weE", peA};

E}, is a three-dimensional subspace of the space H.

According to the central manifold theorem (see, for example, [12]), under condition P1, the system (5.2) in

the space H has a three-dimensional smooth manifold U with the properties:

1) The manifold U contains the point (0, uo).

2) The manifold U is tangent to the subspace Ey; at the point (0, po).

3) The manifold U contains all equilibrium points and periodic orbits of the system (5.2), provided their
trajectories lie in a small neighborhood of the point (0, xo). The manifold U is called the central manifold of
the system (5.2).

The bifurcation solutions of the system (1.1) arising under condition P1 form (locally in the neighborhood
of the point (0, 1g)) a two-dimensional smooth manifold U, located on the manifold U. The manifold U, can
be represented as a family of continuous branches of bifurcation solutions of the system (1.1), which can be
described by the following parametrically defined functions

{ w=w"(e) = ge1(x,y) + eer(x,y) + ..., (5.3)

p=pe) =po+eur+&um+...,

where ¢ is an auxiliary small parameter. The function eq(x, y) can be any function from E€ of the form
e1(x,y) = (Cq cos kgx cos lpy + Cp cos lpx cos kgy)eg , 5.4)

where the constants Cq and C; are chosen such that ||C; cos kox cos lgy + C2 cos lox cos koy||z, = 1. The other
coefficients in (5.3) can be uniquely determined from the function (5.4). The scheme for constructing these
coefficients will be indicated below.

Theorem 5.1. Let condition P1 be satisfied. Suppose the system (1.1) has a continuous branch of bifurcation
solutions (5.3), where e1(x, y) is the function (5.4). Then the system (1.1) has a family of continuous branches
of bifurcation solutions of the form

{ w=w(g) = se1(x,y) + £2er(x, ) + ..., (5.5)

p=p(e) =po+eur+ & +...,

where
e1(x,y) = e1(x,y) = (Cq cos lpx cos koy + Ca cos kox cos lgy)eq ,

and the other coefficients of the function w*(g) can be obtained by a symmetric transformation of the
corresponding coefficients of the function w* (&) (namely, by permuting the numbers ko and ly in them).

The validity of this statement follows from the constructions given below.

Note that in (5.3) and (5.5), the second functions coincide.

Thus, to construct the two-dimensional manifold U,. of bifurcation solutions of the system (5.2), it is sufficient
to construct one continuous branch of solutions of the form (5.3). We will indicate a method for constructing
such a branch of solutions.

The Turing bifurcation problem for the system (1.1)-(1.2) leads to the need to study the problem (1.3). Since
the matrix D is invertible, the problem (1.3) is equivalent to the nonlinear Neumann problem

Aw = =D HA(Ww + h(w)], a_n =0, (5.6)
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which, in turn, is equivalent to the operator equation
w=T(w+b(w,pu), (5.7

where

T(uw(x) = / G K(w(y) dy. bw(x) = / G (x.y)D " h(w(y)) dy; (5.8)

Q Q

here K (1) = D~ YA(u), and G(x, y) is the Green’s function of the Neumann problem (5.6).

The operators (5.8) act and are completely continuous in the space L, with the following properties:

— The linear operator T (o) has an eigenvalue A = 1 of multiplicity 2;

— The nonlinear operator b(w(x)) satisfies the relation ||b(w(x))|z, = 0(||w(x)||2L2) as ||lw(x)|[z, — 0.

By construction, the bifurcation problem for the operator equation (5.7) has the peculiarity that the
codimension of the bifurcation is one, while the multiplicity of the eigenvalue A = 0 of the operator T'(uo) is
two. Therefore, standard bifurcation analysis methods do not apply here. The following scheme is proposed for
constructing bifurcation solutions of equation (5.7). Introduce an additional parameter v into equation (1.3),
i.e., consider the equation

ow

A(u)w + vDAw + h(w) =0, on

=0. (5.9)
oQ

For v = vy = 1, equation (5.9) coincides with equation (1.3). Then equation (5.7) takes the form
w=T(u,v)w+b(w,u), (5.10)

where

T, v)w(x) = / G (. K (1 v)w(3) dy.
Q

here K(u,v) = %D‘lA(y). To study this equation, one can use the methods for investigating multiparameter
bifurcations [13, 14]. In this case, any function (5.4) can be chosen as the bifurcation direction. Then, according
to the scheme described in [13, 14], a continuous branch of bifurcation solutions of the system is uniquely
determined:

w=w*(e) = ge1(x,y) + 2er(x,y) + ...,

u=pu(e) =po+eu +ur+...,

v=v(e)=vo+evi+&v+...,

where ¢ is an auxiliary small parameter. In this branch, the coefficients of the functions u(g) and v(g) are
uniquely determined by the chosen function (5.4). It can be shown that the function (5.4) can be chosen
such that any finite number of coefficients v, v, ... of the function v(¢g) are zeroed, which is sufficient for
constructing a continuous branch of bifurcation solutions (5.3) of the original system (1.1) with the required
accuracy.
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ABSTRACT

In the present paper we establish that for a Tychonoff map g: X — Y the induced map
I7(g): 17(X) — I7(Y) is II-complete if and only if the given map g: X — Y is II-complete.
From here one can conclude that the functor /; admits lifting to the category of I1-complete
space and their I1-complete maps.
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1. Introduction

In the present paper by a space we mean a topological T7-space, by a compact a Hausdorff compact space
and by a map a continuous map.

A collection of subsets of a set X is said to be star-countable (respectively, star-finite) if each element of it
intersects at most a countable (respectively, finite) set of elements of it. A collection w of subsets of a set X
refines a collection Q of subsets of X if for each element A € w there is an element B € Q such that A C B. Itis
also said that w is a refinement of Q. For an element x € X and a natural number # the inequality Kp (x, w) <n
means that no more than »n elements of w contain x [2, p. 270]. We write Kp w < nif Kp (x, w) < n for every
x € X.

A finite sequence of subsets My, ..., My of a set X is [4] a chain in X connecting sets My and M, if
M;_1nNM; #2fori=1,...,s. Acollection of subsets of a set X is said to be connected if for any pair of sets
M, M’ C X there exists a chain in X connecting M and M’. The maximal connected subcollections of w are
called components of w.

A star-finite open cover of a space X is said to be a finite-component cover if the number of elements of each
component is finite.

For a collection w = {O4: @ € A} of subsets of a space X we put

[w] = [w]x = {[Oalx: @ € A}.

For a space X, its subspace W and a point x € X \ W, an open in W cover w of the space W pricks out the
point x in X if x ¢ J[w]x [4].
For a Tychonoff space X let 8X be its Stone—Cech compactification (i. e. the maximal compact extension).

Definition 1.1. [4] A Tychonoff space X is said to be IT-complete if for every point x € SX \ X there exists a
finite-component cover of X pricking out the point x in SX (i. e., x ¢ U[w]gx).
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Recall the notion of a perfect compactification. For a topological space X and its subset A, a set
Frx A =[A]lx N [X\A]x = [A]x \Intx A

is called a boundary of A. Let vX be a compact extension of a Tychonoff space X. If H € X is an open
set in X, then by O(H) (or by O,x(H)) we denote the maximal (by inclusion) open set in vX satisfying
O.,x(H)N X = H. Itis easy to see that

Oux(H)= | J T

let,x,
I'nX=H

where 7, x is the topology of the space vX.

A compactification vX of a Tychonoff space X is called perfect with respect to an open set H in X if the
equality [FrxH],x = Fr,x0,x(H) holds. If vX is perfect for every open set in X, then it is called a perfect
compactification of the space X ([2], p. 232).

A compactification v X of space X is perfect if and only if for any two disjoint open sets Uy and U in X the
equality

O(U1VUz) =0(Uy) VO(Uy)

holds [2]. The Stone-Cech compactification X of a Tychonoff space X is a perfect compactification of X. The
equality O(U; U Up) = O(Uy) U O(U>) holds for every pair of open sets U1 and U; in X if and only if X is
normal, and the compactification vX coincides with the Stone-Cech compactification X, i. e. vX = BX.

The following criterion plays a key role in investigating the class of II-complete spaces [4, Theorem 1.1,
pp. 16-17].

Theorem 1.1. [3] A Tychonoff space X is I1-complete if and only if for every x € bX \ X of an arbitrary
perfect compactification bX there exists an open cover w of X with Kp w =1, pricking out x in bX (i. e.

x ¢ Ulw]px).

Since the Stone-Cech compactification X of a Tychonoff space X is a perfect compactification of X, then
Theorem 1.1 implies the following assertion.

Corollary 1.1. A Tychonoff space X is I1-complete if and only if for every x € BX \ X there exists a cover w
of X with Kp w = 1, pricking out x in $X.

Note that every compact Hausdorff space is a [I-complete space. The square of the Sorgenfrey line (that
is the set of real numbers equipped with the topology generated by sets [a, b), here —oco < a < b < +00) is
IT-complete, but it is not a paracompact space (hence, it is not a compact Hausdorff space). The space T (w1) of
all ordinal numbers less than the first uncountable ordinal number w1 is a normal space but it is not [I-complete.

Let us list some known properties of II-complete spaces.

1. A closed subset of a II-complete space is [I-complete ([4], p. 19).
2. If f: X — Y is aperfect map in a IT-complete space Y then X is also [I-complete ([4], p. 26).

The author of [5] observed the functor /: €omp — Comp and showed that it is normal. Then in [7] using
the construction suggested by A.Ch. Chigogidze [6], it was obtained an extension Ig: Tych — Tych. Here,
the sign €omp means the category of compact Hausdorff spaces and their continuous maps, and Tych the
category of Tychonoff spaces and their continuous maps.

For a compact Hausdorff space X an idempotent probability measure on X is defined [5] as a functional
u: C(X) — R that satisfies the following conditions:

1) u(cx) = c for every constant function cx: X — R, ¢ € R. Here cx(x) = ¢;
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2y ulcop)=cou(p),ceR, e C(X).HerecO ¢ =c+y;

3 ule@y) =ule) ® u(¥), ¢, ¥ € C(X). Here p @ ¢ = max{y, y}.
A set of all idempotent probability measures on X is denoted by /(X). It is endowed with the topology 7,
of pointwise convergence. For u € I(X) sets

W 01, oo on; 0y ={v € I(X): |v(pi) —u(pi) <0,i=1, ..., n}

forms a base of the pointwise convergence topology in /(X) at u. Here ¢, ..., ¢, € C(X), 6 > 0.

Note that a function f: X — [—oo, +00) is said to be an upper semi-continuous if for each x € X and for
every real number r that satisfies f(x) < r, there exists an open neighborhood U c X of x such that f(x") <r
forallx” e U.

