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Abstract
This paper investigates the properties of skew-symmetric matrices with a focus on the case when
the order 𝑚 = 6. After discussing the fundamental characteristics of skew-symmetric matrices,
we derive the structure of their determinants for even values of 𝑚, particularly when 𝑚 = 2 and
4, as preliminary cases to support our main study of the case 𝑚 = 6. Furthermore, we introduce
a tournament representation of such matrices, linking matrix entries to directed graphs based
on their signs. We studied all non-isomorphic tournaments of order 6 and identified six of them
as homogeneous, computed their corresponding matrices and determinants.
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1. Introduction

Pfaffian theory was first named after the German mathematician Johann Friedrich Pfaff (1765–1825), but its
modern form and application in graph theory emerged later. AAccording to the literature, the theory of Pfaffian
orientations was introduced by Pieter W. Kasteleyn (1924–1996) in the early 1960s [1]. Kasteleyn developed
this theory to address enumeration problems in statistical physics, particularly related to the two-dimensional
Ising model and dimer statistics [2].

Kasteleyn established foundational results for planar graphs and extended his approach to toroidal grids
[1,2]. His work enabled the computation of perfect matching in graphs using Pfaffians, providing an efficient
method to calculate determinants of skew-symmetric matrices. Skew-symmetric matrices play an essential
role in various areas of mathematics and physics.

Before presenting the main results, let us start with preliminary information and a review of the literature.
A real value matrix 𝐴 is called skew-symmetric if it satisfies 𝐴 = −𝐴𝑇 , where 𝐴𝑇 denotes the transpose of

𝐴. This implies that 𝑎𝑖𝑖 = 0 and 𝑎𝑖 𝑗 = −𝑎 𝑗𝑖 for all 𝑖 ≠ 𝑗 [4].
Such matrices are inherently square and have a structure that directly influences their determinant and

applications in graph theory.
The goal of this paper is to analyze skew-symmetric matrices for small even values of𝑚, with a primary focus

on 𝑚 = 2𝑛. The cases 𝑚 = 2, 𝑚 = 4 and 𝑚 = 6 are discussed briefly to provide foundational insight leading
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up to our main analysis. We also explore how their structure leads to a natural representation as tournaments
(complete directed graphs).

We consider a general skew-symmetric matrix of order 𝑚:

𝐴 = [𝑎𝑖 𝑗] such that 𝑎𝑖 𝑗 = −𝑎 𝑗𝑖 , 𝑎𝑖𝑖 = 0

From this condition, it follows that all the diagonal elements of the matrix must be zero and the matrix takes
the following form: 

0 𝑎12 𝑎13 . . . 𝑎1𝑚

−𝑎12 0 𝑎23 . . . 𝑎2𝑚

−𝑎13 −𝑎23 0 . . . 𝑎3𝑚
...

...
...

. . .
...

−𝑎1𝑚 −𝑎2𝑚 −𝑎3𝑚 . . . 0


The determinant of a skew-symmetric matrix of odd order is always equal to zero. Now, let 𝑚 be even. In this

case, the determinant of an 𝑚-order skew-symmetric matrix can be expressed as the square of a homogeneous
polynomial of degree 𝑚/2 in its elements. The determinant of a skew-symmetric matrix of even order is
expressed as the square of a polynomial known as the Pfaffian.

A graph 𝐺 = (𝑉, 𝐸) is defined as a finite set 𝑉 of vertices and a set 𝐸 of edges, where each edge is an
unordered pair {𝑢, 𝑣} of distinct vertices 𝑢, 𝑣 ∈ 𝑉 . Edges represent symmetric connections without direction,
and in a simple graph, no loops or multiple edges between the same vertices are permitted [5].

Building on this, a directed graph (or digraph) 𝐷 = (𝑉, 𝐴) introduces directionality, consisting of a finite
vertex set 𝑉 and a set 𝐴 of arcs, where each arc is an ordered pair (𝑢, 𝑣). An arc (𝑢, 𝑣) indicates a directed
connection from 𝑢 to 𝑣. In a simple digraph, there are no loops (𝑣, 𝑣) or multiple arcs in the same direction
between the same vertices [6].

