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Задача со свободной границей для уравнения
нелинейной диффузии

Расулов Мирожиддин Собиржонович* Умирхонов Масудхон Турахон угли

Аннотация
В данной работе рассматривается задача типа Стефана с двумя свободными границами для
нелинейного уравнения теплопроводности в одномерном случае. Исследование нелинейных
задач со свободными границами методом, основанным на построении априорных оценок. В
связи с этим сначала устанавливаются некоторые начальные априорные оценки для решения
рассматриваемой задачи. Затем задача сводится к задаче с фиксированной границей через
замену переменных. Полученная задача имеет зависящие от времени и положения в пространстве
коэффициенты с нелинейными слагаемыми. Далее построены априорные оценки типа Шаудера
для решения уравнения с нелинейными слагаемыми и закрепленной границей. На основе
полученных оценок установлена разрешимость исходной задачи.
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1. Введение

Уравнения нелинейной диффузии с условиями свободной границы представляют собой важный класс
математических моделей, широко используемых для описания процессов в физике, биологии, химии и технике.
Эти уравнения характеризуются нелинейной зависимостью потока от градиента искомой величины, а свободная
граница добавляет дополнительную сложность, связанную с динамическим изменением области, в которой
происходит диффузия. Такие задачи возникают, например, при моделировании распространения тепла в средах
с фазовыми переходами, фильтрации жидкостей в пористых средах, распространения биологических популяций
или химических реакций с подвижными границами.

В настоящее время изучение задач со свободной границей интенсивно ведется с различных сторон
(экспериментальных, численных и теоретических), предмет постоянно находит новые основания для приложений,
продолжают возникать новые фундаментальные теоретические вопросы. Эти разработки, в частности, требуют
новых аналитических и численных методов, а также усовершенствования существующих алгоритмов и
инструментов для решения чрезвычайно сложных задач [7, 14, 21]. В работах широко изучались новые классы
задачСтефана, которые возникают примоделировании природных процессов, включающие уравнения нелинейной
диффузии с двумя подвижными границами [5, 6, 9, 15, 16, 19].

Во многих исследованиях термин диффузия является линейным [8]. Однако в целом на диффузию также влияет
плотность компонентов, что, в свою очередь, приводит к нелинейной диффузии [1, 2, 22, 20]. Например, в работе
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[18] авторы исследовали задачу со свободной границей для уравнения реакция-диффузия с нелинейным членом
диффузии.
В этой работе рассмотрим краевую задачу для квазилинейного параболического уравнения с двумя

неизвестными границами:
a (u)ut = (d(u)ux)x , (t, x) ∈ D, (1.1)

u (0, x) = u0 (x) , h(0) ≤ x ≤ s(0), (1.2)

u (t, s (t)) = 0, 0 ≤ t ≤ T, (1.3)

u (t, h (t)) = 0, 0 ≤ t ≤ T, (1.4)

s′ (t) = −µux (t, s (t)) , 0 ≤ t ≤ T, (1.5)

h′ (t) = −µux (t, h (t)) , 0 ≤ t ≤ T, (1.6)

где D = {(t, x) : 0 < t ≤ T, h (t) < x < s (t)}; x = h (t) и x = s (t)− свободные (неизвестные) границы, которые
определяются вместе с функцией u (t, x).
Относительно данных задачи предполагаются выполненными следующие условия:
a). a (u) ≥ a0 > 0, a0 = const и a(u) ∈ Cγ(D), 0 < γ < 1;
b). d (u) ≥ d0 > 0, d0 = const и d(u) ∈ C1+γ(D);
c). s0, µ – положительные постоянные;
d). u0 (x) > 0, h0 < x < s0; h (0) = h0 = −s0, s (0) = s0; u′

0 (h0) > 0, u0 (h0) = 0, u′
0 (s0) < 0, u0 (s0) = 0;

lim
x→s0

u0(x)
s0−x = 0, lim

x→h0

u0(x)
x−h0

= 0.
Задача (1.1)-(1.6) может рассматриваться как модель, описывающая распространение тепла или вещества с

двойными свободными границами x = h(t) и x = s(t) в одномерной среде обитания где задаются граничные
условия первого рода: u(t, h(t)) = 0 = u(t, s(t)). В общем случае, как концентрация вещества u(t, x) означает
движение в наружу вдоль неизвестных границ с течением времени. Предполагается, что скорость движения
свободных границ пропорциональна нормированным градиентам концентрации вещества на этих границах, то
есть

s′ (t) = −µux (t, s (t)) , h′ (t) = −µux (t, h (t)) ,

что соответствует классическому условию Стефана. Подробнее об физической интерпретации данного условия
можно найти в работах [3, 4, 13].
Задача (1.1)-(1.6) исследована в работе [16] для случая d(u) = const.

