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Структуросохраняющая схема для двухфазной
конвективно–реакционно–диффузионной системы

А. Элмуродов и А. Сотволдиев

Аннотация
В данной работе предложена новая явная численная схема, сохраняющая структуру, для двух-
фазной конвективно–реакционно–диффузионной системы с динамически эволюционирующей
межфазной границей. Для решения и свободной границы получены априорные оценки в нормах
Гёльдера, что позволяет доказать существование и единственность классического решения, а
также исследовать его качественные свойства. Проведён сравнительный анализ трёх численных
подходов: неявной противоточной схемы, схемы Кранка–Николсона и предложенной явной
схемы. Численные эксперименты подтверждают робастность и устойчивость нового метода,
в том числе в режимах с преобладающей адвекцией и сильно нелинейными реакционными
членами. Предложенная схема обеспечивает физически корректные результаты и может
быть эффективно использована для моделирования процессов, управляемых движущимися
интерфейсами, возникающих, в частности, при остеоинтеграции вокруг зубных имплантатов,
биологической инвазии и фазовых переходах с резкой границей.
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1. Введение

Уравнения конвекции–реакции–диффузии занимают ключевое место в математическом моделировании
широкого круга сложных процессов в физике, химии, биологии и инженерных науках. В последние годы они
активно используются для описания пространственного распределения видов в экологии [1], [2], [3], [4],[5],
динамики концентраций в химических реакциях [6], [7], [8], распространения сигналов в биологических тканях
[9], а также, сравнительно недавно, для моделирования эволюции тканей вокруг биомедицинских имплантатов
[10], [11]. Подобные модели применяются и при исследовании ряда других родственных процессов. В общем
одномерном случае уравнение конвекции–реакции–диффузии с нелинейным реакционным членом может быть
записано в виде

∂tw = ∇ ·
(
D∇w

)
− c · ∇w + f(w),

гдеw обозначает концентрацию вещества или плотность популяции, c—скорость адвекции (массового переноса),
D— тензор диффузии, а f(w)— нелинейный реакционный член, описывающий локальную кинетику процесса.
В настоящей работе рассматривается двухфазная система конвекции–реакции–диффузии, в которой два

различных компонента занимают дополняющие друг друга пространственные области, разделённые подвижной
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межфазной границей s(t). Полная математическая модель имеет вид

ut − uxx − c1ux = u(a1 − b1u), (x, t) ∈ D1, (1.1)

vt − vxx − c2vx = v(a2 − b2v), (x, t) ∈ D2, (1.2)

u(x, 0) = u0(x), −ℓ ≤ x ≤ s(0) = 0, v(x, 0) = v0(x), s(0) = 0 ≤ x ≤ ℓ, (1.3)

u(−ℓ, t) = φ1(t), u(s(t), t) = v(s(t), t) = 0, v(ℓ, t) = φ2(t), 0 ≤ t ≤ T, (1.4)

ṡ(t) = −αux(s(t), t) + βvx(s(t), t), s(0) = 0, 0 ≤ t ≤ T. (1.5)

Здесь области определения заданы как D1 = {(x, t) : 0 < t ≤ T, −ℓ < x < s(t)} и D2 = {(x, t) : 0 < t ≤
T, s(t) < x < ℓ}. Параметры системы удовлетворяют условиям ai, bi, α, β > 0, ci ∈ R. Граничные функции φ1

и φ2 принадлежат классу C1+γ/2([0, T ]) и являются строго положительными, а начальные профили u0 и v0

предполагаются гладкими и согласованными с граничными условиями:u0(0) = 0, u0 ∈ C2+γ([−ℓ, 0]),

u0(x) > 0, x ∈ [−ℓ, 0), u0(−ℓ) = φ1(0),

v0(0) = 0, v0 ∈ C2+γ([0, ℓ]),

v0(x) > 0, x ∈ (0, ℓ], v0(ℓ) = φ2(0).

Функции u(x, t) и v(x, t) интерпретируются как концентрации двух веществ либо плотности двух
взаимодействующих популяций, например инвазивного и аборигенного видов. Параметры c1 и c2 задают скорости
адвекции, a1, a2 — коэффициенты роста, b1, b2 — интенсивности внутривидовой конкуренции, а α и β являются
коэффициентами пропорциональности в условиях Стефана. Начальныефункции u0(x) и v0(x) являются гладкими
и положительными, что согласуется с физической постановкой задачи.

На практике многие физические и биологические системы не развиваются в рамках единой однородной фазы.
Напротив, они формируются в различных областях, разделённых интерфейсом, положение которого изменяется
со временем. Характерным примером служит процесс остеоинтеграции вокруг зубных имплантатов, широко
обсуждаемый как в клинических, так и в модельных исследованиях. В этом случае титановый имплантат выступает
в роли пассивной, не реагирующей фазы, тогда как прилегающая костная ткань остаётся метаболически активной
и динамически адаптивной. Взаимодействие между этими средами локализовано вблизи подвижной границы,
скорость которой определяется биофизическими механизмами обратной связи [10].

Подобная двухфазная структура не является исключением. Она возникает и в моделях роста опухолей, где
злокачественная ткань вытесняет здоровую [12], а также в классических задачах фазовых переходов, например
при замерзании воды, когда фронт фазового перехода распространяется вдоль резкой подвижной границы [13].

С математической точки зрения такие процессы относятся к классу задач со свободной границей, в частности
к моделям стефановского типа, в которых скорость движения интерфейса не задаётся априори, а определяется
потоками соответствующих переменных состояния. Эта связь отражает физическую или биологическую природу
движения границы и является принципиально важной для корректного описания динамики системы.

Численное моделирование двухфазных систем конвекции–реакции–диффузии представляет собой
нетривиальную задачу. Во-первых, положение свободной границы должно пересчитываться на каждом временном
шаге, что исключает использованиефиксированнойпространственной сетки. Во-вторых, нелинейные реакционные
члены, например логистический членw(a− bw), в рамках стандартных численных схем могут приводить к потере
неотрицательности решения, возникновению не физических осцилляций и даже к численной неустойчивости
[14]. Наконец, несмотря на то что каждая фаза описывается собственным уравнением в частных производных,
они связаны между собой нелинейными условиями на интерфейсе, что требует согласованного и глобально
корректного численного подхода.