Now we consider a compact Hausdorff space X, and put

USCy(X) = { f: X — [—o0, 0]| f is an upper semi-continuous function such that
there exists x € X with f(x) = 0}.

For every idempotent probability measure v € I(X) there exists [1] a unique upper semi-continuous function
A€ USCy(X) suchthaty = & A(x) © .
xeX

Consequently [8],
I1(X) = { eBX/l(x) Ob6,: A€ USCO(X)}.
X€
A set

suppu = {x € X: A(x) > —oo}

is called [8] the support of an idempotent probability measure u = @X/l (x) © dy.
X€E

2. On a perfect compactification of the space of idempotent probability spaces

For a Tychonoff space X put [7]

Ig(X) ={p € I(X): suppu C X}.

It is clear that Ig(X) C I(X). Consider the set /g(X) as a subspace of the space /(X). For a Tychonoft space
X the space Ig(X) is also a Tychonoff space with respect to the induced topology.
For a continuous map f: X — Y of Tychonoff spaces we put

Ig(f) = 1(Nizx)s
where Bf : X — Y is the Stone-Cech compactification of f (it is unique).
For a compact Hausdorft space X we put
n
17(X) = {1 = 8 x,(x) © 6 € L(X):
=
there exists a point x;, € supp u = {x1, ..., Xn}

such that y,(x;,) =0and y,(x;) < -5 ati# io}.

n+l
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For a Tychonoff space X we put
I¢(X) = Ig(X) N1 (BX).

For a point x € X let us define the following set

Ijﬁ(X) = {/,t = lé)(#(xi) O0x €17(X): x €supp u and y,(x) = 0}.

It is easy see that for a compact Hausdorff space X:
a) Ijﬁ(X) N ijr(X) = @ if and only if x # y for each pair of points x, y € X;

b) I7(X) = U I7(X).
xex f
Consider a subset M C X and put

(M) = {,u € I7(X): thereisapoint x € M such that u € I])ﬁ(X)} .

Prof. [11] Let M be a nonempty subset of a Hausdorff compact space X. Then I}‘.(X ) € (M) if and only if
xeM.

Prof. [11] For any couple M and N of nonempty subsets of a Hausdorff compact space X we have
(M)Nn(N) #@ifandif M NN # @.

Theorem 2.1. [11] Let M be a nonempty subset of a Hausdor{f compact space X. Then (M) is open in I7(X)
if and only if M is open in X. Similarly, (M) is closed in 17 (X) if and only if M is closed in X.

It is easy to see that for a Tychonoff space X the set /7(X) is everywhere dense in I7(S X),i.e. Is(BX) isa
compactification of the space /¢(X). Here we make a more precise statement. The following states shows that
the functor Ig: Tych — Tych transforms disjoint open covers into disjoint open covers.

Theorem 2.2. [11] For a Tychonoff space X the space 17(SX) is a perfect compactification of the space
17(X).

Lemma 2.1. [11] Let v be an open cover of a Tychonoff space X with K,v = 1. Then the family
Ig(v) = {(U): U € v}
is an open cover of the space 1g(X) with K, (Ig(v)) = 1.
Thus, we get the following remarkable achievement.

Theorem 2.3. [9] For a Tychonoff space X its hyperspace Ig(X) is I1-complete if and only if X is I1-complete.

3. II-completeness of the map /(1)

Foramap f: X — Y and a subset H C Y the preimage f~'H is called a fube (above H).

Remind, a continuous map f : X — Y is called [2] a Ty-map, if for each pair of distinct points x,x’ € X,
such that f(x) = f(x"), at least one of these points has an open neighbourhood in X which does not contain
the other point.

A continuous map f: X — Y is called fotally regular, if for each point x € X and every closed set F' C X
not containing x there exists an open neighbourhood O of f(x) such that in the tube f~1O the sets {x} and F
are functionally separable. A totally regular Tp-map is said to be a Tychonoff map.
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Obviously, each continuous map f: X — Y of a Tychonoff space X into a topological space Y is a Tychonoff
map. In this case, for every Tychonoff space X, owing to the fact that the set /(X) is a Tychonoff space with
respect to the topology of pointwise convergence, the map

Ig(f): Ig(X) — Ig(Y)

is a Tychonoff map.

A continuous, closed map f: X — Y is said to be compact if the preimage f~'(y) of each point y € Y is
compact. A continuous map f: X — Y is compact if and only if for each point y € Y and every cover of the
fibre f~1(y), consisting of open sets in X, there is an open neighbourhood O of y in Y such that the tube f~1O
can be covered with a finite subfamily of that cover.

A compact map bf: byX — Y is said to be a compactification of a continuous map f: X — Y if X is
everywhere densein b ¢ X and b f|x = f. Onthe set of all compactifications of a given map f one can introduce
a partial order: for the compactifications b1 f: b1 X — Y and bof: bX — Y of f we put by f < by f if there
is a natural map of H2X onto »1X. B. A. Pasynkov showed that for each Tychonoff map f: X — Y there
exists its maximal compactification g: Z — Y, which he denoted by S f, and the space Z where this maximal
compactification is defined by S (X).

Remark 3.1. Note that the maps b1 f, b f, B f are compactifications of the map f. The spaces b1 X, bo X, BrX
are some extensions of X but they are not obliged to be compactifications of X itself.

A Tychonoft map f: X — Y is said to be I1-complete, if for every point x € X \ X there exists a disjoint
clopen (=closed-open) cover of X pricking out x in 8¢ X [4, pp. 120-121].
We consider the following notion.

Definition 3.1 ([10]). A compactification b f: b X — Y of a Tychonoff map f: X — Y is said to be a perfect
compactification of f if for each point y € Y and for every disjoint open sets Uy and U, in X there exists an
open neighborhood O C Y of y such that the equality

Opx (U1 Vo) N (B) 710 = (0px(U1) UOpx(Ua)) N (Bf) 10
holds.

Let f: X — Y be a continuous map of a Tychonoff space X into a space Y. It is well known there exists
a compactification vX of X such that f has a continuous extension vf: vX — Y. It is clear, v f is a perfect
compactification of f.

The following result is an analog of Theorem 1.1 for the case of maps.

Theorem 3.1. Let b f: byX — Y be a perfect compactification of a Tychonoff map f: X — Y. The map f is
[1-complete if and only if for every point x € by X \ X there exists a disjoint clopen cover of X pricking out x
inbpX.

Proof. The proof is carried out similar to the proof of Theorem 1.1 from [2]. m|

The following result is a variant of Theorem 2.1 for the case of maps.

Theorem 3.2. Let g: X — Y be a Tychonoff map. Then

L(Bg): 1r(BegX) — 15 (Y)

is a perfect compactification of
If(g): If(X) - If(Y).
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Proof. The proof is similar to the proof of Theorem 2.1. Here the equality

(Up(B2) (U) = (B (U)))

is used. O

The following statement is the main result of this section.

Theorem 3.3. The Tychonoff map 17(g): 17(X) — I7(Y) is Il-complete if and only if the map g: X — Y is
[I-complete.

Proof. Let I5(g): Iy(X) — If(Y) be a Il-complete map. It implies that g: X — Y is a II-complete map
since X = {{x}: x € X} C I7(X) is a closed set.
Let now g: X — Y be a II-complete map. We consider an arbitrary point u € I7(8gX) \ 17(X) and using
Theorems 3.1 and 3.2 show that there exists a disjoint clopen cover of /¢ (X) pricking out the point  in I ¢ (X).
By definition, for every pointx € supp u \ X C BrX \ X there exists a disjoint clopen cover w of X pricking
out x in B¢ X. Fix a point xo € supp u \ X. Then xo ¢ | [wxo]/sfx in BrX. Hence

suppu ¢ [Ulg,x, forallU € wy,.

Consequently,

p ¢ Ui, pex), forevery U € wy,.

Owing to (2.1), applying Lemma 2.3 one more time, we conclude that /¢ (wy,) is a disjoint clopen cover of
I ¢(X) pricking out the considered point u in I (B¢ X). O

Corollary 3.1. The functor I lifts onto the category of I1-complete spaces and their continuous maps.
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Onpenenenne onTUMAaJIbHOTO cocTaBa OPTQEs ¢
ITOMOIIIBIO0 MaTeMaTUIeCcKol Moj1e/11 (PUHAHCOBOT'O
nmopTderis

Dmkabdbuios Asmmep,” Paydos Xymoron,* [Tlamcuesa Yruioit

Annoranuga

B crarbe npejcraBinena nrdopmaiust o noprdene Mapkosuiia, (GUHAHCOBOM MOPTdeJie NHBECTOPa U
[TOCTPOEHA MaTeMaTHJIecKas MOojesb puHaHCOBOro noprdess. Ha npumepe dunancoBoro noprders
n3BectHoro 6usnecmena mona Macka ¢ TOMOIIBI0O MATEMATHIECKON MOJIEN (PUHAHCOBOTO MTOPTdEIs
ObLIA OIpeJiesieHa ONTUMAaJbHasT CTPYKTypa mnoprdess. IIpu ompeiesieHnn onTUMaIbHON CTPYKTYPBI
dunancoBoro moprdess HUCIOJb30BAJIACh TPOrpaMMa, CO3JaHHasl Ha sI3bIKE MTPOrPAMMUDOBAHUS
Python.

Komrouesbre cioBa: dunaHCOBBIM mOpTdens, moprdens MapkoBuma, MaTeMaTHdecKas MOZEIb (DUHAHCOBOTO MOPTdEH,

ONTUMAaJIbHAS CTPYKTYpa (PUHAHCOBOrO HOPTdesi, JOXOIHOCTh (PUHAHCOBOrO MOpTdes, PUCK (PUHAHCOBOrO HOPTQEIIsI.

IIpenmernas knaccuduxamme AMS (2020): Ocuosras: 00A00 ; Tonosuurensuas: 00B00; 00C00; 00D00; 00E00; 00F00.

B nacrosiiiee BpeMs CyIIECTBYIOT Pa3JIUYHBIE IOJXOJIBI U METOJbI aHAJN3a IMPUBJICYCHUS WHBECTHUIUN B
nienable Oymaru. I[locTpoeHne Taknx aHAJIUTUYIECKAX METOJOB M MATEMATUYECKMX MOJEJel, a TaKKe TeopUs
WCIIOJIF30BaHUs KOd(MD@MUIMEHTOB HE AT YEeTKOI'O OTBETa Ha BOIPOC O IIPEIBAPUTENIHHOM OIIPEIeJIEHUN
PUCKOBAHHOCTH MHBECTUIIAN JIJII NHBECTOPOB, OJIHAKO IIO3BOJISIOT JIOCTATOYHO OOBEKTUBHO OIEHUTH TE€HIEHIINN
HEKOTOPBIX JIefCTBUIl Ha (POHIOBOM pBIHKE. PaccMOTpuUM J1Ba TAKAX METOJIA.