2. Априорные оценки

В этом разделе установим некоторые априорные оценки шаудеровского типа, которые будут использованы при
доказательстве глобальной разрешимости задачи.
Сначала с помощью метода, основанного на построения априорных оценок определим ограничении на

параметры задачи, при которых она глобально разрешима. Первая, основополагающая оценка, дает ту начальную
информацию, отправляясь от которой можно получать шаг за шагом, двигаясь вверх по шкале банаховых
пространств, все более полные и точные сведения об изучаемом решении.

Теорема 2.1. Пусть функции (s (t) , h (t) , u (t, x)) являются решением задачи (1.1)-(1.6). Тогда справедливы
следующие оценки:

0 < u (t, x) ≤ M1, (t, x) ∈ D, (2.1)

0 < s′ (t) , 0 < −h′ (t) , 0 ≤ t ≤ T. (2.2)
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Кроме того, если d
dxd (u) > 0, то

s′ (t) ≤ M2, 0 ≤ t ≤ T. (2.3)

−h′ (t) ≤ M3, 0 ≤ t ≤ T, (2.4)

где положительные константыM1,M2,M3 не зависят от T .

Доказательство. Из задачи (1.1)-(1.6) по принципу максимума получим оценку (2.1).
Область D условно разделим на две части

D1 = {(t, x) : 0 < t ≤ T, 0 < x < s (t)} , D2 = {(t, x) : 0 < t ≤ T, h (t) < x < 0} .

Рассмотрим задачу для u (t, x) в области D1
a (u)ut = (d(u)ux)x , (t, x) ∈ D1,

u (0, x) = u0 (x) , 0 ≤ x ≤ s0,

u (t, 0) > 0, 0 ≤ t ≤ T,

u (t, s (t)) = 0, 0 ≤ t ≤ T.

(2.5)

С учетом условий (1.3) и положительности функции u (t, x) в областиD, находим ux (t, s (t)) ≤ 0. Следовательно,
из (1.5) получим s′ (t) > 0.

Теперь оценим снизу ux (t, s (t)). Для этого в задаче (2.5) произведя замену

v (t, x) = u (t, x) +N1 (x− s (t))

и получим 
a (v) vt − d(v)vxx −

(
d
dxd (u)

)
vx = −

(
a (v) s′ (t) + d

dxd (u)
)
N1, (t, x) ∈ D1,

v (0, x) = u0 (x) +N1 (x− s0) , 0 ≤ x ≤ s0,

v (t, 0) = u (t, 0)−N1s (t) , 0 ≤ t ≤ T,

v (t, s (t)) = 0, 0 ≤ t ≤ T.

За счет выбора N1 ≥
{
max

x

u0(x)
s0−x ,

M1

s0

}
всюду в D1 имеем v (t, x) ≤ 0. Отсюда

u (t, x) ≤ N1 (s (t)− x) , 0 ≤ x ≤ s (t) .

Следовательно, vx (t, s (t)) = ux (t, s (t)) +N1 ≥ 0. Тогда из условия Стефана (1.5) имеем s′ (t) ≤ µN1 ≡ M2 в
0 ≤ t ≤ T .
А теперь докажем неравенство (2.4). Рассматривается задача

a (u)ut = (d(u)ux)x , (t, x) ∈ D2,

u (0, x) = u0 (x) , h0 ≤ x ≤ 0,

u (t, 0) > 0, 0 ≤ t ≤ T,

u (t, h (t)) = 0, 0 ≤ t ≤ T.

C учетом условий u (t, h (t)) = 0 и u (t, x) > 0, находим ux (t, h (t)) > 0. Осталось показать, что h′ (t) ≥ −M3

для 0 ≤ t ≤ T . Для этого введя функцию

w (t, x) = u (t, x)−N2 (x− h (t)) (2.6)

получим задачу
a (w) vt − d(w)wxx −

(
d
dxd (u)

)
wx =

(
a (w)h′ (t) + d

dxd (u)
)
N2, (t, x) ∈ D2,

w (0, x) = u0 (x)−N2 (x− h0) , h0 ≤ x ≤ 0,

w (t, 0) = u (t, 0) +N2h (t) , 0 ≤ t ≤ T,

w (t, h (t)) = 0, 0 ≤ t ≤ T.
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Так как h′ (t) < 0, то a (w)wt − d(w)wxx −
(

d
dxd (u)

)
wx < 0 в D2. Тем самым функция w (t, x) не может

достигать положительного максимума внутри области D2. Если N2 ≥ max
{
max

x

u0(x)
x−h0

, M1

−h0

}
, то легко добиться

неположительности w (t, x) на левой границе и в начальной момент времени. Таким образом, w (t, x)

неположительна в D2. Но тогда wx (t, h (t)) ≤ 0. Следовательно, с учетом (2.6) находим ux (t, x) ≤ N2, что
эквивалентно h′ (t) ≥ −µN2 ≡ M3.