В связи с этим в последние годы значительное внимание уделяется структуросохраняющим, а в частности,
сохраняющим неотрицательность численным методам [15], [16], [17], [18], [19]. Цель таких подходов заключается
не только в аппроксимации точного решения, но и в строгом соблюдении фундаментальных физических
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ограничений, включая неотрицательность концентраций, естественные верхние оценки плотностей популяций
и корректную асимптотику при выходе системы на стационарные режимы.
Получение точных аналитических решений для систем подобного типа, как правило, невозможно, поскольку

уже наличие подвижной границы существенно усложняет задачу. Вместе с тем корректное описание движения
интерфейса является принципиально важным, поскольку без него любая модель быстро теряет физическую
достоверность.

Исходя из этого, в настоящей работе используется стратегия отслеживания фронта, в рамках которой
рассматриваются три численных подхода: неявная противоточная схема, схема Кранка–Николсона и новая
явная схема, предлагаемая в статье. Последняя специально сконструирована для сохранения неотрицательности
решения и структурных свойств исходной модели. Основная цель работы состоит не только в повышении
вычислительной эффективности, но и в разработке численных схем, которые остаются физически корректными,
устойчивыми и согласованными с фундаментальными свойствами непрерывной задачи.

2. Априорные оценки

В этом разделе устанавливаются априорные оценки в гёлдеровх нормах, необходимые для доказательства
глобальной разрешимости рассматриваемой задачи. Ключевую роль в дальнейшем анализе играет принцип
максимума для параболических уравнений (см., например, [19]).

Одной из основных трудностей при построении нелокальной теории нелинейных задач является получение
подходящих оценок для первых производных решения по пространственной переменной. Для преодоления этой
сложности в литературе предложен ряд различных подходов.

В настоящей работе мы используем методику, изложенную в [6], [5], [20], для получения необходимых apriori
оценок и следуем обозначениям и соглашениям, принятым в [21], [22].

Лемма 2.1. Пусть тройка (s(t), u(x, t), v(x, t)) является классическим решением системы (1.1)–(1.5).

Определим положительные константы N1 и N2 по формулам N1 = max

{
sup

−ℓ≤x≤0

(
u0(x)
−x

)
,

a2
1

b1c1

}
, N2 =

max

{
sup

0≤x≤ℓ

(
v0(x)

x

)
,

a2
2

b2c2

}
. Если начальные условия удовлетворяют ограничениям 0 ≤ u0(x) ≤ a1

b1
, 0 ≤

v0(x) ≤ a2

b2
, то существуют положительные константыM1 = a1

b1
,M2 = a2

b2
иM3 = αN1 + βN2, не зависящие

от T , такие что справедливы оценки

0 < u(x, t) ≤ M1 при (x, t) ∈ D1, 0 < v(x, t) ≤ M2 при (x, t) ∈ D2, 0 < ṡ(t) ≤ M3, 0 ≤ t ≤ T.

Доказательство. Начнём с применения параболического принципа максимума к уравнениям (1.1)–(1.2).
Реакционные члены f1(u) = u(a1 − b1u) и f2(v) = v(a2 − b2v) удовлетворяют условиям fi(0) = 0, причём каждая
функция fi липшицева.Посколькуu0(x), v0(x) ≥ 0, а также выполнены граничныеусловияu(s(t), t) = v(s(t), t) =

0, u(−ℓ, t) = φ1(t) ≥ 0, v(ℓ, t) = φ2(t) ≥ 0, из принципа максимума (см., например, [19, Theorem 2]) следует, что

u(x, t) ≥ 0 в D1, v(x, t) ≥ 0 в D2.

Если дополнительно u0(0) = v0(0) = 0 и u0, v0 ̸≡ 0, то по сильному принципу максимума получаем

u(x, t) > 0 в D1, v(x, t) > 0 в D2, t > 0.

Для получения верхних оценок введём вспомогательную функцию ω(x, t) =

u(x, t), (x, t) ∈ D1,

v(x, t), (x, t) ∈ D2,
для

которой реакционный член имеет вид f(x, t, ω) = ω(ai − biω) (i = 1, 2). Поскольку ω = 0 и ω =
ai
bi

являются
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соответственно под- и надрешением, то из принципа максимума следует

0 < u(x, t) ≤ a1
b1

= M1, (x, t) ∈ D1, 0 < v(x, t) ≤ a2
b2

= M2, (x, t) ∈ D2.

Далее, для оценки градиентов вблизи свободной границы рассмотрим функцию

U(x, t) = N1

(
s(t)− x

)
− u(x, t),

где N1 > 0 – константа, подлежащая выбору. Тогда U удовлетворяет

Ut − Uxx − c1Ux ≥ c1N1 −
a21
b1

≥ 0,

U(x, 0) = N1(−x)− u0(x) ≥ 0,

U(−ℓ, t) = N1(s(t) + ℓ)− φ1(t) ≥ 0,

U(s(t), t) = 0.

Следовательно, по принципумаксимумаU(x, t) ≥ 0 вD1, откудаu(x, t) ≤ N1

(
s(t)− x

)
,−ℓ ≤ x ≤ s(t). Переходя

к левой производной при x = s(t), получаем −N1 ≤ ux(s(t), t) < 0.
Аналогичные рассуждения для второй фазы дают 0 < vx(s(t), t) ≤ N2.
Наконец, из условия на свободной границе (1.5) следует

0 < ṡ(t) ≤ αN1 + βN2 = M3,

что завершает доказательство.

Для получения верхних оценок для ux, vx и гёльдеровских норм |u|(2+γ)
Q и |v|(2+γ)

Q предварительно сведём
подвижные области к фиксированной. Следуя [6], [19], введём замену переменных

для D1 : τ = t, y =
x+ ℓ

ℓ+ s(t)
, для D2 : τ = t, y =

x− ℓ

ℓ− s(t)
.

Для левой фазы отображение τ = t, y =
x+ ℓ

ℓ+ s(t)
переводит движущуюся область (−ℓ, s(t)) в фиксированный

интервал (0, 1). В результате обе области переходят в фиксированный цилиндр Q = {(y, τ) : 0 < y < 1, 0 < τ <

T}.
Полагая U(y, τ) = u(x, t), из формулы цепочки получаем

ut = Uτ − y s′(t)

ℓ+ s(t)
Uy, ux =

1

ℓ+ s(t)
Uy, uxx =

1

(ℓ+ s(t))2
Uyy.