[Toprdens Mapkosura

OCHOBOIIOJIOKHUK cOoBpeMeHHO Teopuu noprdens Mapkosun (1952) nmcan B cBOMX HAYYIHBIX TPYAAX O
HeoOX0IMMOCTH (POPMUPOBaHUsT TOPTdEIs MyTeM TPOBEPKH KOPPEJISIIUOHHON 3aBUCHMOCTH MEXKIY KarKIOn
akmueit. /Io MapkoBuma KjaccmyecKoe HAIIPABJIEHUE OIEHKW CTOUMOCTH AKITUH OCHOBBIBAJIOCH HA MOJIEJIH
JIICKOHTHPOBAHHO} cTonMmocTH, paspaboranHoii /xxornom Béppom Yusbsmcom (1937). Mapkosui yTBep:K1aer,
9TO PUCK B TON MOJIE/IN HE YIUTHIBAETCH, U IIPEIaraeT CBOI0 COOCTBEHHYIO MOJIE/b. BbITaionmuiicss SKOHOMUCT
cBoero BpeMenn Munron Ppuamvan moxsepraj KpPUTHUKE HCCIeIOBaHus MapkoBuiia, yTBepkKIasi, UTO OHU
He 00JIAJAIOT CYNIECTBEHHBIM YKOHOMUYECKHM 3HAYeHUeM. 1eM He MeHee, HA CErOJHSIIHUI JeHb Teopus
mopTdesis, a TakK»Ke BOINPOCHI €ro ONTUMU3AINNU U JIUBepCUMUKAINN IPOIOJIKAIOT PA3BUBATHCA B TPYIAX
MHOTUX 9KOHOMUCTOB, OIUPAIONIMXCH HA HaydHble ucciegoBanus Mapkosuna (Markowitz, 1952).

Hannas dopMmysia TpeCTaB/IsgeT MATEMATHIECKOe OXKUIAHUE JIOXOJa KAK B3BEIIEHHYIO CyMMY BO3MOYKHBIX

JO0XOJI0B C y9EeTOM BepOHTHOCTeﬁ HUX BOSHUKHOBEHUAI.

B = Z R; - Py
j=1
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R;-0T1€/1b6HO BO3MOXKHBIN JTOXOT,
P;j-BepoAaTHOCTD TIOSIBJICHNS.

B 1966 roxy Yuibsm [Hlapn Buepsoie pazpaboTas mokasaresb 3(pGOEKTUBHOCTH, M3MEPSIOIUH COOTHOIIEHNE
cpefHeil TpeMuu 3a PUCK K CPeJHEMY OTKJIOHEHWIO MopTdesis. DTOT MoKa3aTe/b ObLI MPEeJIOoXKeH B €ero
cratbe «JPOEKTUBHOCTh B3aUMHBIX (POHIOB», OIMyOJMKOBaHHON B KypHaJsie «The Journal of Business», u
BIIOCJIE/ICTBUH TOJIy4unsI HazBauue kodbdurment [laprra.

Kosdbdumnument [laprra 66171 paspadboTaH B mporiecce JabHelnero pa3sutus Teopun noptdests . Mapkosura
U TIPEJICTABJISET COOOU OTHOIIEHUE JIOXOJHOCTH K yPOBHIO pucka. JlaHHBII mOKasaTesab IO3BOJISET OIEHUTH
CTeleHb yCTOWdmBOCTH oOxKumaeMoil npuboum. Popmyna pacuéra koaddurnmenta Illapma mpeacrasiisiercs
CJIEYIOMAM 00pPa30M:

Ty —T
Sharpratio = 27
Op

rjie
Tp-O2KHJaeMasl JIOXOIHOCTD HopTde)s,
7 p-0€3pUCKOBasl CTaBKa JOXOJHOCTH,
0p-CTaHIAPTHOE OTKJIOHEHHE JOXOTHOCTU HOPTdhes (Mepa PUCKa).

Ha ocHoBe mammoro xosdummenTta pa3paboTaH KpUTEpHil OIEHKH (O@PEKTUBHOCTH HHBECTHUIINIA,

IIPEJICTABJICHHBIN B CJICIYIOMEN TabIuIIe.

3navenne koydpduunenta Mlapna Ouenka 3pPeKTHBHOCTH HHBECTHIHI

Bricokas 10X0HOCTE HHBECTHUHOHHOIO NOPTheIs u
Koadppuunent Hlapna>1 P PeKTHBHOCTL YIPABTEHNA HHBECTHIIHAMEA NPH HH3KOM
YPOBHE PHCKA

VpoBens pHCKa HIBECTHPOBAHHA B JaHHLIH 00LEKT NpeBLIIAeT

OMHAACMBIH YPOBEHb PHCKA.
1>Koagpdpuuumenr Wapna>0

HuBecTHPOBaHHE HE PEKOMEHIYETCH, 0CKOJILKY J0X0AHOCTE De3

PHCKOBOr0 AKTHBA BLICOKA.
Kos¢pduument Wapna<0

B V30ekucrane, Kak mW B JOPYIUX CTPAaHAX, CYIIECTBYIOT AHAJUTUIECKHE ATE€HTCTBA, OIUCHIBAIOIINE
dunancoBble MHCTPYMEHTHI pa3indHbix sMuTeHToB (Emitent (amri. issuer) - opranmsanus, BBILyCKaroias
(smuccupyioniag) IeHHble OyMaru Jyisi pa3BuTHs U (DUHAHCUPOBAHUS CBOEH JIEATEJIbHOCTH), OJHAKO
K03 DUIUEHTHI, KOTOPbIE BayKHBI JJIsi [IPUHSITHS WHBECTUIMOHHBIX PEIIeHUil B Y30eKHCTaHe, Ha IIPAKTHKE
ere He pabOTAOT.

Hutst mostydeHnst 00 beKTUBHBIX MTOKa3aTe el HeoOXomMo peaan3oBaTh ujeio [1lapra mo pacieTy KOTUPOBOK
KOPIOPATUBHBIX IEHHBIX OyMmar Ha (QOHIOBLIX OHMpKAX HA OCHOBE BpeMEHHBIX paAnoB. Koaddwurument
[MTapnia craBuUT JOXOJ HA €IUHUILYy PUCKA, TOYHEE, M3MEHYMBOCTD, BBINE CTaBKU 6e3 pucka. CTabuibHOCTH
WHBECTHUIMOHHOTO MOPTdEIIs MePUOAMIECKNA PEean3yerTcs B PA3JINIHBIX BHOPAIMOHHBIX (OpPMAX. ITO MOKET
OJTHOBPEMEHHO IIPUBECTA K CHI2KEHUIO PHUCKA WHBECTUPOBAHWS WHBECTOPA WX K IIOJHOMY OTCYTCTBUIO
YOBITKOB, YTO HAa3bIBAETCS inBepcuuKaIueil ”HBECTUITMOHHOTO MOPTQeist Ha PhIHKE IIEHHBIX OyMar. YCIelrHbe
WHBECTUIMN OCHOBAHBI HA JBYX OCHOBHBIX IPUHIUIIAX - BO-TIEPBBIX, WUCIIOJIH30BAHUE METOIOB HMOPTMETbHBIX
WHBECTUIMII B 9TOIl paboTe MO3BOJISIET, B IIEPBYIO OYepe/ib, CHU3UTh PUCKU U JIEPKATh UX I0J[ KOHTpojeM. Bo-
BTOPBIX, 10 IIPUHIIMILY BEIOOPa BHICOKOKAYECTBEHHBIX aKTUBOB, JIJIsl OOJIUTAIINIl B TIEPBYIO OYePe b YINTHIBAIOTCS

HaJIe?KHOCTh M YCTONYINBOCTDH SMUTEHTA, a JI/IsI aKIINii - 6a30Basi CTOMMOCTD IEHHBIX OyMar, a TaK»Ke JaIbHenme
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[IEPCIEKTUBBI W IMOTEHIUAJT POCTA. UTOOBI CHU3UTH 3aBUCHMOCTH IOPTQEsst, COCTOSIIEr0 M3 OJHOIO BHJIA
(UHAHCOBBIX AKTUBOB, OT W3MEHEHUS PBLIHOYHON CTOMMOCTH, HEOOXOIMMO WHBECTUPOBATH B PA3HbIE BUJIbI
AKTUBOB.

[Momxox I."MapkoBuita, HaUNHAETCsT C IPEIIOJIOKEHNSI, YTO Y WHBECTOPA CeUac eCTh OIpee/IeHHas CyMMa
CPEJICTB JijIsi WHBECTHPOBAaHUSI. DTU JIEHbI'M WHBECTUPYIOTCsI HA OIPEJEJEHHBI CPOK, KOTOPbBI HA3BIBAETCS
[IEPUOJIOM yJIEpKaHusl. B KOHIle CpOKa XpaHeHWsI MHBECTOD IPOJAeT IeHHble OyMaru, KyIJIEHHble B HadaJie
eprojia, depe3 HeKOTopoe Bpemst. PopMUpOBaHUE 3aJIa9U IOMCKA OITHMAJIHLHOrO HMOPTdEsIs IMEeHHBIX Oymar
SIBJISIETCST OJTHOM M3 BO3MOXKHOCTEl TeOpHUH ONTUMAILHOTO mopTdetsi, uccyeaoBannoit Mapkosumem. Mapkosuit
MIPEJJIOKMIT OMHMCATH BEPOSITHOCTH OTKJIOHEHUsI BEJIMYWHBI JIOXOJHOCTH TOPTQENIs OT ero MaTeMaTHIeCKOrO
OXKWIaHUS HOPMAJbHBIM pacrpenesenneM. Jloxom moprdess - 0:KuIaeMblil T0X0/T 3a ONMPEIeJeHHbI YPOBEHD
pUCKa WM MUHUMAJBHBIN YPOBEHB OIMPEJIEJICHHOrO prucka. Her eIMHOTrO OnTUMAaJIbHOTO MOPTdEIsi, MOXKET OBIThH
6oJtee onTUMaBHBIN, Oosiee 3hhEeKTUBHBIN TOPTQETh IO CPABHEHUIO C JIPYTUMHU.