A tournament is a special type of directed graph, specifically a complete directed graph 𝑇 = (𝑉, 𝐴), where
for every pair of distinct vertices {𝑢, 𝑣} ⊂ 𝑉 , there exists exactly one arc, either (𝑢, 𝑣) ∈ 𝐴 or (𝑣, 𝑢) ∈ 𝐴. This
ensures a unique directed relationship between every pair of vertices. For a tournament with 𝑛 vertices, the
number of arcs is

(𝑛
2
)
=

𝑛(𝑛−1)
2 [3].

Let 𝑥1, 𝑥2 be the vertices of a tournament. The notation 𝑥1 → 𝑥2 means that the edge connecting 𝑥1 and 𝑥2

is directed from 𝑥1 to 𝑥2. A finite sequence of vertices 𝑥1 → 𝑥2 → · · · → 𝑥𝑝 is called a path if 𝑥𝑖 ≠ 𝑥 𝑗 for all
𝑖 ≠ 𝑗 . A cycle is a closed path, i.e., 𝑥𝑝 = 𝑥1.

A tournament is called strong if, for any vertices 𝑥, 𝑦 ∈ 𝑌 , there exists a path from 𝑥 to 𝑦.
A tournament that contains no cycles is called transitive.
A tournament is called homogeneous if every sub-tournament is either strong or transitive.
Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑉 is the set of vertices and 𝐸 is the set of edges. A Hamiltonian cycle in

𝐺 is a cycle that:
𝑣1 → 𝑣2 → · · · → 𝑣𝑛 → 𝑣1

where:

• {𝑣1, 𝑣2, . . . , 𝑣𝑛} = 𝑉 , meaning all vertices in the graph are visited exactly once.
• For each 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, the edges (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 .
• The edge (𝑣𝑛, 𝑣1) ∈ 𝐸 , completing the cycle.

Two tournaments are isomorphic if there is a relabelling of the vertices that preserves the directed edges. That
is, if there exists a bijection (one-to-one mapping) 𝑓 : 𝑉1 → 𝑉2 between the vertex sets of two tournaments 𝑇1

and 𝑇2 such that:
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𝑥 → 𝑦 in 𝑇1 ⇐⇒ 𝑓 (𝑥) → 𝑓 (𝑦) in 𝑇2.

If no such mapping exists, the tournaments are non-isomorphic. The number of non-isomorphic tournaments
grows as 𝑚 increases.The following table in Moon [3] shows the number of all non-isomorph tournaments:

𝑚 Non-isomorphic tournaments
2 1
3 2
4 4
5 12
6 56

From the table, it can be seen that when m=6, the number of non-isomorphic tournaments is 56. Out
of these 56 tournaments, we took 6 homogeneous ones; we find the determinants of their corresponding
skew-symmetric matrices using the Pfaffian.

2. Pfaffian

Definition 2.1. [1] For a 2𝑛 × 2𝑛 skew-symmetric matrix 𝐴 (that is, 𝐴𝑇 = −𝐴), the Pfaffian Pf(𝐴) is a
polynomial in the matrix entries such that its square is equal to the determinant: Pf(𝐴)2 = det(𝐴).

For an odd-dimensional skew-symmetric matrix (𝑚 × 𝑚, 𝑚 odd), the Pfaffian is defined as zero because
det(𝐴) = 0.

Explicitly, for a 2𝑛 × 2𝑛 matrix 𝐴 = (𝑎𝑖 𝑗), the Pfaffian is:

Pf(𝐴) = 1
2𝑛𝑛!

∑︁
𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛∏
𝑖=1

𝑎𝜎 (2𝑖−1) ,𝜎 (2𝑖) ,

where 𝑆2𝑛 is the symmetric group, and sgn(𝜎) is the signature of permutation 𝜎. Alternatively, it can be
expressed on partitions of {1, . . . , 2𝑛} into pairs. For a matrix 0 × 0, Pf(𝐴) = 1 is the convention.

The expansion of Pf(𝐴)2 results in 56 monomials involving six variables each. Listing all these terms
explicitly is feasible but lengthy; here we provide symbolic representation:

det(𝐴) =
56∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖1𝑖2𝑎𝑖3𝑖4𝑎𝑖5𝑖6𝑎 𝑗1 𝑗2𝑎 𝑗3 𝑗4𝑎 𝑗5 𝑗6 .