Определим новые неизвестные U(y, τ) = u(x, t) и V (y, τ) = v(x, t). Подставляя эти выражения в уравнения
(1.1), (1.2) и приводя подобные, получаем квазилинейные параболические задачи вида

Uτ = A1(τ)Uyy + F1(U,Uy), (y, τ) ∈ Q,

U(y, 0) = U0(y), 0 ≤ y ≤ 1,

U(1, τ) = 0, U(0, τ) = φ1(τ),

(2.1)


Vτ = A2(τ)Vyy + F2(V, Vy), (y, τ) ∈ Q,

V (y, 0) = V0(y), 0 ≤ y ≤ 1,

V (0, τ) = 0, V (1, τ) = φ2(τ).

(2.2)
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Здесь преобразованные начальные данные имеют вид U0(y) = u0(y(ℓ+ s(t))− ℓ), V0(y) =

v0(y(ℓ− s(t)) + ℓ), а коэффициенты задаются формулами A1(τ) =
4

(ℓ+s(τ))2 , A2(τ) =
4

(ℓ−s(τ))2 , F1(U,Uy) =[
2c1(ℓ+s(τ))−2 ˙s(τ)(x+ℓ)

(ℓ+s(τ))2

]
Uy + U(a1 − b1U), F2(V, Vy) =

[
−2c2(ℓ−s(τ))−2 ˙s(τ)(x−ℓ)

(ℓ−s)2

]
Vy + V (a2 − b2V ).

По лемме 2.1 имеем 0 < u ≤ M1, 0 < v ≤ M2, 0 < ṡ(t) ≤ M3. Кроме того, так как s(t) ∈ [0, smax) при smax < ℓ,
величины ℓ± s(t) строго положительны. Следовательно, коэффициентыAi иFi равномерно ограничены в области
Q. Для любого δ ∈ (0, 1) обозначим внутреннюю подобласть Qδ = {(y, τ) : δ ≤ y ≤ 1− δ, δ ≤ τ ≤ T}.

Теорема 2.1. Пусть U(y, τ) является классическим решением задачи (2.1). Тогда существует константа
M4 = M4(M1, δ) > 0, не зависящая от T , такая что

|Uy(y, τ)| ≤ M4, (y, τ) ∈ Qδ.

Если, кроме того, U |∂pQ = 0 на параболической границе ∂pQ = {τ = 0} ∪ {y = 0} ∪ {y = 1}, то оценка
справедлива во всей области Q:

|Uy(y, τ)| ≤ M4(M1, A10), (y, τ) ∈ Q,

где A10 = min
Q

{A1} > 0.

Доказательство. Поскольку функция U(y, τ) ограничена константойM1, а коэффициенты A1 и F1 равномерно
ограничены в области Q, из внутренней оценки градиента для квазилинейных параболических уравнений (см.,
например, [22, Theorem 2.1]) следует

|Uy(y, τ)| ≤ M4, (y, τ) ∈ Qδ.

Чтобы распространить оценку на границу, введём функциюW (y, τ) = U(y, τ)− U0(y). ТогдаW удовлетворяетWτ = A1Wyy +G1(W,Wy),

W (y, 0) = 0, W (0, τ) = 0, W (1, τ) = 0,

где G1 = F1(U,Uy)−A1(U0)yy .
Так как U0(y) ∈ C2+γ([0, 1]), то (U0)yy ограничена, и, следовательно, функция G1 также ограничена в Q.

Применяя глобальнуюоценку градиента для параболических уравнений ([22, Chapter III, Theorem4.1]), заключаем,
что Uy ограничена во всей области Q. Аналогичный аргумент применим к функции V (y, τ).

Возвращаясь к исходным переменным, из оценок для Uy и Vy получаем

|ux(x, t)| ≤ C1M4, |vx(x, t)| ≤ C2M4,

для всех (x, t) из внутренних подобластейDδ
1 иDδ

2, отделённых от начального момента времени и фиксированных
границ x = ±ℓ.
Для вывода гёльдеровских оценок более высокого порядка рассмотрим, например, уравнение для v:

vt = vxx + q(v, vx), q(v, vx) = v(a2 − b2v) + c2vx.

Из леммы 2.1 и теоремы 2.1 следует, что |v| ≤ M2 и |vx| ≤ M4. Следовательно, для некоторой константы
R = R(M2, c2) > 0 имеем

|q(v, vx)| ≤ R (v2x + 1).

Теорема 2.2. Пусть v ∈ L2(D2) и его слабые производные удовлетворяют условиям vxx, vtx ∈ L2(D2). Тогда
существует константаM5 = M5(M2, R) > 0 такая, что

|v|(1+γ/2, 1+γ)

Dδ
2

≤ M5.
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Более того, если линеаризованное уравнение

ã(y, τ)wyy + b̃(y, τ)wy + c̃(y, τ)w − wτ = f̃(y, τ)

имеет гёльдеровски непрерывные коэффициенты, удовлетворяющие

|ã|(γ)Q + |b̃|(γ)Q + |c̃|(γ)Q + |f̃ |(γ)Q < ∞, ã ≥ a0 > 0,

и если w = 0 на параболической границе, то (см. [22, Theorem 5.3])

|w|(2+γ)
Q ≤ C

(
|f̃ |(γ)Q +max

Q
|w|

)
= M7.

Доказательство. Применяя указанную оценку к функциям U(y, τ) и V (y, τ), получаем

|U |(2+γ)
Q ≤ M7, |V |(2+γ)

Q ≤ M7.

Переходя к исходным переменным, имеем

|u|(2+γ)
D1

≤ CM7, |v|(2+γ)
D2

≤ CM7,

где константа C зависит только от ℓ,M3 и γ, но не зависит от T . Тем самым необходимые априорные оценки для
ux, vx и гёльдеровских норм |u|(2+γ), |v|(2+γ) установлены.

Регулярность свободной границы s(t) непосредственно следует из условия Стефана

s′(t) = −αux(s(t), t) + βvx(s(t), t),

вместе с априорными оценками градиента, полученными в лемме 2.1 и теореме 2.1. Действительно, производные
ux и vx равномерно ограничены и гёльдеровски непрерывны вплоть до свободной границы, то есть ux, vx ∈
Cγ/2,γ(Di), i = 1, 2. Следовательно, правая часть условия Стефана принадлежит классу Cγ/2([0, T ]), откуда
s ∈ C1+γ/2([0, T ]).
Такой уровень регулярности согласуется с классическими результатами для одномерных задач со свободной

границей стефановского типа (см., например, [21, 22]) и является достаточнымдля корректности преобразованных
параболических задач.