Hambosiee ciokHast mporiejiypa B IPOIECCE pPeaH3alnd  MapKOBHI-MOJEIN - 3TO cOOp pacdeTos,
HEOOXOJIMMBIX JIJIsi OIEHKU HAJIMYUs WJIM OTCYTCTBUsl PHUCKA, KAKOE-TO WM3MEHEHUE IeH Pa3JIUYHBbIX aKIIUH
wiu obJiMranuit Mo OTHOINEHUIO K IeHaM JpYyrux akmuit wiam obsurarmit. Kpome Toro, 3ToT moaxos HMKe
JIPYTUX MOjieJieil m3-3a OTCYTCTBHUs CBI3M C PBIHKOM, TO €CTh Oojiee puckoBaH. Yuiabsam Ilapr ucronb3oBast
pesynbraTsl uccieoBanus . MapkoBuiia B KagecTBe OTIPABHOM TOUKM JJIsT JATbLHEHIIINX UCCIIeIOBAHUIL, B XO/1€
KOTOPBIX OH OIPENIEIUI BiusHIEe Mojen MapKoBuila Ha CTOMMOCTh (DUHAHCOBBIX aKTHBOB. Temeph cocTaBuM
MaTeMaTUIeCKyI0 MOJeib mopTdess nasecropa. Janras dopMysta HCIOIB3YeTCs I pacdeTa OTHOCUTEIHHON

JOXOJHOCTHU KazKJI0T'O BI)I6paHHOI‘O AKTUBa N UT'PACT BazKHYIO POJIb B IPUHATUN WHBECTUIIMOHHDBIX peHIeHHfI.

.. Klai)p — K(ai)o
’ K((Zi)o

rje:

7;~OTHOCUTEJIbHAS JIOXOJHOCTh (-I'0 AKTHBA, OTPAKAOIIAs; HACKOJBKO H3MEHHMJIACh CTOUMOCTh AKTHBA
OTHOCHUTEJIBHO €10 HAUAJIBHON IeHbI;

K (a;)o-tporaosupyemas (Gy/LyInasi) CTOUMOCTD i-I'O AKTHBa, TO €CTh OKUJaeMasi PIHOUHAS 1I€HA aKTUBA B
Oyymmem;

K(a;)p-HauanbHas (TeKylmasi) CTOUMOCTB i-TO aKTHBA, TO €CTh €ro IeHa Ha MOMEHT IPHOODeTeHNs HJIH
TEKyIIas PHIHOTHAS CTOUMOCTb.

PenrabenbrocTs oprdesiss mEBECTOpa OIpeesercs o ciemayomneil dhopmyste:

R, = Z X;r;
3neck X; 108 i - IEHHBIX OyMar B roprdeJie, CyMMa KOTOPBIX, ECTECTBEHHO, paBHA 1.
Z X; = 1.
Kpome Toro, eciin moprdens coaepKuT KOPOTKYIO TO3UIAIO, TO
Xi1+Xo+ .. +X,—Xp=1

3aech X, 107151 33€MHOIO akTUBa, (IIPOJIAETCsI HA KOPOTKUX TOPIax).

MaremaTuiaeckoe OKUJAHAE JTOXOIa OT MOPT(desIs IMeHHbIX OyMar B N
R= E X;R;

3necb, R; = M{r;} - penrabenbHocTb, i-ii TieHHOI Oymaru, a eé MaTeMaTHUecKoe OXKHUJIaHue. 1lpu

dopMupoBanuy opTdesis MEHHBIX OyMar MbI UCIOJIB3YEM CTPATErNIO, TAPAHTUPYIONLYIO OIIPEIeJIEHHBIN JTI0X0/T
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wi Jioxox, B Ry a He cTpareruio, ocHOBaHHYIO Ha "Habope addertuBHbix TmopTdereit". CiemoBaTesbHO,
B KadyeCTBe DPAIMOHAJIBHON CTpaTeruu paluoHAJIBHOrO (opMupoBanus HOpPTQEJIst IEHHBIX OyMar MOXKHO

HCI0J1b30BaTh R, >R mmm
n
E X; -1 > Ry
i=1

MIPUXOJUTCS BBIOMPATH T€, KOTOPbIe 0DECIEINBAIOT BBHIIOJHEHNE HEPABEHCTBA. [IOCKOIBKY JIEBOIT CTOPOHOIM
BBIIIEYKA3aHHOI'O COOTHOIIEHUS SBJAETCA CJaydaiiHasd BeJIMYWHA, BMECTO HEPABEHCTBA MOXKHO B34Tb

BEPOATHOCTD €O BBIIIOJTHCHUA:

P:P(ZXi'Ti > Ro)
i=1

15 onTuMasibHOTO TOPT(dEs EHHBIX OyMar BEPOSITHOCTD MOJLY 9€HUsI JOXO0/Ia, IPEBBIMIAIONIEro R , TO/KHA
OBITH MAKCUMAJILHOM. DTO 03HAYAET, UTO ONTUMAJIBHBIN TopTdesb hopMupyeTcs u3 goseil X; KaxKJI0ro akTUBa.

Bekrop moneit X , yI0BIeTBOPSIONINIA YCAOBUIO HOPMAJIUIAINH, OIPEIE/ISIETCS CJIETYIONIIM COOTHOIIIEHUEM

n
X —arg{maxP =P ZXm > Ry
=1
OHpe)ZLeJ'IeHHaS{ B CB4A3U C 3THUM 3a/lada OTHOCHUTCA K K.J'IaC(Zy CTOXaCTUYECKUX HpO6J’IeM IporpaMMupoOBaHUAd.
Paccymorpum cirytait, Korja JOX0/IbI 110 TEHHBIM OyMaraM He3aBUCUMBI. [lomyanmM caydaiHbie 3HATEHUs TOX0Ia

KazKJIOr0 aKTHUBa 110 HOPMaJIbHOMY paclpejIe/IeHIIO:

= v Xl — R
P=P(> Xil; >Ry | =@ iz Xili — o

i=1 V Z?:l XEDi

> Xiri—Ro

i=1

/3 x2D;
i=1

Baech, ®(x) byuxiusa Jlamaca. [lociennee Boipaxkenue Y = . Beipazkenne mocruraer MakcuMyma,

KOTJIa 3HAYEHUE JIOCTUTAaeT MAKCUMyMa. 3aTeM HOPpMUpYHTe

S
=1

neorpunarenbbit X = { X1, Xo, ..., X} Haiinem Besmunny,

n
> Xiri — Ro
X = arg { max | =2

Oror naitnennniit X = {X1, Xo,..., X, } 3HaYeHUs TPEACTABIAIOT COOON ONTUMAIBHBIH MOPTdEIb IIEHHBIX
Ooymar. Takast mocTaHOBKA 3a/1a91 HA HAXOXKIEHUE ONTUMAJIBHOTO TTOPTMEIs IIEHHBIX OyMar sBJIsIeTCsS OTHON 13

BO3MOXKHOCTEH Teopuu OnTUMaJIBLHOrO noprders, ndydennoit I.Maprosuriem. [lepsoe yciaoBue dopmupoBanust
n n

scbdexrusroro noprdensbuoro nakera y X2D; = const Bropoe yciosue Y. X;r; = const. Kaxoe us srux
i=1 i=1
paBeHCTB UMeeT BHI, KOTOPLI IPUHUMAeT aHAJIMTHUeCKOe pellleHre. Y IpU MaKCUMU3AIUU UMeeT CJIe Ly ol

BUJT
n

> Xiri — Ry
v - _i=l
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Ecan ji1s1 n neHHBIX 6yMar ux J[0X0/Ibl COCTABIIAIOT 1] < 1y < ... < T CYIIECTBYET TPHU BapuaHTa (hOPMUPOBAHNST
ONTUMAJIBLHOTO TopTdets. B To ke BpeMmst BapuaHThl GOPMUPOBAHNS TOPTMEIS 3aBUCST OT YKEJIAHUsT HHBECTOPA,
oy anThb OoJibite pubdbLn. [lepBast - KoHCepBaTuBHAs crparerusi. TuBecTop XodeT 3apabaThbiBATh MEHBIIIE 7'
. Bropas - crparernst co cpefTHUM YpoBHEM pHCKa ¢ . VIHBeCTOp XOYeT MOIYyYHUTh JOXOM OT 7 JI0 Tj4+1 . L peThs
- cTparerus pucka. IHBecTOp XO4UeT MOJIyIUTDb JIOXOJT BBIIIE 7, . MaTemaTutieckass MOJETb JJIsi ONITUMAJILHOTO

MHBECTUIITMOHHOI'O HOpT@eJ’IH U3 IBYXIIEPpUOJUIECKOTO @OpIVII/IpOBaHI/IH 3allUChIBaETCA B CJIEAYIOIIEM BUIE:

n

> Xiri — Ry
i=1

X* = arg { max

KO — KP — T,

i = —t—t—,
K;
r1 < Ry <1y,

r <rg < <1y,
K} = f(K[",0),

1;

NLi=1, L=001XI, a= %0
=1 )

repuos-1

I+(1-n)>3S;, nepuon-2

X*={X1,Xs,...,X,,}, Xi>0, in =1.
=1

3aech,

i-1ieHHast Oymara

N-0XKUJIAEMbIil IeHHbII Oymaru B moprderie

X;-nounst 1 - it 1ieHHOi OyMaru mopTdese NHBECTOPa

D;j-nennbivm OymaraMu i-if u j-it Kopapamnus JOX0/a

74-J0XO OT i~ TIeHHOM OyMaru

K ?—omﬂﬂaeMaﬂ IeHa aKTUBA, ©

KP-TIpornosnasi CToNMOCTb IEHHO} OyMaru Ha Imare p, p-IPOTHO3HBIA Ieproa

f (K™, 0)-i-muneitnast pekyppeHTHasi GOPMyJa B BHJIE BPDEMEHHOTO psijia,n300parkarolliero IeHHy o OyMary

T,-miara 6pokepy (B Tapude KoMuanun)

I-HavaJIbHBIN KaIUTaJ WHBECTOPA

Q- KOJIMYECTBO aKINii ¢ TopTdesisi HHBECTOPA

7)- CTaBKa I'OCYJapPCTBEHHOI'O HAJIOTA JJIsd (PU3NIECKUX JIUIL.

S;-10X0J1, OT -1 IeHHBI OyMaru.

Ucnonb3ys a1y dopMymay, MOXKHO CIPOTHO3MPOBATL OyAyIWil TOXOM BLIOpaHHON KoMmaHuwu. Jms sToro
HaM IMMOHAIO0ATCA JAHHBIE O JIOXOJAX BHIOPAHHBIX KOMIIAHUN, COCTABJISIONINX WHBECTUIIMOHHBIA TOPTQEDb, B
pa3mepe He MeHee 5 B 101, Uem GoJibie mHMGOpPMAIAN, TeM OOJIbINE TOYHOCTH ITPOTHO3A.