Examples:

For a 2 × 2 skew-symmetric matrix 𝐴 =

[
0 𝑎12

−𝑎12 0

]
, Pf(𝐴) = 𝑎12.

For a 4 × 4 skew-symmetric matrix 𝐴 =


0 𝑎12 𝑎13 𝑎14

−𝑎12 0 𝑎23 𝑎24

−𝑎13 −𝑎23 0 𝑎34

−𝑎14 −𝑎24 −𝑎34 0

 , Pf(𝐴) = 𝑎12𝑎34 − 𝑎13𝑎24 + 𝑎14𝑎23.
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The determinant of a 6 × 6 skew-symmetric matrix consists of the square of the following Pfaffian expression:

𝐴 =



0 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16

−𝑎12 0 𝑎23 𝑎24 𝑎25 𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 𝑎36

−𝑎14 −𝑎24 −𝑎34 0 𝑎45 𝑎46

−𝑎15 −𝑎25 −𝑎35 −𝑎45 0 𝑎56

−𝑎16 −𝑎26 −𝑎36 −𝑎46 −𝑎56 0


,

Pf(𝐴) = 𝑎12𝑎34𝑎56 − 𝑎12𝑎35𝑎46 + 𝑎12𝑎36𝑎45 + 𝑎13𝑎24𝑎56

− 𝑎13𝑎25𝑎46 + 𝑎13𝑎26𝑎45 + 𝑎14𝑎23𝑎56 − 𝑎14𝑎25𝑎36

+ 𝑎14𝑎26𝑎35 + 𝑎15𝑎23𝑎46 − 𝑎15𝑎24𝑎36 + 𝑎15𝑎26𝑎34

+ 𝑎16𝑎23𝑎45 − 𝑎16𝑎24𝑎35 + 𝑎16𝑎25𝑎34.

Hence, the determinant of the skew-symmetric matrix is equal to the square of the Pfaffian:

det(𝐴) = Pf(𝐴)2.

3. Main results

3.1. Python script for tournament graph generation and visualization

This Python script automates the creation and visualization of tournament graphs, which are complete
directed graphs used in combinatorics and game theory. The script allows users to input a skew-symmetric
adjacency matrix (where 𝑎𝑖 𝑗 = −𝑎 𝑗𝑖), ensuring the graph represents a valid tournament. Using networkx and
matplotlib, the program generates an interactive visualization of the graph, displaying nodes in a circular
layout with directed edges. Additionally, the script produces LaTeX Tikz code, enabling seamless integration
into academic papers or presentations. By converting the adjacency matrix into a structured TikZ diagram,
researchers can efficiently document and analyze tournament structures without manual drawing. This tool
is particularly useful for mathematicians and computer scientists studying graph theory, game tournaments,
or discrete dynamical systems, as it bridges computational analysis with formal typesetting. The generated
LaTeX output can be directly compiled to produce publication-ready figures, streamlining the workflow for
theoretical research.

Key Features:
User-Friendly Input: The script prompts for the upper triangular part of the adjacency matrix, automatically

enforcing skew-symmetry.
Visualization: Use networkx to render the graph, aiding in immediate visual verification.
LaTeX Integration: Output TikZ code for high-quality vector graphics in academic documents.
Reproducibility: Saves the LaTeX code to a file, ensuring that the results are reproducible and editable.
This approach exemplifies how scripting can enhance mathematical research by combining computational

tools with traditional publishing formats. Future extensions could include automated analysis of graph
properties (e.g., Hamiltonian cycles) or support for weighted edges.

The program consists of the following steps:
1. Construction of a Skew-Symmetric Matrix.
The skew-symmetric matrix satisfies the following condition:

𝐴𝑇 = −𝐴
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This means that if 𝑎𝑖 𝑗 = 1, then 𝑎 𝑗𝑖 = −1. The user only inputs the upper triangular values, and the rest are
automatically filled:

def get_adjacency_matrix(n):
A = np.zeros((n, n), dtype=int)
for i in range(n):

row = list(map(int, input(f"Row {i+1} (only {n-i-1} values): ").split()))
for j in range(i + 1, n):

A[i, j] = row[j - (i + 1)]
A[j, i] = -A[i, j]

return A

2. Drawing the Tournament Graph.
The following code uses networkx and matplotlib to visualize the tournament graph:

def draw_tournament_graph(A):
G = nx.DiGraph()
for i in range(len(A)):

for j in range(len(A)):
if A[i, j] == 1:

G.add_edge(i, j)
pos = nx.circular_layout(G)
nx.draw(G, pos, with_labels=True, node_color=’lightblue’, edge_color=’gray’,
arrows=True)
plt.show()

3.LaTeX TikZ Code Generation.
To use the tournament graph in academic papers we need to draw it in format, because of this we generate

TikZ code of it:

def adjacency_to_latex(A):
latex_code = "\\begin{center}\\textbf{T1}\n"
latex_code += "\\begin{tikzpicture}[->,>=stealth’,shorten >=1pt,auto,
node distance=1cm,\n"
latex_code += "thick,main node/.style={circle,draw,minimum size=0.5cm,
font=\\sffamily\\scriptsize}]\n\n"
angles = np.linspace(0, 360, len(A), endpoint=False)
for i in range(len(A)):

latex_code += f"\\node[main node] ({i}) at ({angles[i]}:1.5cm)
{{{i+1}}};\n"

for i in range(len(A)):
for j in range(len(A)):

if A[i, j] == 1:
latex_code += f"\\path ({i}) edge ({j});\n"

latex_code += "\\end{tikzpicture}\\end{center}"
return latex_code

4.Main function.
The main function integrates all components. It receives input data and outputs the final result.
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def main():
n = int(input("Enter the number of nodes: "))
A = get_adjacency_matrix(n)
print("Adjacency Matrix:")
print(A)
draw_tournament_graph(A)
latex_code = adjacency_to_latex(A)
print("\nLaTeX Code:")
print(latex_code)
with open("tournament_graph.tex", "w") as f:

f.write(latex_code)
print("\nLaTeX code saved to tournament_graph.tex")

After program run:

• User inputs number of nodes;
• Skew-symmetric matrix is generated;
• Graph corresponding the matrix is drawn;
• LaTeX TikZ code is generated and saved into file.

Example execution: If 𝑛 = 5 and with input:

Row 1 (only 4 values): 1 1 -1 1
Row 2 (only 3 values): -1 -1 1
Row 3 (only 2 values): 1 1
Row 4 (only 1 values): -1
Row 5 (only 0 values):

The resulting matrix:

𝐴 =


0 1 1 −1 1
−1 0 −1 −1 1
−1 1 0 1 1
1 1 −1 0 −1
−1 −1 −1 1 0


The graph of this skew-symmetric matrix is shown in Figure 1.

Figure 1. Tournament graph generated from the skew-symmetric matrix using Python.

The program produces a ready-to-use TikZ code:
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LaTeX Code:
\begin{center}\textbf{T}
\begin{tikzpicture}[->,>=stealth’,shorten >=1pt,auto,node distance=1cm,
thick,main node/.style={circle,draw,minimum size=0.5cm, font=\sffamily\scriptsize}]

\node[main node] (0) at (0.0:1.5cm) {1};
\node[main node] (1) at (72.0:1.5cm) {2};
\node[main node] (2) at (144.0:1.5cm) {3};
\node[main node] (3) at (216.0:1.5cm) {4};
\node[main node] (4) at (288.0:1.5cm) {5};
\path (0) edge (1);
\path (0) edge (2);
\path (0) edge (4);
\path (1) edge (4);
\path (2) edge (1);
\path (2) edge (3);
\path (2) edge (4);
\path (3) edge (0);
\path (3) edge (1);
\path (4) edge (3);
\end{tikzpicture}\end{center}

This Python program enables the export of a tournament graph for use in LaTeX. The generated program
allows the user to create visually appealing diagrams in a LaTeX environment (e.g., Overleaf or other LaTeX
compilers).

3.2. Homogeneous Tournaments

In J. Moon’s monograph [3], fifty-six non-isomorphic tournament graphs with six vertices are presented, each
possessing distinct properties. In this article, we have used these tournament graphs to identify and separate
homogeneous tournaments among them. The following drawing drawings are used to illustrate tournaments.
Not all of the arcs have been included in the drawings; if an arc joining two nodes has not been drawn, then it
should be understood that the arc is oriented from the higher node to the lower node.