Теперь используя результаты работы [10] получим оценки для |ux| и |u|1+γ . Для этого преобразуем независимые
переменные

t = t, y =
2s0x

s (t)− h (t)
− s (t) + h (t)

s (t)− h (t)
s0.

Тогда области D соответствует область Q = {(t, y) : 0 < t < T,−s0 < y < s0}, а ограниченная функция
v (t, y) = u (t, x) является решением начально-краевой задачи

vt = A (t, y, v) vyy +B (t, y, v, vy) , (t, y) ∈ Q, (2.7)

v (0, y) = v0 (y) , −s0 ≤ y ≤ s0, (2.8)

v (t, s0) = 0, 0 ≤ t ≤ T, (2.9)

v (t,−s0) = 0, 0 ≤ t ≤ T, (2.10)

где A (t, y, v) = d(v)
a(v)ρ (t), B (t, y, v, vy) = φ (t) vy +

d′(v)
a(v) ρ (t) v

2
y, ρ (t) =

4s20
(s(t)−h(t))2

,

φ (t) =
s′ (t)− h′ (t)

s (t)− h (t)

(
y +

s (t) + h (t)

s (t)− h (t)

)
+

s′ (t)h (t) + s (t)h′ (t)

(s (t)− h (t))
2 2s0,

s′ (t) = − 2s0µ

s (t)− h (t)
vy (t, s0) , h′ (t) = − 2s0µ

s (t)− h (t)
vy (t,−s0) .

Здесь и далее для функциональных пространств и норм в них мы будем придерживаться следующих
обозначений. Пусть функция v (t, y) определена на некотором множестве Ω; для любого числа γ ∈ (0, 1), и
положим что

|v|Ωγ = sup
Ω

|v (t, y)|+ sup
(t,y)∈Ω,(τ,ξ)∈Ω

|v (t, y)− v (τ, ξ)|(
|t− τ |+ |y − ξ|2

)γ/2
,

|v|Ω1+γ = |v|Ωγ + |vy|Ωγ ,

|v|Ω2+γ = |v|Ω1+γ + |vyy|Ωγ + |vt|Ωγ .

Будем говорить, что v ∈ Cq (q = 0, γ, 1 + γ, 2 + γ), если |v|q < ∞ (т.е. соответствующая норма конечна).
При условии d). без ограничений общности можно предполагать, что v0 (x) = 0.

Теорема 2.2. Пусть функция v (t, y) непрерывна вQ вместе с производной vy и удовлетворяет уравнению (2.7)
всюду в Q, за исключением, может быть, точек y = 0; предположим, что ограниченные функции A (t, y, v),
B (t, y, v, p) для (t, y) ∈ Q, |v| ≤ M1 и произвольных p удовлетворяют условиям

A (t, y, v) ≥ A0 > 0,
|B (t, y, v, p)|
A (t, y, v)

≤ K
(
p2 + 1

)
, K > 0. (2.11)

Тогда
|vy (t, y)| ≤ M4 (M1, A0,K, δ) , (t, y) ∈ Qδ. (2.12)

Если A1 = max
Q̄

A в области {(t, y) ∈ Q, |v| ≤ M1, |p| ≤ M4} то

|v|Q
2δ

2
3

≤ M5 (M1,M4, A1,K, δ) . (2.13)
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И если еще известно, что функция v (t, y) обладает обобщенными производными vty, vyy ∈ L2 (Q), то
существует такое γ = γ(M1,M4, A1,K, δ), что

|v|Q
2δ

1+γ ≤ M6 (M1, A0, A1,K, δ) , 0 < γ < 1, (2.14)

Если v|Г(t=0,y=±s0)
= 0, то оценки (2.12)-(2.14) справедливы и в Q. Здесь Qδ =

{(t, y) : 0 < δ ≤ t ≤ T, δ − s0 ≤ y ≤ δ + s0}, Γ (t = 0, y = ±s0)−параболическая граница.