Замечание 2.1. Для построения и анализа предлагаемой численной схемы более высокая регулярность свободной
границы не требуется.

3. Единственность решения

Для установления единственности классического решения задачи (1.1)–(1.5) рассмотрим интегральное
представление свободной границы s(t) (см. [19]):

s(t) = β

ℓ∫
s(t)

v(ξ, t) dξ − β

∫∫
D2

v(a2 − b2v) dξdτ + α

s(t)∫
−ℓ

u(ξ, t) dξ − α

0∫
−ℓ

u0(ξ) dξ

+β

ℓ∫
0

v0(ξ) dξ − α

∫∫
D1

u(a1 − b1u) dξdτ − βc2

t∫
0

v(ℓ, τ) dτ − αc1

t∫
0

u(−ℓ, τ) dτ.

(3.1)

Теорема 3.1. Пусть начальные и граничные условия заданы в указанном выше виде и выполнены предположения
леммы 2.1. Тогда классическое решение задачи (1.1)–(1.5) является единственным.
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Доказательство. Предположим, что существуют два классических решения (s1(t), u1(x, t), v1(x, t)) и
(s2(t), u2(x, t), v2(x, t)). Введём функции y(t) = min{s1(t), s2(t)}, h(t) = max{s1(t), s2(t)}.
Поскольку оба решения удовлетворяют тождеству (3.1), вычитая соответствующие равенства, получаем оценку

|s1(t)− s2(t)| ≤ α

y(t)∫
−ℓ

|u1(ξ, t)− u2(ξ, t)| dξ + β

ℓ∫
y(t)

|v1(ξ, t)− v2(ξ, t)| dξ

+α

t∫
0

y(τ)∫
−ℓ

|u1(a1 − b1u1)− u2(a1 − b1u2)| dξdτ + α

t∫
0

h(τ)∫
y(τ)

|ui(a1 − b1ui)| dξdτ

+β

t∫
0

ℓ∫
y(τ)

|v1(a2 − b2v1)− v2(a2 − b2v2)| dξdτ + β

t∫
0

h(τ)∫
y(τ)

|vi(a2 − b2vi)| dξdτ, (3.2)

где в промежуточной области между y(t) и h(t) полагаем

(ui(x, t), vi(x, t)) =

(u1(x, t), v1(x, t)), если s2(t) < s1(t),

(u2(x, t), v2(x, t)), если s2(t) > s1(t).

Далее введём функции разности U(x, t) = u1(x, t)− u2(x, t), V (x, t) = v1(x, t)− v2(x, t). Они удовлетворяют
следующим краевым задачам:

Ut − Uxx − c1Ux +A1(x, t)U = 0, (x, t) ∈ D∗
1 ,

U(x, 0) = 0, −ℓ ≤ x ≤ 0, U(−ℓ, t) = 0, 0 ≤ t ≤ T,

|U(y(t), t)| ≤ M4 max
0≤τ≤t

|s1(τ)− s2(τ)|, 0 ≤ t ≤ T,

(3.3)


Vt − Vxx − c2Vx +A2(x, t)V = 0, (x, t) ∈ D∗

2 ,

V (x, 0) = 0, 0 ≤ x ≤ ℓ, V (ℓ, t) = 0, 0 ≤ t ≤ T,

|V (y(t), t)| ≤ M5 max
0≤τ≤t

|s1(τ)− s2(τ)|, 0 ≤ t ≤ T,

(3.4)

где A1(x, t) = a1 − b1(u1 + u2), A2(x, t) = a2 − b2(v1 + v2), а константы M4 = max
D1

|ux|, M5 = max
D2

|vx|
ограничены в силу леммы 2.1 и теоремы 2.1.
Поскольку указанные выше уравнения линейны и имеют ограниченные коэффициенты, из параболического

принципа максимума (см. [19]) следует, что

|U(x, t)| ≤ N1 max
0≤τ≤t

|s1(τ)− s2(τ)|, |V (x, t)| ≤ N2 max
0≤τ≤t

|s1(τ)− s2(τ)|, (3.5)

где N1 > 0 и N2 > 0 зависят только от начальных данных и параметров системы.
Далее оценим слагаемые в (3.2), используя оценку (3.5). В частности, для первого интеграла имеем

y(t)∫
−ℓ

|U(ξ, t)| dξ ≤ N1(ℓ+ y(t)) max
0≤τ≤t

|s1(τ)− s2(τ)| ≤ 2ℓN1 max
0≤τ≤t

|s1(τ)− s2(τ)|.

Аналогично, каждое из остальных слагаемых в (3.2) оценивается величиной, пропорциональной max
0≤τ≤t

|s1(τ)−

s2(τ)|. В итоге получаем интегральное неравенство

|s1(t)− s2(t)| ≤ N3

t∫
0

max
0≤τ≤σ

|s1(τ)− s2(τ)| dσ,
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где N3 > 0 не зависит от T .
Применяя лемму Гронуолла, заключаем, что max

0≤t≤T
|s1(t)− s2(t)| = 0, откуда s1(t) ≡ s2(t).

Подставляя это равенство в (3.3)–(3.4), получаем однородные граничные условия, и, вновь используя принцип
максимума, приходим к выводу, что U ≡ 0 и V ≡ 0.
Следовательно, оба классических решения полностью совпадают, и решение задачи (1.1)–(1.5) является

единственным. Доказательство проводится в рамках методики, использованной в [5], [20].

4. Существование решения

Для доказательства существования классического решения задачи (1.1)–(1.5) используем априорные оценки,
полученные в предыдущихразделах.Применяяподходящуюзаменупеременных, свободная граница отображается
на фиксированную область, что приводит к эквивалентным переформулированным системам (2.1)–(2.2).

Теорема 4.1. Пусть выполнены априорные оценки, установленные в лемме 2.1 и теореме 2.2. Тогда задача
(1.1)–(1.5) допускает классическое решение, удовлетворяющее соотношениям

u ∈ C2+γ, 1+γ/2(D1), v ∈ C2+γ, 1+γ/2(D2), s ∈ C1+γ/2([0, T ]).