𝑇1 𝑇10 𝑇18
𝑇21

𝑇47 𝑇55

To study the dynamics of homogeneous tournaments, we visualized the graphs in a convenient form using
Python software. Additionally, we calculated the determinants of the corresponding skew-symmetric matrices
for these homogeneous tournaments using the Pfaffian method.
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𝑇1 =



0 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16

−𝑎12 0 𝑎23 𝑎24 𝑎25 𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 𝑎36

−𝑎14 −𝑎24 −𝑎34 0 𝑎45 𝑎46

−𝑎15 −𝑎25 −𝑎35 −𝑎45 0 𝑎56

−𝑎16 −𝑎26 −𝑎36 −𝑎46 −𝑎56 0


,

T1

1

23

4

5 6

𝑑𝑒𝑡 (𝑇1) = (𝑎16𝑎25𝑎34 − 𝑎15𝑎26𝑎34 + 𝑎12𝑎56𝑎34 − 𝑎16𝑎24𝑎35 + 𝑎14𝑎26𝑎35 + 𝑎15𝑎24𝑎36 − 𝑎14𝑎25𝑎36 +
𝑎16𝑎23𝑎45 − 𝑎13𝑎26𝑎45 + 𝑎12𝑎36𝑎45 − 𝑎15𝑎23𝑎46 + 𝑎13𝑎25𝑎46 − 𝑎12𝑎35𝑎46 + 𝑎14𝑎23𝑎56 − 𝑎13𝑎24𝑎56)2.

𝑇10 =



0 𝑎12 𝑎13 𝑎14 𝑎15 −𝑎16

−𝑎12 0 𝑎23 𝑎24 𝑎25 𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 𝑎36

−𝑎14 −𝑎24 −𝑎34 0 𝑎45 𝑎46

−𝑎15 −𝑎25 −𝑎35 −𝑎45 0 𝑎56

𝑎16 −𝑎26 −𝑎36 −𝑎46 −𝑎56 0


,

T10

1

23

4

5 6

𝑑𝑒𝑡 (𝑇10) = (−𝑎14𝑎26𝑎35 + 𝑎12𝑎46𝑎35 + 𝑎14𝑎25𝑎36 + 𝑎13𝑎26𝑎45 − 𝑎12𝑎36𝑎45 + 𝑎16(𝑎25𝑎34 − 𝑎24𝑎35 +
𝑎23𝑎45) − 𝑎13𝑎25𝑎46 + 𝑎15(𝑎26𝑎34 − 𝑎24𝑎36 + 𝑎23𝑎46) − 𝑎14𝑎23𝑎56 + 𝑎13𝑎24𝑎56 − 𝑎12𝑎34𝑎56)2.

𝑇18 =



0 𝑎12 𝑎13 𝑎14 −𝑎15 −𝑎16

−𝑎12 0 𝑎23 𝑎24 𝑎25 𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 𝑎36

−𝑎14 −𝑎24 −𝑎34 0 𝑎45 𝑎46

𝑎15 −𝑎25 −𝑎35 −𝑎45 0 𝑎56

𝑎16 −𝑎26 −𝑎36 −𝑎46 −𝑎56 0


,

T18

1

23

4

5 6

𝑑𝑒𝑡 (𝑇18) = (−𝑎16𝑎25𝑎34 + 𝑎15𝑎26𝑎34 + 𝑎12𝑎56𝑎34 + 𝑎16𝑎24𝑎35 + 𝑎14𝑎26𝑎35 − 𝑎15𝑎24𝑎36 − 𝑎14𝑎25𝑎36 −
𝑎16𝑎23𝑎45 − 𝑎13𝑎26𝑎45 + 𝑎12𝑎36𝑎45 + 𝑎15𝑎23𝑎46 + 𝑎13𝑎25𝑎46 − 𝑎12𝑎35𝑎46 + 𝑎14𝑎23𝑎56 − 𝑎13𝑎24𝑎56)2.