[IpuBenem mpumep OIEHKH JTOXOMHOCTUA IMTOPTdEJsi KAaKOro-jimbo mHBecTopa B Mmozenn Mapkosuma. st
9TOr0 PACCMOTPUM B KadecTBe MpuMepa (DUHAHCOBBIN moprdess caMoro 6oraroro dejoBeka B mupe, Umona
Macka, 0bJ1agao1ero orpoMHbIM KanuTaaoMm. [loTomy 4To ero (huHaHCOBBIN TOPTQEb MHOTOMEPEH U CJIOXKEH.
OH 00BIYHO uMeeT MOPTdEJib, JUBepCUDUIUPOBAHHBIN AKIUAMEI, OOJUTAIUSIMU, YACTHBIMUA KOMITAHWSIMH,

KPUIITOBAJIIOTAMHI U APYTUME (PUHAHCOBBIME MHCTpyMeHTamMu. Huke MbI mocTpouM ero moprdessb ¢ IOMOIIBIO

tstu.uz/en/pub/UJMCS 118


https://tstu.uz/

A.Qmkabuios, X.Paydos & V.Illamcuesa

MaTeMaTHIeCKON MOJIeIN, y4InThiBast B3MIsiabl Wimona Macka Ha MHBECTHIMH U €r0 OTHOIICHHE K DPHCKY.
Nnon Mack He 6ouTCs BHICOKOPHCKOBBIX MHBECTHIIH, TaK KaK yJie/seT BHUMAHHE Da3BATHIO HHHOBAIIMOHHBIX
KOMITAHUN U TEXHOJOTUIECKOro cekTopa. Kro moprderns Britodaer B cebst SpaceX, Tesla, Neuralink u gpyrue
BBICOKOOIIACHBIE, BBICOKOI0X0HbIe TpoekThI(https://www.bloomberg.com /billionaires/profiles/elon-r-musk/).
B 10 Ke BpeMsl OH MHBECTHPOBAJI B JIpyrue 6osiee Ge30NacCHbIE aKTUBBI, YTOObI CHU3UTD PHUCK.

IToprdens Nnona Macka cocTOUT U3 CIEIYIONIAX CPEJICTB:

1. Axiun Tesla:

¢ OxmmaeMmbril rogoBoit moxom: 15%,

® OmnacHoctb (cTapnapraoe orkioHeHue): 30%
2. SpaceX (uacTHast KOMIIAHWS )

¢ OxxumaeMblil rogoBoit goxom: 25%

¢ Omnacuocrs (crangapraoe orkionenue): 40%
3. Kpunrosastorst (Hanpumep, Bitcoin, Ethereum):

e OzxkunaeMsblit To10Boi goxon: 50%

® OmnacHocth (cTanmapraoe oTkioHeHHe): 60%

4. O6suranuu (rocypapersennbie obsuramun CITA)

¢ OxxumaeMbliil TogoBoit moxox:: 4%

¢ OnacHocTh (CTaHmapTHOE OTKJIOHEHHE): 5%

5. Kosapnanun:

® Bricokasi B3anMocBsi3b Mexkay Tesla u SpaceX
(COV (RTeslay RSraceX) =0, 09)

Kpunrosasitorel ymepenHo cBsizanbl ¢ Tesla u SpaceX.

(COV (RCryptoa RTeSla) = 0, 04) s

(COV (RC]'yptOy RSpaceX) =0, 05)

O6JII/IF3,I_II/II/I NMPAaKTUIECCKU HE CBA3AHDLI C IPYI'UMU aKTUBAMU, IOTOMY YTO OHU ABJIAIOTCA 0e30IACHBIMA.

(Cov (Rponds, Rothers) = 0)
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6. ITokazaresnb pucka A : A = 1, moromy aro Mack mojBep:keH pucky npuHHMaeM. Maremarndeckasi MOIETb

dunancooro moprdeJst mona Macka BBITISIIUT Tak:

E(RP) = Z wiE(Ri)a
i=1

4 4

0127 = ZZUJZ cWj e COV(Ri,Rj>,

i=1 j=1
Ry = RTeslaa Ry = RSpaceX7 R3 = RCryptm Ry = RD0nd57
F= max (E(R,)—A-02),

w1, W2, W3, wWa

witwrtwsgtws=1, w; >0, i=1,...,4.

3aecs, E(R)) - oXKUIaeMBIt JOXOL HOpTdes,

2
Tp
F -

- ¢puHAHCOBAsI CPEICTBA I-i1,

Wi

- pucK mopTdeJisi Wl JIUCIEPCHs],

IleneBas dyukims.

B namnoit mozesn, ¢ mOMOIIBIO ITPOrPAMMBI, CO3JaHHOM Ha s3bIKe IporpammupoBanus Python, omnpemennm

ONTUMAJIBHBIN cocTaB (punamcoBoro moprdens Mmona Macka:

OnrumaJibHast D0JIsd aKIuUii:

Axnun Tesla: wy = 0,30 (30%)
Axumm SpaceX : we = 0,35 (35%)
Kpunrosamors:: ws = 0,25 (25%)
O6suranum: wy = 0,10 (10%)

Torma moxomHOCTH €ro hUHAHCOBOrO MOPThES:

E(R,) =0,30-0,15+0,35-0,25+0,25-0,50 + 0,10 - 0,04 ~ 0,267 (26, 7%)

Puck moprdest:

o, =1/0,302-0,09 4 0,35% - 0,16 4 0,25% - 0,36 + 0,102 - 0,25 ~ 0, 28

Onrnmasnbable qom noprdens: [4.81774773e — 013.90312782e — 182.56115886e — 012.62109341e — 01]
OnrnMmadibabIi oxkugaeMblii moxoa: 0.13871705565065273
Puck (volatilite): 0.2955375688595006
Onrumasnbabiit koaddurment [lapme: 0.40169869471685055

Anayuz npejcTaBaeHHBIX IPahUKOB

I'paduk "Puck u Oxwumaemasi Jloxomuocts"/lanHblil TpaduK JEeMOHCTPUDYET, KaK H3MEHSIeTCs
COBOKYITHBIH pHCK (BoJaTwiabHOCTB) mnoprdens B 3aBucumoctn or jgoam akuuit Tesla u SpaceX.
Corytacno  mozesin - MapkoBuiia, CyIIiecTByeT ONTHMAaJjbHAasi KOMOWHAIMSI AKTHBOB, IIPU KOTOPOU
PUCK MUHUMHU3UPYETCS [PU 33JaHHOM ypOBHe moxomnoctu. Ha rpaduke MOXKHO HAOIIOZATH TOUKY
ONTUMAJIFHOTO TOPTdeIIs, KOTOpas IIpeacTaBisger coboit Hambosee 3pEdEKTUBHOE paCIpeieeHne
AKTHUBOB.

Husepcudukanus mexiay Tesla u Bitcoin (cunsig Kpusas) UPUBOAUT K PA3JIMIHOMY YDPOBHIO DUCKA
no cpasHeHuio ¢ juBepcudukanueii mexay SpaceX u Bitcoin (3enénas xkpusas). B onpemeséHHbIX
MPOTIOPIUSIX TTOPTQEJBHBI PUCK MUHUMU3UPYETCs, 9TO COOTBETCTBYeT wujee 3(P(MEKTUBHON T'PAHUIBI
Mapxkosurma. JlobaBiieHne BBICOKOBOJATUILHOIO aKTWUBA, Hampumep, Bitcoin, MoXKeT 3HAYNTETHHO

YBEJIIMYIUTH O6HLI/II71 PUCK, eCJix ero J0Jid CJIUIIKOM BbICOKA.
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Jons akuwi SpaceX

MopThens MapKoBULA: PUCK W OXUAZEMEIR 00X00

® OntumansHoii NopTdens

015

e
=

Qsupaaemeli goxen

e
jr

0z
lons akuni Tesla

0.6 038

OnTUMUsauMA NopThena Mapkoeuua

0.725

0.675

0.625

0575

0525

0475

Puck (Volatilite)

0425

0373

0325

0275

=== JMpEKTHBHEA rpaHnLa
#® Optimal portfel -

Volatilite {puck)

L4 ﬂaHHBIIU/I I‘paCbI/IK ITIOKa3bIBaeT, KaK U3MEHACTCA BOJIATUJIBHOCTDH HOpTd)e.J'IH Ipru U3MEHEHUN J10JI1 aKI_II/Iﬁ

Tesla. OnTumasbHasT CTPYKTYpa HOpT(beJ'IH 3aKJ/II0O9aeTCd B HaXO02KJI€HUN TaKOI'O pacIipe/Jie/IeHnd aKTUBOB,

Ipu KOTOPOM PHUCK MUHHUMAJIEH.

BriBoasr u3 rpaduka:

Kosdpdbumnuent koppensdimm m3MepsieT CTEeHb 3aBUCHMOCTH MEXKJIy JIBYMsI AKTUBAMU W BBIYUCJISETCS IO

caenyromei popmyiie:

rJe:

- COU(RZ‘,R]‘)

Pij
0;0;

Cov(R;, Rj)-KoBapuaIiys, XapaKTepHU3yIOIas COBMECTHOE U3MEHEHNe JOXOIHOCTEIl IBYX aKTHBOB;

0; U 0;-CTaHJapTHBIE OTKJIOHEHN A JIOXO/THOCTEl aKTUBOB (BOJ’IaTI/IJ'[I:HOCTI:).

Bausgnue xoppeadiun Ha PUCK W JIOXOJHOCTD TTOPTQEsT

Cusbnas koppessinug mexiy Tesla u SpaceX (p = 0.75)

Oszmauaet, uro eciu akiuu Tesla pacTyT, TO, ¢ BBICOKOI BEpOATHOCTHIO, PACTET U CTOUMOCTHb WHBECTUIIHIA

B SpaceX.

O/1HAKO BBICOKAsT KOPPEJIsIIys orpaHnanBaeT 3hdeKT TuBepcrUKAINN.

Crabas 3aBucnmocts Mexxty Tesla u Bitcoin (p = 0.3)

OTHU aKTUBBI JABUZKYTCA OTHOCUTEJIBHO HE3ABUCUMO JAPYT OT ApyTa.

Hobasienne Bitcoin B moprdesb CHM2KAET COBOKYIHBIN PHUCK, IMOCKOJBKY IAJIEHAE OJHOTO aKTHBA HE

00s13aTeJIbHO TIPUBOJUT K HAJEHUIO JPYTOro.