Доказательство. Доказательство основано на итерационной процедуре. В качестве начального приближения
для свободной границы положим s(0)(t) ≡ 0. Пусть для некоторого k ≥ 0 функция s(k)(t) уже построена. Тогда
при фиксированной s(k)(t) решаем задачи (2.1)–(2.2) и находим функции U (k+1) и V (k+1), удовлетворяющие
граничным условиям, соответствующим s(k)(t). После этого свободная граница обновляется по формуле

ṡ(k+1)(t) = −αU (k+1)
y (1, t) + β V (k+1)

y (−1, t), s(k+1)(0) = 0.

Из леммы 2.1 и теоремы 2.2 следует, что последовательности {U (k)}, {V (k)} и {s(k)} равномерно ограничены
в гёльдеровских нормах. В частности, существуют положительные константы Ni (i = 4, 5, 6), не зависящие от
номера итерации k и от T , такие что

|U (k)|(2+γ)
Q ≤ N4, |V (k)|(2+γ)

Q ≤ N5, |s(k)|(1+γ/2)
[0,T ] ≤ N6.

Здесь константы Ni зависят только от начальных данных и фиксированных параметров задачи ℓ, ai, bi, ci, α, β
и γ, но не зависят от k и T .
В силу теоремы Арцела–Асколи и компактности вложений в гёльдеровских пространствах можно выделить

сходящиеся подпоследовательности {U (k)}, {V (k)} и {s(k)} такие, что

U (k) → U, V (k) → V, s(k) → s

равномерно на компактных подмножествах. Переход к пределу в уравнениях и граничных условиях
обосновывается стандартными методами функционального анализа (см., например, [22, Chapter V]).
Таким образом, предельная тройка (U, V, s) образует классическое решение преобразованной задачи.

Возвращаясь к исходным переменным с помощью обратного преобразования, получаем классическое решение
(u, v, s) исходной задачи со свободной границей (1.1)–(1.5).
Наконец, поскольку все априорные оценки являются равномерными по T , решение может быть продолжено

пошагово по времени, что обеспечивает глобальное существование для любого T > 0. Следовательно, благодаря
независимости априорных оценок от T , решение задачи не только локально существует и единственно, но и
допускает глобальное продолжение на произвольные промежутки времени.
Тем самым установлено, что система со свободной границей (1.1)–(1.5) обладает глобальным классическим

решением. Полученный результат служит строгим математическим обоснованием для численных экспериментов,
представленных ниже, поскольку физическая корректность численных результатов может быть гарантирована
лишь при наличии корректно поставленной задачи, обладающей существующим и единственным решением.
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5. Численные методы

Двухфазная система адвекции–реакции–диффузии (1.1)–(1.5) является нелинейной и содержит подвижную
свободную границу стефановского типа. В связи с этим при построении численных схем необходимо обеспечить
устойчивость, согласованность аппроксимации и сохранение ключевых качественных свойств непрерывной
задачи, прежде всего неотрицательности решения.

Пусть пространственный интервал [−ℓ, ℓ] аппроксимируется равномерной сеткой с шагом h =
2ℓ

M
, а временной

интервал [0, T ] разбивается на шаги длины k =
T

N
. Узлы сетки определяются как xi = −ℓ+ ih, где i =

0, 1, . . . ,M ; tn = nk, где n = 0, 1, . . . , N . Численные приближения обозначим следующим образом:

un
i ≈ u(tn, xi), xi < sn, vni ≈ v(tn, xi), xi > sn, sn ≈ s(tn),

где xis ≤ sn < xis+1.

5.1. Явная структуросохраняющая схема

Для левой фазы (xi < sn) вводится явная конечно-разностная схема

un+1
i =

un
i + k

(
un
i+1 − 2un

i + un
i−1

h2
+ c1

un
i − un

i−1

h
+ a1u

n
i

)
1 + kb1un

i

, i = 1, . . . , is − 1. (5.1)

Для правой фазы (xi > sn) схема имеет вид

vn+1
i =

vni + k

(
vni+1 − 2vni + vni−1

h2
+ c2

vni+1 − vni
h

+ a2v
n
i

)
1 + kb2vni

, i = is + 2, . . . ,M − 1. (5.2)

Граничные и интерфейсные условия задаются следующим образом un+1
0 = φ1(t

n+1), vn+1
M = φ2(t

n+1), un+1
is

=

vn+1
is+1 = 0.
Положение свободной границы обновляется с использованием дискретного условия Стефана

sn+1 = sn + k
(
−αux(s

n, tn) + β vx(s
n, tn)

)
, (5.3)

где односторонние пространственные производные аппроксимируются второго порядка точности с помощью
лагранжевой экстраполяции.

5.2. Условие устойчивости типа CFL

Поскольку схемы (5.1)–(5.2) являются явными, для обеспечения устойчивости и монотонности требуется
выполнение условия типа CFL на шаг по времени. Предполагается, что

k ≤ h2

2 + |ci|h
, i = 1, 2. (5.4)

Во всех численных экспериментах используется соотношение k = O(h2), которое удовлетворяет условию (5.4).
Кратко обоснуем сохранение неотрицательности численного решения. Пусть

un
i ≥ 0, vni ≥ 0 для всех i, φ1(t) ≥ 0, φ2(t) ≥ 0.

Из формулы (5.1) при выполнении условия (5.4) следует, что все коэффициенты в числителе являются
неотрицательными, а знаменатель удовлетворяет неравенству 1 + kb1u

n
i > 0. Следовательно, un+1

i ≥ 0.
Аналогичные рассуждения применимы к схеме (5.2), откуда vn+1

i ≥ 0.
По индукции по временным слоям n получаем, что численное решение остаётся неотрицательным для всех

n. Таким образом, предложенная схема является сохраняющей неотрицательность и согласуется с принципом
максимума для непрерывной задачи.
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6. Предлагаемая численная схема

Классические численные методы, такие как противоточная схема и схема Кранка–Николсона, при
применении к нелинейным реакционным системам со свободной границей нередко сталкиваются с серьёзными
трудностями. В частности, в подобных задачах они могут приводить к не физическим результатам, включая
появление отрицательных концентраций или паразитных осцилляций, что существенно снижает достоверность
вычисленного решения. Данная проблема приобретает особенно критический характер в биологических и
биомедицинских моделях, где неотрицательность решений имеет прямой физический смысл. В связи с этим
разработка структуросохраняющих, а именно сохраняющих неотрицательность, численных схем является
принципиально важной.
В этом разделе предлагается новая явная структуросохраняющая численная схема для двухфазной системы