𝑇21 =



0 −𝑎12 𝑎13 −𝑎14 −𝑎15 −𝑎16

𝑎12 0 𝑎23 −𝑎24 −𝑎25 −𝑎26

−𝑎13 −𝑎23 0 −𝑎34 𝑎35 𝑎36

𝑎14 𝑎24 𝑎34 0 −𝑎45 −𝑎46

𝑎15 𝑎25 −𝑎35 𝑎45 0 −𝑎56

𝑎16 𝑎26 −𝑎36 𝑎46 𝑎56 0


,

T21

1

23

4

5 6

𝑑𝑒𝑡 (𝑇21) = (−𝑎16𝑎25𝑎34 + 𝑎15𝑎26𝑎34 − 𝑎12𝑎56𝑎34 − 𝑎16𝑎24𝑎35 + 𝑎14𝑎26𝑎35 + 𝑎15𝑎24𝑎36 + 𝑎14𝑎25𝑎36 +
𝑎16𝑎23𝑎45 − 𝑎13𝑎26𝑎45 + 𝑎12𝑎36𝑎45 − 𝑎15𝑎23𝑎46 + 𝑎13𝑎25𝑎46 + 𝑎12𝑎35𝑎46 + 𝑎14𝑎23𝑎56 − 𝑎13𝑎24𝑎56)2.
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𝑇47 =



0 −𝑎12 𝑎13 −𝑎14 𝑎15 −𝑎16

𝑎12 0 𝑎23 −𝑎24 −𝑎25 −𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 −𝑎36

𝑎14 𝑎24 −𝑎34 0 −𝑎45 𝑎46

−𝑎15 𝑎25 −𝑎35 𝑎45 0 𝑎56

𝑎16 𝑎26 𝑎36 −𝑎46 −𝑎56 0


,

T47

1

23

4

5 6

𝑑𝑒𝑡 (𝑇47) = (𝑎14𝑎26𝑎35 + 𝑎12𝑎46𝑎35 − 𝑎14𝑎25𝑎36 + 𝑎13𝑎26𝑎45 + 𝑎12𝑎36𝑎45 − 𝑎16𝑎25𝑎34 − 𝑎16𝑎24𝑎35 −
𝑎16𝑎23𝑎45 + 𝑎13𝑎25𝑎46 − 𝑎15𝑎26𝑎34 − 𝑎15𝑎24𝑎36 + 𝑎15𝑎23𝑎46 + 𝑎14𝑎23𝑎56 − 𝑎13𝑎24𝑎56 + 𝑎12𝑎34𝑎56)2.

𝑇55 =



0 𝑎12 𝑎13 𝑎14 −𝑎15 −𝑎16

−𝑎12 0 𝑎23 𝑎24 −𝑎25 −𝑎26

−𝑎13 −𝑎23 0 𝑎34 𝑎35 𝑎36

−𝑎14 −𝑎24 −𝑎34 0 𝑎45 𝑎46

𝑎15 𝑎25 −𝑎35 −𝑎45 0 𝑎56

𝑎16 𝑎26 −𝑎36 −𝑎46 −𝑎56 0


,

T55

1

23

4

5 6

𝑑𝑒𝑡 (𝑇55) = (𝑎16𝑎25𝑎34 − 𝑎15𝑎26𝑎34 + 𝑎12𝑎56𝑎34 + 𝑎16𝑎24𝑎35 − 𝑎14𝑎26𝑎35 − 𝑎15𝑎24𝑎36 + 𝑎14𝑎25𝑎36 −
𝑎16𝑎23𝑎45 + 𝑎13𝑎26𝑎45 + 𝑎12𝑎36𝑎45 + 𝑎15𝑎23𝑎46 − 𝑎13𝑎25𝑎46 − 𝑎12𝑎35𝑎46 + 𝑎14𝑎23𝑎56 − 𝑎13𝑎24𝑎56)2.

4. Conclusion

In this paper, we conducted a comprehensive analysis of the determinants of skew-symmetric matrices
associated with homogeneous tournaments, utilizing the Pfaffian method for computation. Using Python
scripting with libraries such as NetworkX and Matplotlib, we successfully visualized homogeneous tournament
graphs with the help of the NetworkX library and enabled their visualization using the Matplotlib library. The
automated generation of LaTeX TikZ code further facilitated the production of publication-ready diagrams,
enhancing the efficiency of documenting complex tournament structures. In our future work, we will continue
to expand these methods utilizing the results obtained above to model the dynamics of strongly homogeneous
tournaments. Using computational tools such as Python scripts, we plan to implement matrix input through
a graphical user interface (GUI), identify tournament properties (e.g., Hamiltonian cycles), and automatically
generate random tournament graphs.
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