Cpennusist Koppessinus Mexkay SpaceX u Bitcoin (p = 0.4)
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Kparkoe nazBanue

¢ Uusecturnuu B SpaceX 4aCTUIHO 3aBUCSIT OT PHIHOYHBIX TPEHJIOB, Bjusiomux Ha Bitcoin.

® 710 He 0becIeunBaEeT MOJHOM IuBepCcrdUKAINN, HO CHI2KAET 00Ul PUCK TOPTdEJIs.

Broissiennnie 3navenns KoahduimenToB Koppessdiun: M3 3Tux pe3yabTaToB MOXKHO CJIENIATH CJIEIYIONINe
BBIBOJIBL:

a) non Mack Bblzesisier 3HAYUTEIBHYIO JI0JII0 BBICOKOJIOXOJHBIM KoMIIaHusAM, TakuM Kak Tesla u SpaceX. C
ITOMOIIBIO KPUITOBAJIIOT PUCK YBEJUIUBAET JOXO/T, HO TAKXKE WHBECTUPYET B OOJUTrAINN, 9TOOBI CHU3UTH PUCK.

b) Coxpansercs 6ajlaHC MEXKLY JIOXOJ0M M PUCKOM, TO €CTh OXKUJAETCs O0BOl 10x01 B pasmepe 26, 7%, a
PHUCK cOCTaBJIgeT 0KoJo 28%.

C) Ora CcTpaTerus 1moKa3bIBaeT, 9TO Mack IIpUHUMAaET BBICOKMIA PUCK U CTPEMUTCA K BBICOKOI HpI/I6bIJII/I.

Determining the optimal portfolio composition using a mathematical model of a
financial portfolio

Eshkabilov A.A., Raufov H.R., Shamsiyeva U.

Abstract

The article provides information about the Markovitz portfolio, the investor’s financial portfolio, and compiles
a mathematical model of the financial portfolio. Using the example of the financial portfolio of the famous
businessman Elon Musk, the optimal composition of the portfolio was determined using a mathematical model
of the financial portfolio. A program created in the Python programming language was used to determine the
optimal composition of the financial portfolio.
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O r1aJKoCTH NMeproAnIecKoil KpaeBoil 3a1aun J1Isd
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Cunarnnnosa buitbnnas K.

Annoranusa

B crarbe wmcciaenyiorcss eJMHCTBEHHOCTH, CYIIECTBOBAHUE ¥ IJIAJKOCTH ODOOIIEHHOIO pEIeHust
[IEPUOINIECKON KpaeBOil 3aJadd [JjIs TPEXMEPHOIO yDaBHEHWsl YAIUIBITHHA B HEOIDAHUIEHHOM
napasutesnernumesne. s mokaszaTeabCTBa TEOPEMbBI €IUHCTBEHHOCTH, CYIIECTBOBAHUS W TJIAIKOCTH
pellleHnst 3a/a9u UCIOJIb3YIOTCs ipeobpazoBanne Pypre, Meromnsl "¢ peryiaspusanuu’ u anmpuopHBIX

OITEHOK.

Karouesnie cioBa: TpéxMepHOe ypaBHEeHME JalIbIrMHA; IIepHoJudYecKas KpaeBas 3ajada; npeobpasosanume Pypbe; MeTromnsr " e-
b 1% yp 5 PHUOL, b 5 1IP! P ypbe€; 1,

peryasipuzanuu” ¥ alpUOPHBIX OIEHOK.

Ipenmernas knaccudukampme AMS (2020): Ocnosras: 35M10;

1. Beenenne.

Kaxk wusBecrHo, B pabore A.B.Bumasize nmokasano, uro 3agada Iupuxijie st ypaBHEHUsS] CMEIIAHHOI'O THIIA
HekoppekTHa [1].

EcTecTBEHHO BOBHUKAET BOIPOC: HEIb3d JIM 3aMEHHUTbH YCJIOBUA 3aJa49d JIUpuxje JPYTHMH yCIOBHAMH,
OXBATBIBAIOIIMMHI BCIO T'PAHHUILy, KOTOpBIE O0ECIICYMBAIOT KOPPEKTHOCThL 3aladn? Brepsble Takme KpaeBble
samaun (HeJOKATbHBIE KPACBble 3aJIavu) JIJIsl YPABHEHUsS] CMENTaHHOTO THIA OBIIA TPE/JIOKEHbl U U3YIeHbI B
paboTax @.1.OpanK/Ist TPy pENIeHNH Ta30MHAMAIECKOl 3a1a4u 06 06TeKaHuu TpoduIieil TOTOKOM JI03BYKOBOIT
CKOPOCTH CO CBEPX3BYKOBOII 30HOM, OKaHYMBAIOMIEHCs NPAMBIM CKadkoM yiiorHenus |2],[3]. Biuuskue mo
MOCTAHOBKE 3aJla4i JiJisl YpaBHEHUs CMEIaHHOTO THIa IIePBOr0 PoJa B OIPAHMYEHHBIX O0JIACTAX U3yUeHbLI B
paborax [4]-[8].

B mamHOIt paboTe NCoIb3yst pe3yabTaThl pador [7],[8], m3yuatoTes omHO3HAMHAS PA3PENTUMOCTD U TIAJKOCTh
000OMIEHHOrO PEIIEHNs OJHOM MEPUOANIECKON KpaeBoil 3aJadd JI TPEXMEPHOrO ypaBHEHHsA JaIluIbIrMHa B
HEOIPAHUICHHOM IAaPaJUICICIHIICIE.

B obiactu
G=(-1,1)x0,T)xR=Q xR={ (z,t,2) | z€ (-1,1), 0<t<T <400, 2z€R}
paccMoTpuM ypaBHeHue Hamauruha:

Lu=Kx)uy — Au+a(x)us + c(z, t)u= f(x,t, z). (L.1)

Received : 10-maii—2025, Accepted : 1-H0os6pp—2025
* Corresponding author
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Baecy 2K (x) > 0 upu x # 0, rue « € (—1,1), Au = Uy + u,, - oueparop Jlamiaca.

Iycrs Bee xoadbdunuentsr ypasuenus (1.1) nqocrarouno riagkue GyHkuuu B obaactu Q.

B nasbmeitmem tsi perieHusi MOCTABJIEHHBIX 3a/1a9 HAM HEOOXOIMMO BBECTH OIpEesIeHUs HEeCKOJbKUX
(BYHKIMOHAJIBHBIX TPOCTPAHCTB U ODO3HAYEHUS .

O6o3HaunM depes
+oo

0 =da(x,t,\) = (2m) /2 / u(z,t,z) e~ *dz

—00
npeobpaszoanue Pypbe 10 nepemennoii z dbynkpn u(z,t, z), a Yepes
—+oo
u(z,t,z) = (2m)"1/? / a(z,t, \) e dA
—o0

obpatnoe mpeobpazosanne Pypoe. Temeps ¢ momormpio npeodbpaszosanus Dypbe ompenes M aHU3ATPOITHOE
1 .
npocrpanctso Cobosesa W, *(G) ¢ Hopmoii

+oo
lullfyre e = 2m) > - / (L AR 1l (80 By AN (4)

— 00

rie s, l- aobble KOHEYHBIE MOJIOKUTEIbHBIE TeIble YUCIA.
Yepes W(Q) (mpu | =0,W(Q) = L2(Q)) omnpenensiercss mpocrpanctso CoGosieBa €O CKAJAPHBIM

npoussesieHueM (u, ¥); 1 HOPMOU

191 =100 = > [ 1D*0fdsar
la|<I Q

3aech a— myabTuuHAeKe, D*—0606IEHHast TPOU3BoHAsL N0 nepeMeHHbIM = u t [12], [13]. OuesugHoO, uTO
IPOCTPAHCTBO Wzl’s(G) ¢ HopMoli (A) siBasieTcs: TIILOEPTOBBIM TIpocTpancTBoM [9]-[12].
ITpu mosyYeHnn pas3aIMIHbBIX APUOPHBIX OIEHOK MBI 9aCTO OyJIeM UCIIOIb30BaTh HepasenceTso Komm ¢ o [13]:
2 192

Y, > 0,Y0 >0, u-9 < o 4 2
2 20

1.1. ITocranosku 3aa4m.

ITepuonuveckas kpaesas 3ajada: Haiitu obobriennoe pemenue u(zx,t, z) ypasaenus (1.1) u3 npocrpancrsa
W3 (G), yAOBIETBODSIONIEE CIIEIYIOMIM KPACBBIM YCIOBUSIM

D ul|,_o = D{ul,_rp, (1.2)
Diul,—y = Diul,_y, (1.3)

npu p =0, 1, e DYu= 5%, Dfu=u.
Hasnee 6ynem canrars, uro u(x,t,z) — 0u u,(x,t,z) = Onpu |z| — oo. (1.4)

Omupenenenne 1.1. O6o6mennbiM pererneM 3aaqn (1.1)-(1.4) 6ymem HasbBaTh GyHKIWMO U(T, T, 2) € VV;’3 (@),
yZA0BIeTBOpsitonTy o ypasHeHuio (1.1) mourn Beony ¢ yemosusivmu (1.2)-(1.4).
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1.2. OcHoBHOI pe3ysbTar.

Teopema 1.1. ITycTs BblOJIHEHBI cliemyommue ycioBus Jisd Koadbdunuenton ypasuenus (1.1); 2a(x) + pK (z) >

81 >0, pe(x,t) —ci(z,t) > 52 >0, ma seex (x,t) € Q, tae c(x,0) = c(z,T), ana seex x € [—1,1]. Torma

Juist Jmo6oit pyrkmn f € ng ’3(G), takoii, uro f(x,0,z) = f(x,T, z), cymecrByer eIuHCTBEHHOE 0OOOIIEHHOE
2,3

peenue 3anaun (1.1)—(1.4) u3 npocrpancrsa W5 (G).

JloKa3aTeIbCTBO TEOPEMBI IPOBEJIEM 110 CJIELYIOMIEH cxeme:

1. Jya 3apaan (1.1)—(1.4) dopmasibHO 110 IepeMeHHBIM HPUMEHUM 1peobpaszoBanre Pypbe U MOy IUM HOBYIO
samady (1.5)—(1.7).

2. 3yunmM 0JHO3HAYHYIO PA3PEIIUMOCTD IIEPHOIMYECKON 3a1a41 1)1 YPABHEHHs TPETHEro MOPAIKa, C MAJIBIM
napaMeTpoM (BCIIOMOraTe bHAs 3a/1a94).