Доказательство. Так как установлены оценки |u| ≤ M1, |s′(t)| ≤ M2, |h′(t)| ≤ M3, то в силу теорем 1, 3 работы
[10] справедливы внутренние оценки (2.12)-(2.14).
Теперь перейдем оценки вплоть до границ для |vy|. Так как v |y=±s0 = 0, поэтому продолжим функцию v (t, y)

через боковые стороны прямоугольника Q по правилу

v (t, y) = ω (t, 2s0 + y) , −3s0 ≤ y ≤ −s0, (2.15)

v (t, y) = ω (t, y − 2s0) , s0 ≤ y ≤ 3s0. (2.16)

Предполагаем, что коэффициенты уравнения (2.7) продолжены по y по закону (2.15), (2.16). Новая функция
(сохраним за ней обозначение u (t, y) во всех точках прямоугольниковR± =

{
(t, y) : 0 ≤ t ≤ T,

∣∣y ± 3
2s0

∣∣ ≤ 3
2s0

}
имеет непрерывную производную и удовлетворяет продолженному уравнению вида (2.7) т.е

ωt = A (t, 2s0 + y, ω, ωy)ωyy +B (t, 2s0 + y, ω, ωy) ,−3s0 < y < −s0,

и
ωt = A (t, y − 2s0, ω, ωy)ωyy +B(t, y − 2s0, ω, ωy), s0 < y < 3s0

с теми же самыми свойствами, что и в условиях теоремы 2.2. Теперь получим оценку для |vy| в прямоугольниках,
объединение которых содержит Q. Так как получение внутренних оценок основано на принципе максимума,
то утверждения теоремы полностью сохраняются, когда функция v (t, y) непрерывна в Q, имеет непрерывную
производную vy (t, y) и удовлетворяет уравнению (2.7) вQ всюду за исключением точек конечного числа прямых
y = const.
Переходим теперь к доказательству оценки |v|Q1+γ . После того как оценены нормы |vy|Qγ уравнение (2.7) можно

рассматривать как линейное уравнение

vt = A (t, y) vyy +B (t, y)

с ограниченными и непрерывными по Гельдеру коэффициентами и использовать для оценок и прочих
качественных исследований его решений соответствующие теоремы по линейным уравнениям о линейных
уравнениях.
Чтобы получить оценку вплоть до границы, как и выше, продолжим v (t, y) по правилу (2.15), (2.16). Далее, для

решения продолженного уравнения имеют место внутренние априорные оценки вида (2.14), в прямоугольниках,
охватывающих прямоугольник Q. При этом применяются результаты работы ([10] теорема 3) по Гельдеровости
обобщенного решения. Следовательно, получаем оценку (2.14) в Q.

А оценки для старших производных получим по результатам для линейных уравнений:

Теорема 2.3. Пусть коэффициенты уравнения

ã (t, y) vyy + b̃ (t, y) vy + c̃ (t, y) v − vt = f̃ (t, y) , (t, y) ∈ Q, (2.17)

удовлетворяют условиям Гельдера

|ã|Qγ + |b̃|Qγ + |c̃|Qγ + |f̃ |Qγ < ∞, ã (t, y) ≥ a0 > 0.

Пусть v (t, y) есть решения уравнения (2.17) с v|Г(t=0,y=±s0)
= 0, |v|Q2+γ < +∞ иM = max

Q
|v (t, y) |. Тогда

|v|Q2+γ ≤ C
(
|f̃ |Qγ +M

)
≡ M7. (2.18)
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3. Единственность и существования решения

Для доказательства единственности решения используем идеи работы [17].
Выводим интегральное представление эквивалентное к (1.1). Перепишем (1.1) в виде

(φ (u))t = (d(u)ux)x (3.1)

где φ (u) =
∫ u

0
a (ξ) dξ.

Интегрируя уравнение (3.1) по области D с учетом условий (1.2)-(1.6) имеем

s (t)− h (t) = 2s0 +
µ

d(0)

s0∫
−s0

φ (u0 (ξ)) dξ −
µ

d(0)

s(t)∫
h(t)

φ (u (t, ξ)) dξ. (3.2)

Теорема 3.1. При выполнении условий теоремы 2.1 решение задачи (1.1)-(1.6) единственно

Доказательство. Пусть (h1 (t) , s1 (t) , u1 (t, x)) и (h2 (t) , s2 (t) , u2 (t, x)) являются решениями задачи (1.1)-(1.6)
и, кроме того,

y1 (t) = min (s1 (t) , s2 (t)) , z1 (t) = min (h1 (t) , h2 (t)) ,

y2 (t) = max (s1 (t) , s2 (t)) , z2 (t) = max (h1 (t) , h2 (t)) .