адвекции–реакции–диффузии с подвижной границей, навеянная подходом, предложенным Ченом, Шарпантье и
Кожухаровым [23]. Предлагаемая схема естественным образом сохраняет фундаментальные физические свойства
модели 0 ≤ u ≤ a1

b1
и 0 ≤ v ≤ a2

b2
, гарантируя неотрицательность и ограниченность решения на всех временных

шагах. Кроме того, схема корректно аппроксимирует стационарные состояния и, благодаря своей явной форме,
обладает высокой вычислительной эффективностью.
Ключевая идея состоит в перераспределении части нелинейного реакционного члена в знаменатель схемы,

что обеспечивает сохранение неотрицательности даже в явной постановке. Это позволяет обрабатывать
диффузионные и адвективные члены явным образом, в то время как нелинейный реакционный член учитывается
в полурациональной форме: его линейная часть включается аддитивно, а нелинейная часть переносится в
знаменатель. Такой баланс сохраняет физическую структуру исходных уравнений без потери вычислительной
простоты.
Для левой области (xi < sn+1) предлагаемая схема имеет вид

un+1
i =

un
i + k

[
un
i+1 − 2un

i + un
i−1

h2
+ c1

un
i − un

i−1

h
+ a1u

n
i

]
1 + kb1un

i

, i = 1, . . . , is − 1. (6.1)

Аналогично, для правой области (xi > sn+1) схема записывается в виде

vn+1
i =

vni + k

[
vni+1 − 2vni + vni−1

h2
+ c2

vni+1 − vni
h

+ a2v
n
i

]
1 + kb2vni

, i = is + 2, . . . ,M − 1. (6.2)

Граничные условия задаются следующим образом:

un+1
0 = φ1(t

n+1), vn+1
M = φ2(t

n+1), un+1
is

= vn+1
is+1 = 0. (6.3)

Поскольку функции u и v разрывны на свободной границе x = sn+1, условия un+1
is

= vn+1
is+1 = 0 вводятся

для корректного отражения физического разделения двух фаз. Положение свободной границы обновляется в
соответствии с общим условием Стефана, заданным формулой (5.3).
Следующая теорема устанавливает согласованность предлагаемой схемы с непрерывной дифференциальной

моделью.

Теорема 6.1. Пусть u(x, t) является достаточно гладким решением уравнения (1.1), причём u ∈ C2,1.
Тогда численная схема (6.1) имеет первый порядок точности по времени и второй порядок точности по
пространству. В частности, при k = O(h2) локальная погрешность аппроксимации удовлетворяет оценке

ut = uxx + c1ux + a1u− b1u
2 +O(k) +O(h2).
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Доказательство. Для анализа погрешности аппроксимации разложим дискретные величины в (6.1) в ряды
Тейлора:

un+1
i = un

i + kut +
k2

2
utt + · · · , un

i±1 = un
i ± hux +

h2

2
uxx ± h3

6
uxxx + · · · .

Подставляя эти разложения в правую часть (6.1) и раскладывая знаменатель по формуле 1 + kb1u
n
i =

1 + kb1u
n
i +O(k2), в пределе при k, h → 0 получаем

ut = uxx + c1ux + a1u− b1u
2 +O(k) +O(h2),

что воспроизводит исходное непрерывное уравнение. Тем самым схема обладает первым порядком точности
по времени и вторым порядком по пространству, что согласуется с классическими конечно-разностными
аппроксимациями параболических уравнений. Влияние граничных членов в данном локальном анализе не
учитывается; устойчивость схемы подтверждена численно в последующих экспериментах.

В данном разделе также анализируются устойчивость и свойства сохранения неотрицательности предлагаемой
явной схемы. В отличие от многих классических методов, требующих жёстких ограничений на шаги по времени и
пространству, настоящий метод остаётся устойчивым и физически корректным при всех практически значимых
параметрах дискретизации.

Устойчивость проверяется с помощью стандартного анализа фон Неймана, а сохранение неотрицательности
доказывается методом математической индукции.

Теорема 6.2. Предлагаемая численная схема (6.1)–(6.2) является безусловно устойчивой, то есть условие
устойчивости выполняется при любых k → 0 и h → 0.

Доказательство. Для исследования устойчивости линеаризуем систему адвекции–реакции–диффузии в
окрестности стационарного состояния. Пусть un

i ≈ ū+ ϵni , где ū =
a1
b1

— положение равновесия, а ϵni — малая
возмущающая добавка. Подставляя это представление в (6.1) и отбрасывая нелинейные по ϵni члены, получаем
линеаризованную схему

ϵn+1
i =

ϵni + k

[
ϵni+1 − 2ϵni + ϵni−1

h2
+ c1

ϵni − ϵni−1

h
+ (a1 − 2b1ū)ϵ

n
i

]
1 + kb1ū

.

Поскольку a1 − 2b1ū = −a1 < 0, реакционный член оказывает демпфирующее воздействие. Аналогичные
рассуждения справедливы и для правой фазы при v̄ =

a2
b2

.

Полагая модальное решение в виде ϵni = ξneiθih, получаем множитель усиления

|ξ| =

∣∣∣∣∣∣∣∣
1 + k

[
− 4

h2
sin2

(
θh
2

)
− ic1

sin(θh)

h
+ (a1 − 2b1ū)

]
1 + kb1ū

∣∣∣∣∣∣∣∣ .
Поскольку модуль числителя не превосходит модуля знаменателя, заключаем, что |ξ| ≤ 1 при любых k > 0 и

h > 0. Следовательно, схема является безусловно устойчивой и сохраняет численную монотонность даже при
относительно больших временных шагах.

Теорема 6.3. Пусть начальные условия удовлетворяют u0
i ≥ 0 и v0i ≥ 0, а граничные условия таковы,

что φ1(t) ≥ 0 и φ2(t) ≥ 0. Тогда численные приближения, получаемые по схемам (6.1)–(6.3), остаются
неотрицательными для всех пространственных индексов i и всех временных уровней n, то есть un

i ≥ 0, vni ≥ 0.
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Доказательство. Доказательство проводится методом математической индукции. Предположим, что un
i ≥ 0 на

некотором временном слое tn. Тогда из (6.1) следует

un+1
i =

un
i + k(неотрицательные слагаемые)

1 + kb1un
i

.

