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Аннотация
В данной работе рассматривается динамика квазиневольтерровского кубического стохастическо-
го оператора, определённого на двумерном симплексе. Найдено инвариантное множество данного
оператора и показано, что он имеет единственную негиперболическую неподвижную точку. Кроме
того, построена и использована функция Ляпунова для доказательства того, что множество
предельных точек траектории для любой начальной точки является единственным.
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1. Введение

Пусть E = {1, 2, ...,m}. Под (m− 1)-мерным симплексом понимается множество

Sm−1 =

{
x ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}

Каждый элемент x ∈ Sm−1 является вероятностной мерой на множестве E и, следовательно, может
рассматриваться как состояние биологической (физической и иной) системы, состоящей изm элементов.
Кубическим стохастическим оператором называется отображение V : Sm−1 → Sm−1 вида

V : x′
l =

m∑
i,j,k=1

pijk,lxixjxk, l ∈ E (1.1)

где pijk,l — коэффициенты наследственности, удовлетворяющие условиям

pijk,l ≥ 0, для всех
m∑
l=1

pijk,l = 1, для всех i, j, k ∈ E (1.2)

и не изменяются при перестановках индексов i, j, k (в случае отсутствия половой дифференциации).
Для заданной начальной точки x(0) траектория {x(n)}n≥0 определяется итерацией:

x(n+1) = V (x(n)), n = 0, 1, 2, ...
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Одной из основных задач математической биологии является изучение асимптотического поведения таких
траекторий. Следует отметить, что даже в двумерном случае эта задача в общем виде остаётся открытой.
Авторы работ [7, 8, 14, 15, 16, 18, 19, 20] предложили различные модели популяционной динамики. В

работе [16] данная задача была рассмотрена для класса вольтерровских кубических стохастических операторов
(CSO). Невольтерровский кубический стохастический оператор определяется соотношениями (1.1), (1.2) и
дополнительным предположением

pij,k = 0, l ∈ {i, j, k}, для всех i, j, k ∈ E.

В работе [18] был введён и исследован кубический стохастический оператор (CSO). Кубический стохастический
оператор, являющийся выпуклой комбинацией регулярных и неэргодических операторов, был изучен в
[11]. Случайная динамика вольтерровских кубических стохастических операторов рассматривалась в [5]. В
работе [17] авторами был построен кубический стохастический оператор. Класс невольтерровских кубических
стохастических операторов, называемый классом условных кубических стохастических операторов, был
исследован в [2]. Если для заданных коэффициентов оператора выполняется следующее условие:

piii,i > 0, для всех i ∈ E

то оператор такого вида называется квазивольтерровским кубическим стохастическим оператором.
В настоящей работе рассматриваются квазиневольтерровские кубические стохастические операторы, заданные

на двумерном симплексе.
В разделе 2 приводятся необходимые определения. В разделе 3 проводится анализ квазиневольтерровского

кубического стохастического оператора путём нахождения его инвариантного множества, неподвижных точек
и исследования типов этих неподвижных точек. Показано, что любая траектория, начинающаяся в симплексе,
сходится к неподвижной точке, что, в свою очередь, означает регулярность данного оператора.

2. Предварительные сведения

Точка x ∈ Sm−1 называется неподвижной точкой KCO V, если V (x) = x. Множество всех неподвижных точек
обозначается через Fix{V }.

Определение 2.1. Кубический стохастический оператор V называется регулярным, если для любой начальной
точки x ∈ Sm−1 существует предел

lim
n→∞

V n(x).

Пусть DV (x∗) = (∂Vi/∂xj) (x
∗)— якобиан оператора V в точке x∗.

Определение 2.2. Неподвижная точка x∗ называется гиперболической, если якобиан DV (x∗) не имеет
собственных значений на единичной окружности.

Определение 2.3. Гиперболическая неподвижная точка называется:
i) притягивающей, если все собственные значения лежат внутри единичного круга;
ii) отталкивающей, если все лежат вне замкнутого единичного круга;
iii) седловой — в противном случае.