3. 3areM C HOMOIIBIO ITOM BCIOMOraTe/LHOM 3a/1a91 JOKAKEM OJHO3HAUHYIO paspemuMocTsb 3agadu (1.5)—
(1.7).

4. Vlciiosb3yst OfIHO3HAUHYIO paspemumMocThb 3aaaan (1.5)—(1.7), naaum 060CHOBaHME CXOMMOCTH WHTEIPATIOB
Dypre u mokazkeM paspemmmocTts 3agaan (1.1)—(1.4).

[TpucTynuM K peau3amyuu 3TOi CXEeMBI.
Mpumenss ays 3amaun (1.1)—(1.4) npeobpasoBanue Pypbe HO HEPEMEHHBIM 2z, HOJLy4YuM B obsacTu () =
(—=1,1) x (0,T) caenymomyio 3anady

St = K()by — g + a (@) g + (¢ (z,8) + A2 )i = f (2,1, N), (1.5)
DY,y = DV aif,_p,p=0,1 (1.6)

rae A € R = (—o00,00), f(x,t,)\) = (27r)_1/2 79 f(x,t,2)e”**dz— npeobpaszosanme Oypbe MO TepeMeHHOI 2
—o0
byukuun f(x,t, z).

Kak u3BecTHO, 0JIHO3HAYHAS PA3PENINMOCTD U TJIaJIKOCTh 0600meHHoro pentenus sagaqn (1.5)—(1.7) B caygae,
koryia A = 0, ugydennl B npocrpanctBax CoboseBa W ;"'FQ(Q),m =0,1,2,... B paborax [7],[8]. Paccmorpum
sagaun (1.5)-(1.7) B cayuae, korga A # 0. B srom cayuae pemenns sagaun (1.5)(1.7) a(x,t,A) u f(z,t,\)
npasast 9acTh ypasHenus (1.5) sasucur or mapamerpa A. C Bo3pacraHmeM |A| — 00 MOXKET PacTH U HpaBast
vacTh ypasHeHust (1.5), II09TOMY B 9TOM CJIy4ae BO3HUKAET BOIPOC: KAK MOYKHO MOJIYIUT AIPUOPHBIE OIEHKH,
obecIieunBaIoNIIe OJHO3HAYHYI0 pa3pemumoctb 3auadan (1.5)—(1.7). Ilosromy chavasna upu (ukcupoBaHHOM
A € R, ucnonb3ys pe3yiabrarbl paboTsl [6]—[8] mosyunm HeoOXoauMble OUEHKM [l perienus 3amadu (1.5)—
(1.7). B masbHefimem 3TH pe3ysbTaThl HCHOIB3YeM A ucciaedoBanus 3agadu (1.1)-(1.4) B aHM30TPOIHBIX

Wm+2,s

npocrpancrax Cobosesa W, (G), m=0,1,2,...;8 > m + 3 B HEOrPAHUIEHHOM IIAPAJLIICIICIIUIIEIE

Teopema 1.2. TIycTb BBIOJHEHBI CJIeLyONME YCJIOBHs Juist Koadbdunuento ypasaenus (1.5):

2a(z) + pK(z) > 61 >0, p c(x,t) — ci(z,t) > d2 > 0, iz Beex (z,t) € Q, tme  c(x,0) < c(z,T), mia Beex
€ [~1,1]. Torma, ecan s moboit dyukumu f(z,t, ) € Ly(Q) cymecrsyer pemenue sazaau (1.5)(1.7) u3

npoctpanctsa W2(Q), TO OHO eTHHCTBEHHO.

Jokazaresnbcro. JIoKa)KeM eJIMHCTBEHHOCTb perenns 3anadn (1.5)—(1.7) ¢ momompio MeTona HMHTErpaja

sueprun. Ilycts cymectsyer permenue 3ajgaun (1.5)—(1.7) uz W3(Q). PaccMoTpum ToXK1eCTBO:

(S, 201 + )y = (f, 20 + pt),. (1.8)

B cuty yemosuit Teopembr 1.2, st gmo6oit dynxknun u € W3 (Q), unrerpupys 1o wactam Toxkaectso (1.8),

JIEFKO IIOJIYYIUTDH CJIE/IyIoIiee HEpaBE€HCTBO

/%a - (20 + pa)dxdt > / {(2a+ pK(2)) - aj+
Q Q
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+pt2 4 ((pe — ) + pA?) - @Pdedt+ (1.9)

—I—/ {K(x)ﬂfet — 2 Qg le, — U2e; + (c + )\2) . ﬁQet} ds
oQ
rae u— cons > 0, €= (e; = cos(€,t); e, = cos(€,2)) eqUHUIHBIN BEKTOP BHYTpPEHHEH HOpMaJju K rpanune 0Q).
VesoBust TeopeMbl 1.2 0becrieunBa0T HEOTPUIATETLHOCTD HHTErpaJIa, 1Mo obyractu Q.

[ycrs u € W3(Q) ynosiersopsier kpaesbiMm yesiosusim  (1.6),(1.7).Ucnombsyst  yenosust Teopembr 1.2,
HOJIy9UM, 9TO FPAHUYHBIE MHTEIPAJIBI DABHBI HYJII0. Y YUThIBasi BbIIIIECKA3aHHOE, U3 HepaBeHcTBa (1.9) mosayunm
CJIEIIYIONIEe HEPABEHCTBO

/(\‘sﬁ - (24 + pd)dzdt >
Q

> / {(2a + pK(z)) 02 + pa? + ((pe—c) + ﬂ)\2) -ﬂ2} dxdt > (1.10)
Q

> & / {42 + a2 + 4°}dxdt,
Q

rme 0p = min {51,u,52 + A2 > 6y > O,} cienyT n3 Hepaserctsa (1.10). Torma ucnosb3ys B JieBOit gacTu
uepasencTBa (1.10) mepasencrso Koru ¢ o, mojyanM HeOOXOAUMYIO [EPBYIO OLEHKY
2

~ 112 F
< 1.11
1wy @) < @ Hf‘ L2(Q)’ o

U3 KOTODOii ClejlyeT eJMHCTBeHHOCTh pemrenns sagaun (1.5)—(1.7) ms W2(Q), B gambHeiimieMm depes c; —
0003HAYNM TI0JIOXKHUTEIbHBIE, BOOOIIE TOBOPs, PA3HBIE MOCTOSIHHBIE THCJIa, OTJIMIHBIE OT HYJIs.

Teopema 1.2 mokaszana.

2. YpaBHeHUe TPETHETO IMOPSJIKA C MAJILIM ITapaMeTPOM.

Paspemmmmocts 3agaun (1.5)—(1.7) mokazkem MeTonoM "e-peryssipusariu a nMeHHO: B obiacta @ = (—1,1) X

(0, T) paccMOoTpUM CeMEHCTBO YPABHEHUIT TPETHLErO MOPSAIKA ¢ MAJIBIM IIAPAMETPOM

. &3, X 5
Sl = —¢€ 513 + St = f(x,t,A) (2.1)
U C HEePHOJMIECKUMA KPAEBBIMU YCIOBHSIME
Dli.|,_o = Ditc|,_p, ¢=0,1,2, (2.2)

P 5 — P 5
Dzu5|z:71 - Dwué“
9w
0z49

Huzke mcmosb3yeM CHCTEMBI YDaBHEHWH TPEThEro Mmopsijika ¢ MadbiM mapamerpoM (2.1) B kadecrse "e -

p=0,1, (2.3)

z=1’

IJle €— MaJjoe IOJIOZKUTeIbHOoe unciao, Diw = q=1,2; D%w =w.

peryasipusanun” 1yist ypasaeans Yamseirusa (1.5). [7],[8], [14],[15].
OmpesiesiM IPOCTPaHCTBO DYHKIUN

W(Q) = {ie| i € WF(Q), tere € L2(Q)},
Y/IOBJIETBOPSIIOIINE COOTBETCTBYIONMM ycaoBusaM (2.1)—(2.3) ¢ koHeYHON HOpMOIi
L2 2 e 2
laelllw = & l[aeully + el - (B)

Ouesnro, uto npocrpanctso W (Q) ¢ Hopmoit (B) siBisiercst Tuab0epTOBBIM mpocTpancTeoM [12],[13].
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Oupenenenne 2.1. O6obimenubiM pemenueM 3anadn (2.1)—(2.3) Gyuem naspiBarh byskimmio {d.(z,t,\)} €
W(Q), ynosyersopsiontyio ypasuenuto (2.1) nouru Bciogy B obsactu Q.

Teopema 2.1. TlycTb BBIIOIHEHDI CIIeAYIONIME yCa0BHs [t Koaddurmentos ypasuenus (2.1): 2a(x) + pK(z) >
81 >0, pe(x,t) — ci(z,t) > dp > 0 as Beex (z,t) € Q, rae ¢(z,0) = c(x, T) nns seex x € [—1,1]. Torga nus
11060t pynKIMU f (z,t,\) € WH(Q), Takoit, aro f (x,0,\) = f (x,T, \), cymecTByeT eIMHCTBEHHOE 0000IIEHHOE
pemmenne 3azgaun (2.1)—(2.3) u3 npocrpancrea W (Q) u sl Hee CIpaBeIUBBI CJIEYIONIIE ONEHKH

SN2 L e 12 212
I11) & eal} + el < e | £]]

IV) € |[iepe|| + || G| f°
)€ ”uettt”o + ||u€||2 <cl|lf .

JlokazaresbcrBo. TeopeMbl 2.1  OCYIIECTBIISIETCS IOJTAIHO, C HCIOJB30BAHHEM MeToJa lajepknHa u
COOTBETCTBYIOIIIX AIPUOPHBIX ONeHOK [7],[8]. Cravasa jmokaxkem I1])—TpeThio OIEHKY.
PaccmoTpum Tox ecTBo:

/S‘yu (hey + p i) da dt = /f-(mt + piie) da dt. (2.4)
Q Q

Murerpupyst mo 4actsiM ToxecTBo (2.4), yuurbiBasi ycaosusi TeopeMbl 2.1 HerpynHO nosyunts 111)-rpersio
AIPUOPHYIO OIEHKY, aHaJormuHyio orenke (1.11), oTKyza ciieiyeTr eIuHCTBEHHOCTH OGOBIEHHOrO peIeHHUst
samaan (2.1)—(2.3) u3 mpocrpancrea W (Q).

Teneps JrokazkeM crpaBeyiuBocTb IV )—4yerBepToil ONEHKH.