Поскольку знаменатель удовлетворяет неравенству 1 + kb1u
n
i > 0, а все слагаемые в числителе неотрицательны,

заключаем, что un+1
i ≥ 0. Аналогичные рассуждения применимы к vn+1

i . Тем самым схема сохраняет
неотрицательность решения на каждом временном шаге, что гарантирует физическую корректность численных
результатов и предотвращает появление не физических отрицательных концентраций в биологических и
химических приложениях.

Замечание. Следует отметить, что хотя анализ фон Неймана даёт формальную проверку устойчивости,
безусловное сохранение неотрицательности обеспечивает ещё более сильную практическую гарантию
робастности метода. Благодаря своей явной форме и структуросохраняющим свойствам предлагаемая схема
обеспечивает одновременно численную устойчивость и физическую согласованность без необходимости введения
дополнительных ограничений на параметры дискретизации. Подобные неотрицательностно-сохраняющие явные
схемы в настоящее время считаются современным стандартом при численном исследовании нелинейных
диффузионно–реакционных систем (см., например, [23]).

7. Численный пример

Пространственная область [−ℓ, ℓ] дискретизируется равномерной сеткой с шагом ∆x = h = 2ℓ
M , а временной

интервал [0, T ] разбивается на N равных частей с шагом по времени ∆t = k = T
N .

В этом разделе приводятся вычислительные эксперименты, демонстрирующие точность, устойчивость и
эффективность предлагаемой явной структуросохраняющей схемы. Рассматриваемая тестовая задача описывает
двухфазную систему адвекции–реакции–диффузии, моделирующую процесс остеоинтеграции вокруг зубного
имплантата. В данной постановке левая область соответствует костной ткани, правая область представляет
имплантат, а подвижный интерфейс интерпретируется как граница взаимодействия между двумя средами.
Вычислительная область выбирается в виде пространственного интервала [−ℓ, ℓ] = [−1, 1] и временного

интервала [0, T ] при T = 2.
Физические имодельные параметры задаются следующимобразом a1 = a2 = 1 коэффициенты роста, b1 = b2 =

1 коэффициенты внутривидовой конкуренции, c1 = 0.5 адвекция вправо, c2 = −0.3 адвекция влево, α = β = 0.1

коэффициенты скорости свободной границы, φ1(t) = φ2(t) = 1 граничные условия Дирихле.
Начальные условия задаются в виде

u0(x) =

1− x2, −1 ≤ x ≤ 0,

0, x > 0,
v0(x) =

0, x < 0,

1− x2, 0 ≤ x ≤ 1.

Эти начальные профили удовлетворяют как условию согласования на интерфейсе (u(0, 0) = v(0, 0) = 0), так и
требованию неотрицательности (u0, v0 > 0 внутри соответствующих областей).
Используется сетка с M = 200 пространственными узлами и N = 400 шагами по времени, что соответствует

h = 0.01 и k = 0.005. Для сравнения были протестированы три численных метода: (i) неявная противоточная
схема (5.1)–(5.2), (ii) схема Кранка–Николсона (5.3)–(5.4), (iii) предлагаемая структуросохраняющая явная схема
(6.1)–(6.2).
Предлагаемый метод во всех временных слоях сохранял неотрицательность, то есть un

i ≥ 0 и vni ≥ 0, что в
непрерывной постановке соответствует u(x, t) ≥ 0 и v(x, t) ≥ 0.
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Для исследования сходимости были выполнены дополнительные расчёты на уточнённых пространственных
сетках. В качестве эталонного решения использовалось высокоточное численное решение, полученное при
M = 800 узлах.

Сходимость оценивалась в норме L∞ путём сравнения решений, вычисленных на более грубых сетках, с
эталонным решением. Полученные результаты подтверждают первый порядок точности по времени и второй
порядок точности по пространству, что согласуется с теоретическим анализом. Свободная граница s(t)

эволюционировала гладко и монотонно и к конечному моменту времени достигала приблизительно значения
s(2) ≈ 0.38. Неявная противоточная схема также сохраняла неотрицательность, однако была вычислительно
более затратной и давала s(2) ≈ 0.37.
Физическая корректность движения интерфейса проверялась посредством контроля неотрицательности

численного решения и монотонности свободной границы. Во всех расчётах выполнялись условия u(x, t) ≥ 0,
v(x, t) ≥ 0 и s′(t) > 0, что согласуется с теоретическими результатами леммы 2.1. Кроме того, численная
аппроксимация скорости интерфейса оказалась согласованной с условием Стефана, что указывает на физически
осмысленное распространение интерфейса без паразитных осцилляций.
В отличие от этого, схема Кранка–Николсона при t ≳ 1.2 порождала малые отрицательные колебания с

минимальным значением umin ≈ −0.03, что нарушает физическую интерпретацию модели. Вследствие этого
скорость интерфейса, полученная по данной схеме, демонстрировала немонотонное поведение во времени.
На рисунке 1 показана динамика свободной границы s(t) для всех трёх схем. Только предложенный

структуросохраняющий метод последовательно обеспечивал неотрицательность и монотонное продвижение
интерфейса на всём промежутке моделирования.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

t, c

s(
t)

Предлагаемая явная схема Неявная противоточная схема Схема Кранка–Николсона

Рис. 1. Эволюция свободной границы s(t) для различных численных схем.

Полученные результаты полностью согласуются с физической интерпретацией процесса: интерфейс всегда
движется в сторону области имплантата, что соответствует непрерывному росту ткани (ṡ(t) > 0).
Предлагаемая явная схема демонстрирует высокую вычислительную эффективность и отличную устойчивость,

сохраняя при этом физическую и биологическую согласованность решения.
Для оценки точности предлагаемой схемы использовалось эталонное решение, полученное приM = 800 узлах.

Сравнение вычислительной стоимости и точности различных методов приведено в таблице 1.

Замечание 7.1. Предлагаемая схема обладает наименьшим временем вычислений благодаря полностью явной
структуре. В отличие от неё, как неявная противоточная схема, так и метод Кранка–Николсона требуют
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Таблица 1. Сравнение численных схем по вычислительным затратам и точности.