Определение 2.4. Непрерывная функция φ : Sm−1 → R называется функцией Ляпунова для оператора V, если
существует предел

lim
n→∞

φ(x(n)), ∀x ∈ Sm−1.
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Если φ(x(n)) → c то ω-предельное множество траектории содержится в уровне φ−1(c).

Внутренность симплекса S2 определяется как

intS2 = {x ∈ S2 : x1x2x3 > 0},

а его граница – как ∂S2 = S2\intS2.

3. Основные результаты

Рассматривается следующий квазиневольтерровский кубический стохастический оператор на двумерном
симплексе:

V :


x′ = x3+y3+z3

3 + 3x2y + 3y2z + 2xyz;

y′ = x3+y3+z3

3 + 3xy2 + 3x2z + 2xyz;

z′ = x3+y3+z3

3 + 3z2y + 3z2x+ 2xyz.

(3.1)

Нетрудно видеть, что оператор V является квазиневольтерровским кубическим стохастическим оператором.
Рассмотрим разность

x′ − y′ = 3(x− y)(xy − z(x+ y)) (3.2)

Из этого следует, что множество
M = {x ∈ S2 : x = y}

является инвариантным относительно оператора (3.1).
Сначала найдём неподвижные точки данного оператора. Неподвижные точки оператора V определяются

следующим образом: 
x = x3+y3+z3

3 + 3x2y + 3y2z + 2xyz;

y = x3+y3+z3

3 + 3xy2 + 3x2z + 2xyz;

z = x3+y3+z3

3 + 3z2y + 3z2x+ 2xyz;

(3.3)

что означает решение данной системы уравнений.
Полученное уравнение проанализируем, разбив его на два случая:

x− y = 0, 3xy − 3z(x+ y)− 1 ̸= 0, (3.4a)

x− y ̸= 0, 3xy − 3z(x+ y)− 1 = 0, (3.4b)

Сначала рассмотрим случай (3.4a). Используя условие x = y ервом уравнении оператора (3.1), получаем
следующую функцию:

x′ = f(x) = −1

3
(3x− 1)3 + x, x ∈ [0; 1].

Неподвижная точка функции f(x) равна x∗ = 1
3 , что легко проверить. Нетрудно также убедиться, что |f

′(x∗)| = 1.

Следовательно, точка x∗ является негиперболической неподвижной точкой.

Теорема 3.1. Пусть x∗ —неподвижнаяточка разностного уравнения xn+1 = f(xn) где f ∈ C3(R) и f ′(x∗) = 1.

Тогда справедливы следующие утверждения:
(i) Если f ′′(x∗) ̸= 0 то точка x∗ является неустойчивой;
(ii) Если f ′′(x∗) = 0 и f ′′′(x∗) > 0, то точка x∗ является неустойчивой;
(iii) Если f ′′(x∗) = 0 и f ′′′(x∗) < 0 то точка x∗ является асимптотически устойчивой.

Согласно Теореме 3.1, точка x∗ является асимптотически устойчивой неподвижной точкой.
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Теперь проанализируем уравнение (3.4b):

3xy − 3z(x+ y)− 1 = 0 ⇒ 3xy − 3(1− (x+ y))(x+ y)− 1 = 0

Отсюда получаем
3y2 + 3(3x− 1)y + 3x2 − 3x− 1 = 0

Решая это квадратное уравнение относительно y, получаем два решения:

y1 =
3(1− 3x) +

√
45x2 − 18x+ 21

6
, y2 =

3(1− 3x)−
√
45x2 − 18x+ 21

6
(3.5)

Поскольку y2 < 0 это решение не принадлежит симплексу, а так как x+ y1 > 1 то и первое решение также не
принадлежит симплексу. Следовательно, уравнение (3.4b) не имеет решений в симплексе.
Из случая (3.4a) и условия x = 1

3 получаем, что точка c =
(
1
3 ;

1
3 ;