JLJ1s1 9TOr0 PACCMOTPUM TOXKIECTBO:

/ Sedle - Pl dxdt = / f-Pii. dadt, (2.5)
Q Q

roe Pl = (_2ﬂsttt + plieyy — Pllege + ﬂﬂst)-
Wurerpupysa no gactam (2.5), ¢ yderom ycioBuit TeopeMmbl 2.1 u kpaeBbix yeiosuii (2.2),(2.3), moaydum
HEOOXO/IUMYIO OIICHKY:

N 2 L2 A2
€ || tetre ”0 + ”us”z <c||f . (2.6)

3 noKa3saHHBIX OIEHOK MeTOJoM [ajlepKuHa MOyYMM OJHOZHAYHYIO paspemmMocTh 3agaun (2.1)-(2.3) us
npocrpancrea W (Q). Teopema 2.1 noka3saHna.
Tepeiizem K mokazaTeabeTBy paspemmmoctn 3agaan (1.5)-(1.7).

2.1. CymecTBOBaHUE PENTEHUS 33 Ia9H.

Teopema 2.2. Ilycrb BblosHeHbI Bee ycaoBus TeopeMbl 1.1-2.1. Torma o6o6miennoe pemtenne 3anaun (1.5)-(1.7)
cyliecTByeT u oHo equHCcTBeHHO B W3 (Q).

Jokazarenscerso. Eaumcrsennocts pentenns sagaan (1.5)-(1.7) B npocrpanctse Wi (Q) moxkazana B Teopeme
1.2. Temepn mokaxem cymecTsoBanme pemtenns sagaau (1.5)-(1.7) 8 WZ(Q). Ins sToro paccMoTpuMm B
obsactu () ypasuenue (2.1) u xpaesble ycioBug (2.2),(2.3) upu € > 0. Tak Kaxk BbIIOJHEHBI BCE YCJIOBUS
TeopeMbl 2.1, TO CylecTByeT eJMHCTBEHHOe 0600IIeHHOe pemtenre 3agaqan (2.2)-(2.3) B W(Q), npu & >
0 u jyig Hee CIpPaBeIIUBLI TpeThd U derBepras omnenku. OTcoma cjeiyer, MO0 HU3BECTHON Teopeme O
kKoMrakTHocTH [13], uro u3 MHOXKecTBa yHKIWMA { Gc(x,t,A\)} ;& > 0, MOXKHO u3BJeYb CIA00 CXOJAIILYIOCS
HO/IIIOCIIEIOBATENILHOCTD (bYHKIHMH, Takyo, 910 { U, (z,t,\) } — 4 (z,¢,\) upue; — 0 B W(Q). Tokaxkem,
4TO IpeebHas Gyukuus 4(x,t, \) yI0BIeTBOpsIeT YPABHEHUIO U = f (1.5) moutu Beioy B W2(Q). B camom
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eje, TakK KakK IIOAIOCJeI0BaTeabHOCTb { Ue. (z,t, A)} cmabo cxomurca B W a TOIIOCJIeIOBATEIbHOCTD
b €i Y b

{\/Eilic;11t(x,t, \)} paBHOMepHO orpanmyeHa B Lo(Q) u omeparop L auHEHHBIH, TO nMeeM

A B3, B,
Su— f =0 — e, +&; : 6t31

= (U — U, ) + &

(2.7)

U3 pasencrsa (2.7), nepexois K upezeiay upu &; — 0, HOIy4uM eJMHCTBEHHOE 0DOOIIEHHOE PellleHre 3a/1adn
(1.5)-(1.7) u3 mpoctpanctea Cobomesa W2(Q) [7],[8],[14], [19]. Taxum o6pasom, Teopema 2.2 nokazama.

3. CymecrBoBanue perrenns 3agaan (1.1)-(1.4).

Temepnb mepeiieM K T0Ka3aTEILCTBY TeopeMbl 1.1 00 OHO3HAYHON Pa3pemmMoCTi OOOOIIEHHOTO peNTeHus
sagaun (1.1)-(1.4) u3 npocrpancrsa W23 (G).

st nokazaresbcTBa TeopeMbl 1.1 HeobxoauMa CIIeyIomast JIEMMA.

Jlemma 3.1. Ilycrp Bbimosnensl Bce ycioBus Teopembl 1.1,1.2,2.1,2.2. Torgma pemenue 3agaum (1.1)-(1.4)
CIPABEJIUBLI CJIEAYIOIINE ONEHKN:
2 2
1.l < el s
D).

2 2
lullwzs ) < c2 Ifllwrsa) -

Hokazarenbcrso. B Teopeme 1.2 st pernenus 3aa4au (1.5)-(1.7) nokazana cupaseymsocts orenku (1.11), To

€CTb
2

L2(Q)

lllfs ) < e || £]

- 3
Yr068I 0Ka3aTh, 9TO0 U, € Lo(G), HaM HeOOXOIMMO YMHOXKUTE HepaseHcTBo (1.11) Ha (27) 17z (14 AP

¥ MHTEPUPOBATH IO A OT —00 JI0 400, TOTIA [TOJLY IUM

“+o0
2 -1/2 233 A2
Il = @7 [ N’ il ) <
o0 9
-1/2 2\3 || 2 2
< (2m)~Y .cl./(1+|)\|) .HfHLZ(Q)d)\:cl|\f||W20,3(G), (3.1)
—o0

OTKyZla CJIeJyeT BBITIOJTHEHNE IIEPBOI allPUOPHOIT OIEHKH JIEMMBI.
Touno Tak ke UCHOJIB3ys ycaoBus TeopeM 2.1,2.2 ¢ npeebHBIM mePexoIoM mpu € — (), U3 YeTBepTOil OIEHKU

HETPYHO TIOJIyduTh i pemenus 3ana4du (1.5)-(1.7) ciaemyoniyio oneHky.

2

||m|%4/22(Q) < e Hf” (3.2)

wiQ)

_ 3
Y106l JI0KA3aTh, UTO U, € La(G), HaM HEOOXOMMO YMHOXKATH HEPABEHCTBO (3.2) Ha (27) 1z (1+ \)\|2)

U UHTErPUPOBATH IO A OT —0O JI0 400, TOTJIA IOy UM

+oo
_ 3 .
lulfyzsiey = @07 - [ 4N il <
+oo )
_ 3 R
< (2m)" 12 .02./(1+|A|2) HfH A=l (3.3)
W3 (Q)
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OTKyJIa CJIEJIyeT CIIPaBEJINBOCTDh BTOPOIi ONEHKH JieMMBbI. Jlemma 3.1 nokasana.

HoxkazarenbcrBo Teopembl 1.1. U3 nepsoit anpuopuoit onenku (3.1) JjieMMbl ciieyer €IMHCTBEHHOCTD
0606mennoro pertenns 3anaan (1.1)-(1.4), a u3 cupasemyuBocTu BTOpoil anpuopHoit onenku (3.3) ciemyer
cymmecrBoBanue obobennoro pertenus 3agaun (1.1)-(1.4) uz npocrpancTsa W22 3(@). Teopema 1.1 goxazana.

4. D'magxocts obobmmennoro pemenus 3aga4qu (1.1)-(1.4).

Tenepb o6paTHMCs K UCCIEJOBAHUIO MIaKoCT 06061menHoro perenns 3axadn (1.1)-(1.4) B npocrpascTsax
2 3
W (@), tie m, s—ueible KOHEUHbIE TOTOKUTEBHBIC UHCIa, Takne, 910 m > 0, § > 3.
Huzke, 171s1 IPOCTOTHI MIPEJIION0KUM, 94T0 Koaddurments ypasuenus (1.1) nocrarouno quddepennupyembie

dyHKIMKA B 3aMKHYTOR obsiactu Q.

q _ pa
Teopema 4.1. Ilycrb BhIIOMHEHBI Bee ycaosua Teopemsl 1.1, kpome toro, mycts Dicl,_, = D{c|,_;. Torna

s mo6oit dyuxmu f € W I (G), rakoit, aro D] f|,_o = D{ fl,_p (¢ =0,1,2,...,m), cymecrByer, npudem
euHCTBEnHOE, 0600IenHoe pemenye 3axan (1.1)-(1.4) u3 npocrpancrsa W J'5(G), toe m, s—mobbie nesre

KOHEYHBIEe IOJIOKUTEbHBIE YuCcia, Takne, 9to s > m+ 3, m =0,1,2,3, ...

Hoxkazaremscrso. OTmernM, uto B paborax [7],[8] st ypasrernst Tpukomu B caryuae, kKorma A = 0 mccaemosana
[JIAJKOCTH 00ODOIIEHHOrO pelleHus liepuojudeckoil kpaesoit 3agaun (1.6),(1.7) B npocrpancreax CoGosieBa
W3 2(Q) u joKa3aHbI COOTBETCTBYIONHE AIPUOPHBIE ONECHK.

2

m=0,1,2,..). 4.1
W;”“<Q>( ) (4.1)

g

AHasornuHO Takme YKe pe3yJbTATHI MOYKEM IOJydnThb B ciaydae, korma A # 0. Temepb 4To6bI 0Ka3aTh, UTO

12
||u||W2’"+2(Q) < Cm+1

D Yu € Ly(Q), tne s > m+ 3, m = 0,1,2,3, ..., u npuMeHuTh Teopemy Biozkerus CobosieBa, HaM HEOOXOIHMO

MHOKHTH HepaercTso (4.1) ma (2m) 12 - (1 + |\ 2y U, THTETPUPYS O A OT —0O JI0 +00,MOYXKEM TOJIYIUTh
y Y y

+oo
lulfygrneqey = @772 [ (L Y gy d <
+oo )
—1/2 2.8 ¢ 2
< (2m) Y cm+1/(1+\)\|) .HfHW;H(Q)d)\:cmH 1 sy - (4.2)
— 00

Orcrozia oJIyduM CymecTBOBAHKE eJIUHCTBEHHOro 06obennoro penterns 3aga4n (1.1)—(1.4) usz npocrpancrsa
W% (@). Teopema 4.1 nokazaua.

Sameuanne 4.1. AHAJIOrMYHO MIYUAIOTCH MEPHOJNYECKAE KPaeBble 3aJ1a9d JJIs MHOTOMEPHOTO YPaBHEHUS

YHarmablruga.
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On the smoothness of the periodic boundary value problem for the
three-dimensional Chaplygin equation in an unbounded parallelepiped

Dzhamalov Sirojiddin Z., Turakulov Khamidulla Sh. and Sipatdinova Biybinaz R.

Abstract

The article investigates the uniqueness, existence, and smoothness of a generalized solution to the periodic
boundary value problem for the three-dimensional Chaplygin equation in an unbounded parallelepiped. To
prove the theorems on uniqueness, existence, and smoothness of the solution, the Fourier transform, the methods

of e-regularization, and a priori estimates are used.
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