Схема Время расчёта (с) Средняя ошибка (L∞)
Предлагаемая явная 1.2 2.1× 10−3

Неявная противоточная 8.7 1.8× 10−3

Кранк–Николсон 6.5 1.5× 10−3

на каждом шаге по времени решения нелинейной системы (как правило, с использованием итераций Ньютона),
что существенно увеличивает вычислительные затраты.

Дополнительные вычислительные эксперименты подтверждают робастность предлагаемой схемы при
различных наборах параметров. При увеличении интенсивности адвекции (c1 = 2, c2 = −1.5) противоточная
схема оставалась условно устойчивой, тогда как схема Кранка–Николсона порождала сильные осцилляции и
в итоге теряла физическую корректность. Предлагаемый структуросохраняющий метод, напротив, сохранял
устойчивость и точность при всех рассмотренных настройках.
Аналогично, при усилении нелинейности реакционного члена (b1 = b2 = 5) только предлагаемый метод

корректно сходился к равновесному значению (u → 0.2), тогда как другие схемы демонстрировали паразитные
переразбросы.
На рисунке 2 показана эволюция профиля u(x, t). Предлагаемая схема сохраняет логистическую верхнюю

оценку (u ≤ 1), обеспечивает гладкость вблизи подвижного интерфейса x = s(t) и не порождает искусственных
осцилляций. В то же время метод Кранка–Николсона после t ≈ 1.2 давал нефизические отрицательные значения
(umin ≈ −0.03), нарушая ограничение неотрицательности, тогда как противоточная схема, оставаясь устойчивой,
приводила к более медленному продвижению фронта и заметной диффузионной сглаженности профиля.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1
x = s(t)

u(x, t)

(левая фаза)
v(x, t)

(правая фаза)

x

u
(x
,t
),
v
(x
,t
)

Сравнение профилей u и v, полученных с использованием трёх численных схем

Предлагаемая явная схема, Неявная противоточная схема, Схема Кранка–Николсона,

Рис. 2. Сравнение профилей u и v, полученных различными численными схемами. Предлагаемая явная схема (красная) сохраняет гладкость и неотрицательность
вблизи подвижного интерфейса x = s(t), тогда как метод Кранка–Николсона (зелёный) демонстрирует осцилляции, а противоточная схема (синяя) обладает
большей диффузионностью.

Численные эксперименты наглядно показывают, что предлагаемая структуросохраняющая схема безусловно
сохраняет неотрицательность, обеспечивает физически реалистичные результаты и остаётся вычислительно
эффективной благодаря явной форме. Даже при сильной адвекции (c1 = 2, c2 = −1.5) или при усиленной
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нелинейности реакционного члена метод не демонстрирует не физических осцилляций и численной
неустойчивости.
В противоположность этому, схема Кранка–Николсона порождает выраженные осцилляции с |u| > 1.2, нарушая

физические ограничения, тогда как противоточная схема, хотя и остаётся устойчивой, заметно занижает динамику
интерфейса. Эти результаты подтверждают, что предложенный подход является робастным и эффективным
численным инструментом для моделирования реалистичных биологических и физических процессов, включая
остеоинтеграцию вблизи зубных имплантатов, экологическую инвазию и явления фазовых переходов.

8. Заключение

В данной работе разработаны математически строгие и вычислительно эффективные численные методы для
двухфазной системыадвекции–реакции–диффузии со свободной границей.На основе априорныхоценокдоказаны
ограниченность и неотрицательность решения, а также получены верхние и нижние оценки скорости движения
подвижного интерфейса. Эти результаты послужили надёжной теоретической основой для доказательства
существования и единственности классического решения рассматриваемой задачи.

В последующем анализе были подробно исследованы три численных подхода. Хотя классические неявная
противоточная схема и схема Кранка–Николсона обладают определёнными преимуществами с точки зрения
точности и устойчивости, при применении к нелинейным реакционным системам со свободной границей они
выявляют существенные недостатки, такие как потеря неотрицательности, высокая вычислительная стоимость и
появление не физических осцилляций.

Для устранения этих ограничений была предложена новая структуросохраняющая явная схема. Она безусловно
сохраняет неотрицательность, корректно сходится к равновесным состояниям и остаётся устойчивой даже
при наличии сильной адвекции и выраженных нелинейных реакционных эффектов. Благодаря явной форме
схема обладает высокой вычислительной эффективностью. Численные эксперименты подтвердили робастность
и надёжность предлагаемого метода, продемонстрировав, что он воспроизводит физически и биологически
осмысленные результаты. В частности, схема успешно применена для моделирования процессов остеоинтеграции
вокруг зубных имплантатов, фронтов экологической инвазии и динамики фазовых переходов.

В дальнейшем планируется распространить предложенный подход на многомерные задачи, учесть
пространственно неоднородные коэффициенты и стохастические возмущения, а также реализовать методы
адаптивного уточнения сетки. Кроме того, разработанная методология может быть эффективно адаптирована
к другим нелинейным системам, таким как модели Брюсселятора и ФитцХью–Нагумо.

В целом, проведённое исследование подчёркивает ключевую роль структуросохраняющих подходов при
численном решении задач со свободной границей, описываемых нелинейными параболическими системами.
Предложенный метод представляет собой надёжный и эффективный вычислительный инструмент, пригодный
для широкого круга современных научных и прикладных задач.
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Structure-preserving scheme for two-phase convection reaction diffusion system
A.Elmurodov and A.Sotvoldiyev

Abstract

In this paper, we introduce a novel structure-preserving explicit numerical scheme for a two-phase convection reaction
diffusion system featuring a dynamically evolving interface. A priori estimates in Hölder norms are established for both
the solution and the free boundary, which allow us to prove the existence and uniqueness of a classical solution and
to analyze its qualitative properties. We also present a comparative study of three numerical approaches: the upwind
implicit method, the Crank–Nicolson scheme, and the proposed explicit scheme. Numerical experiments demonstrate the
robustness and stability of the new method, even in regimes dominated by strong advection and highly nonlinear reaction
terms. The proposed scheme provides physically reliable results and is suitable for modeling interface-driven processes
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Структуросохраняющая схема для двухфазной конвективно–реакционно–диффузионной системы

arising in applications such as osseointegration around dental implants, biological invasion, and sharp-interface phase
transition phenomena.

Keywords
free boundary problem, advection, reaction, diffusion, structure-preserving method, stability, numerical simulation.
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