1
3

)
является единственной неподвижной точкой

оператора.
Для определения типа неподвижной точки перепишем оператор (3.1) в виде двумерного отображения:

f(x, y) =
1

3
(x3 + y3 + (1− x− y)3) + 3x2y + 3y2(1− x− y) + 2xy(1− x− y) (3.6a)

g(x, y) =
1

3
(x3 + y3 + (1− x− y)3) + 3xy2 + 3x2(1− x− y) + 2xy(1− x− y) (3.6b)

Найдём частные производные функций (3.6a) и (3.6b):

∂f(x, y)

∂x
=

1

3
(3x2 − 3(1− x− y)2) + 6xy − 3y2 + 2y(1− x− y)− 2xy,

∂f(x, y)

∂y
=

1

3
(3y2 − 3(1− x− y)2) + 3x2 + 6y(1− x− y)− 3y2 + 2x(1− x− y)− 2xy,

∂g(x, y)

∂x
=

1

3
(3x2 − 3(1− x− y)2) + 3y2 + 6x(1− x− y)− 3x2 + 2y(1− x− y)− 2xy,

∂g(x, y)

∂y
=

1

3
(3y2 − 3(1− x− y)2) + 6xy − 3x2 + 2x(1− x− y)− 2xy.

В неподвижной точке
(
1
3 ;

1
3

)
эти производные принимают следующие значения:

∂f(x; y)

∂x

∣∣∣( 1
3 ;

1
3 )

=
1

3
,
∂f(x; y)

∂y

∣∣∣( 1
3 ;

1
3 )

=
2

3
,
∂g(x; y)

∂x

∣∣∣( 1
3 ;

1
3 )

=
2

3
,
∂g(x; y)

∂x

∣∣∣( 1
3 ;

1
3 )

=
1

3
(3.7)

Характеристическое уравнение имеет вид:

1
3 − λ 2

3
2
3

1
3 − λ

= 0, (3.8)

Из последнего равенства получаем собственные значения: |λ1| = 1
3 , |λ2| = 1 Следовательно, точка c является

негиперболической.

Лемма 3.1. Пусть φ : S2 → R задано формулой φ(x) = 3xy − 3z(x+ y). Тогда выполняется неравенство
|φ(x)| < 3

4 .

Доказательство. По неравенству AM −GM имеем

0 < z(x+ y) ≤
(
3(x+ y + z)

3 · 2

)2

=
1

4
,
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откуда

xy − 1

4
≤ xy − z(x+ y) < xy <

(
x+ y

2

)2

=

(
1− z

2

)2

и, следовательно

3

(
xy − 1

4

)
≤ 3(xy − 3z(x+ y)) <

3

4
.

Лемма доказана.
Рассмотрим непрерывную функцию φ : intS2 → R, определённую как φ(x) = |x− y|. Так как V (∂S2) ⊂ intS2

далее рассматривается только внутренняя часть симплекса.
Из Леммы 3.1 получаем

φ(x′) = |x′ − y′| = |x− y| · |3xy − 3z(x+ y)| = φ(x) · |3xy − 3z(x+ y)| < 3

4
· φ(x). (3.9)

Следовательно, функция φ(x) является функцией Ляпунова.

Лемма 3.2. Для любой начальной точки x(0) ∈ S2, если определить последовательность φ(x(n+1)) =

φ(V n(x(n))), то
lim

n→∞
φ(x(n)) = 0. (3.10)

Доказательство. Из (3.9) следует

φ(x(n+1)) <
3

4
φ(x(n)) < ... <

(
3

4

)n+1

φ(x(0)),

откуда и вытекает предел (3.10).
Из этого следует, что траектория любой точки сходится к медиане симплекса, которая является инвариантной.
Инвариантное множество можно записать в виде

M =
{
x ∈ S2 : x = y

}
=

{
(x;x; 1− 2x) : x ∈

[
0;

1

2

]}
.