Тогда, с учетом (3.2), имеем

|s1 (t)− s2 (t)|+ |h1 (t)− h2 (t)| ≤
µ

d(0)

z2(t)∫
z1(t)

|φ (ui)| dξ +
µ

d(0)

y2(t)∫
y1(t)

|φ (ui)| dξ+

µ

d(0)

y1(t)∫
z2(t)

|φ (u1)− φ (u2)| dξ (3.3)

где ui (i = 1, 2)− решения между y1 (t) и y2 (t) (соответственно z1 (t) и z2 (t)).
По теореме 2.1 получаем

|u1 (t, y1 (t))− u2 (t, y1 (t))| ≤ N1 |s1 (t)− s2 (t)|

и
|u1 (t, z1 (t))− u2 (t, z1 (t))| ≤ N2 |h1 (t)− h2 (t)| .

Рассмотрим функцию U (t, x) = u1 (t, x)− u2 (t, x). Тогда для U (t, x) получим уравнение с ограниченными
коэффициентами и задачу

b1(t, x)Ut = b2 (t, x)Uxx + b3 (t, x)Ux + b4 (t, x)U, (t, x) ∈ D,

U (0, x) = 0, −s0 ≤ x ≤ s0,

U (t, y1 (t)) ≤ N1 max
0≤η≤t

|s1 (η)− s2 (η)| , t ≥ 0,

U (t, z1 (t)) ≤ N2 max
0≤η≤t

|h1 (η)− h2 (η)| , t ≥ 0,

где коэффициенты уравнения непрерывные и ограниченные функции.
Отсюда по принципу максимума

|U (t, x)| ≤ N1 max
0≤η≤t

|s1 (η)− s2 (η)|+N2 max
0≤η≤t

|h1 (η)− h2 (η)| .
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Задача со свободной границей...

В силу ограниченности функций u (t, x), a (u), a′ (u) оценим составляющие формулы (3.3):

I1 =
µ

d(0)

z2(t)∫
z1(t)

|φ (ui)| dξ ≤ M7 |z2 (t)− z1 (t)| max
0≤η≤t

|h1 (η)− h2 (η)| ≤ M7 max
0≤η≤t

|h1 (η)− h2 (η)|2 ,

I2 =
µ

d(0)

y2(t)∫
y1(t)

|φ (ui)| dξ ≤ M8 |y2 (t)− y1 (t)| max
0≤η≤t

|s1 (η)− s2 (η)| ≤ M8 max
0≤η≤t

|s1 (η)− s2 (η)|2 ,

I3 =
µ

d(0)

y1(t)∫
z2(t)

|φ (u1)− φ (u2)| dξ.

Далее, используя идеи и результат [9, 18], доказательство теоремы завершается.

Существование решения.

Теорема 3.2. Пусть выполнены условия теоремы 2.2. Тогда существует в D решение u (t, x) ∈ C2+γ(D),
s (t) ∈ C1+γ ([0, T ]), h (t) ∈ C1+γ ([0, T ]) задачи (1.1)-(1.6).

Доказательство. Для доказательства разрешимости нелинейной задачи можно воспользоваться различными
теоремами из теории нелинейных уравнений, учитывая, что для нее справедлива теорема единственности
классического решения. Воспользуемся принципом Лере-Шаудера [12], установленным по априорным оценкам
| · |1+γ для всех возможных решений нелинейных задач, и теоремой о разрешимости в классах Гёльдера для
линейных задач.

Более подробное изложение методики можно найти, например, в (Раздел VI, [11]; Раздел VII, [12]).
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Free Boundary Problem for a Nonlinear Diffusion Equation
Rasulov Mirojiddin Sobirjonovich and Umirkhonov Masudkhon Turakhon ugli

Abstract

In this paper, a Stefan-type problem with two free boundaries for a nonlinear heat equation in the one-dimensional
case is considered. The study of nonlinear problems with free boundaries is carried out using a method based on
constructing a priori estimates. In this regard, some initial a priori estimates are first established for solving the
problem under consideration. Then, the problem is reduced to a problem with a fixed boundary through a change
of variables. The resulting problem has time- and position-dependent coefficients with nonlinear terms. Next, a
priori estimates of the Schauder type are constructed for solving the equation with nonlinear terms and a fixed
boundary. Based on the estimates obtained, the solvability of the original problem is established.
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