Лемма 3.3. Для любой начальной точки x ∈ [0, 1
2 ] выполняется

lim
n→∞

fn(x) =
1

3
. (3.11)

Доказательство. Найдём точки экстремума функции f(x).

f ′(x) = −3(3x− 1)2 + 1 = 0 ⇒ x1 =

√
3− 1

3
√
3

, x2 =

√
3 + 1

3
√
3

.

Поскольку x2 > 1
2 эта точка не принадлежит отрезку

[
0; 1

2

]
. Функция f(x) убывает на отрезке [0;x1] и возрастает

на [x1; 0.5]. Разобьём отрезок [0; 0.5] на три части:

I1 = [0;x1], I2 = [x1;x
∗), I3 = (x∗; 0.5]

где x∗ = 1
3 .

1) Случай x ∈ I2 Легко проверить, что f(x)− x = −1
3 (3x− 1)3 > 0,∀x ∈ I2. Следовательно,

f (n+1)(x) > fn(x), n = 0, 1, 2, ....

то есть последовательность {fn(x)} монотонно возрастает. Так как она ограничена, существует предел, и потому

lim
n→∞

fn(x) =
1

3
, ∀x ∈ I2.
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2) Случай x ∈ I1. Так как f(0) = 1
3 и функция f(x) убывает на данном интервале, имеем

f(x1) < f(x) < f(0) =
1

3
.

Следовательно, для любого x ∈ I1 его образ f(x) попадает в интервал I2 и потому по предыдущему пункту
lim
n→∞

fn(x) = 1
3 .

3) Случай x ∈ I3. На этом интервале функция f(x) убывает и ограничена снизу. Из неравенства

f(x)− x = −1

3
(3x− 1)3 < 0

следует, что
fn+1(x) < fn(x), n = 0, 1, 2, ...

то есть последовательность {fn(x)} монотонно убывает. Поскольку она ограничена, существует предел, и потому

lim
n→∞

fn(x) =
1

3
, ∀x ∈ I3.

Таким образом, для любого x ∈ [0; 1
2 ] выполняется

lim
n→∞

fn(x) =
1

3
.

Лемма доказана.
Принимая во внимание, что доказательство приведённой ниже теоремы непосредственно следует из

вышеуказанных лемм, приводим формулировку теоремы без доказательства.

Теорема 3.2. Для любой начальной точки x(0) ∈ S2\Fix{V } справедливо

lim
n→∞

V n
(
x(0)

)
= c =

(
1

3
;
1

3
;
1

3

)
.

4. Заключение

В настоящей работе исследовано динамическое поведение квазиневольтерровского кубического
стохастического оператора, действующего на двумерном симплексе. Установлено, что данный оператор обладает
единственной негиперболической неподвижной точкой. Посредством построения функции Ляпунова и анализа
глобальных динамических свойств оператора доказано, что траектория, порождённая любой начальной точкой,
сходится к центру симплекса.
В целом полученные результаты вносят вклад в более глубокое понимание стохастических моделей более

высокого порядка в теории динамики популяций, в особенности моделей, отклоняющихся от классической
вольтерровской схемы. В дальнейшем представляется целесообразным исследовать бифуркационные явления,
а также глобальный фазовый портрет подобных операторов с целью получения более полного и всестороннего
представления об их динамических свойствах.
Настоящее исследование выполнено в рамках фундаментального и прикладного научно-исследовательского

проекта№AL-9224093956-R5 «Dynamics andApplications of Cubic StochasticOperators» («Динамика и приложения
кубических стохастических операторов»).
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Non-hyperbolic trajectory of a quasi-non-Volterra cubic stochastic operator

A. Y. Khamrayev, F.A.Yusupov and A.R. Doniyorov

Abstract

In this paper, we consider the dynamics of a quasi-non-Volterra cubic stochastic operator defined on the 2D simplex.
We find the invariant set of this operator and show that it has a unique non-hyperbolic fixed point. Furthermore,
we construct and use the Lyapunov function to prove that the set of limit points of a trajectory for any initial point
is unique.
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