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O гладкости периодической краевой задачи для
трёхмерного уравнения Чаплыгина в
неограниченном параллелепипеде
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Аннотация
В статье исследуются единственность, существование и гладкость обобщенного решения
периодической краевой задачи для трехмерного уравнения Чаплыгина в неограниченном
параллелепипеде. Для доказательства теоремы единственности, существования и гладкости
решения задачи используются преобразование Фурье, методы "ε регуляризации" и априорных
оценок.
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1. Введение.

Как известно, в работе А.В.Бицадзе показано, что задача Дирихле для уравнения смешанного типа некорректна
[1], [2].

Естественно возникает вопрос: нельзя ли заменить условия задачи Дирихле другими условиями,
охватывающими всю границу, которые обеспечивают корректность задачи? Впервые такие краевые задачи
(нелокальные краевые задачи) для уравнения смешанного типа были предложены и изучены в работах
Ф.И.Франкля при решении газодинамической задачи об обтекании профилей потоком дозвуковой скорости со
сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения [3],[4],[5]. Близкие по постановке задачи для
уравнения смешанного типа первого рода в ограниченных областях изучены в работах [6]-[12].

В данной работе используя результаты работ [11],[12], изучаются однозначная разрешимость и гладкость
обобщённого решения одной периодической краевой задачи для трехмерного уравнения Чаплыгина в
неограниченном параллелепипеде.

В области

G = (−1, 1)× (0, T )×R = Q ×R = { (x, t, z) | x ∈ (−1, 1), 0 < t < T < +∞, z ∈ R }

рассмотрим уравнение Чаплигина:

Lu = K(x)utt −∆u+ a (x)ut + c (x, t)u = f (x, t, z). (1.1)
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Здесь xK(x) ≥ 0, где x ∈ (−1, 1), ∆u = uxx + uzz - оператор Лапласа.
Уравнения (1.1), в зависимости от знака x меняет свой тип то есть, при x > 0 будет гиперболическим, при x < 0

будет эллиптическим, при x = 0 будет параболическим уравнением. Поэтому уравнения (1.1) будет уравнением
смешанного типа первого рода второго порядка (часто называется уравнением Чаплыгина, в частности, когда
K(x) = x будет уравнением Трикоми) [1]. Пусть все коэффициенты уравнения (1.1) достаточно гладкие функции
в области G.

В дальнейшем для решения поставленных задач нам необходимо ввести определения нескольких
функциональных пространств с нормами и обозначения.
Через L2(Q )−обозначим пространство квадратично суммируемых функций со скалярным произведением и

нормой:
(u, v)0 =

∫
Q

uvdxdt,

∥u∥20 = ∥u∥2L2(Q) =

∫
Q

u2dxdt.

ЧерезW l
2(Q), (l = 0, 1, 2, ...) обозначим пространство Соболева с нормой:

∥ϑ∥2l = ∥ϑ∥2W l
2(Q) =

∑
|α|≤l

∫
Q

|Dαϑ|2dxdt,

α−этo мультииндекс, Dα− обобщённая производная пo переменным x и t, W 0
2 (Q) = L2(Q). Через Cl(Q), (l =

0, 1, 2, ...) обозначим пространство непрерывных в Q функций, имеющих непрерывные в Q производные до
порядка l включительно,

C0(Q) = C(Q), ∥u∥C(Q) = max
(x,t)∈Q

|u(x, t)| .

В общем случае
∥u∥Cl(Q) = ∥u∥C(Q) +

∑
|k|≤l

∥∥∥D(k)u
∥∥∥
C(Q)

.

Обозначим через

û = û(x, t, λ) = (2π)−1/2

+∞∫
−∞

u(x, t, z) e−iλzdz

преобразование Фурье по переменной z функции u(x, t, z), а через

u(x, t, z) = (2π)−1/2

+∞∫
−∞

û(x, t, λ) eiλzdλ

обратное преобразованиеФурье. Теперь с помощью преобразованияФурье определим анизотропная пространства
СоболеваW l,s

2 (G) с нормой

∥u∥2W l,s
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
s
· ∥û (x, t, λ)∥2W l

2(Q) dλ, (A)

здесь s, l- любые конечные положительные целые числа, где W l
2(Q) (при l = 0,W 0

2 (Q) = L2(Q)) обозначено
пространства Соболева [15],[16], [20].
В дальнейшем для исследования линейных обратных задач нам понадобится следующие оценки, которые

следуют из теорем вложений Соболева [15],[20].

∥ϑ∥2Cα(Q) ≤ cα+2 ∥ϑ∥2Wα+2
2 (Q) .
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Здесь через cα+2(α = 0, 1)− обозначим положительный различные числа. Через c1− обозначим

c1 =

+∞∫
−∞

λ4dλ

(1 + |λ|2)
3 =

3π

4
.

Очевидно, что пространствоW l,s
2 (G) с нормой (А) является гильбертовым пространством [15],[23].

При получении различных априорных оценок мы часто будем использовать неравенство Коши с σ [15]:

∀u, ϑ > 0, ∀σ > 0, u · ϑ ≤ σ
u2

2
+

ϑ2

2σ

1.1. Постановки задачи.

Периодическая краевая задача: Найти обобщенное решение u(x, t, z) уравнения (1.1) из пространства
W 2,3

2 (G), удовлетворяющее следующим краевым условиям

Dp
t u|t=0 = Dp

t u|t=T , (1.2)

Dp
xu|x=−1 = Dp

xu|x=1, (1.3)

при p = 0, 1, где Dp
t u = ∂pu

∂tp , D0
t u = u.

Далее будем считать, что u(x, t, z) → 0 и uz(x, t, z) → 0 при |z| → ∞. (1.4)

Определение 1.1. Обобщенным решением задачи (1.1)-(1.4) будем называть функцию u(x, t, z) ∈ W 2,3
2 (G),

удовлетворяющую уравнению (1.1) почти всюду в области G, с условиями (1.2)-(1.4).

1.2. Основной результат.

Теорема 1.1. Пусть выполнены высщее перечисленные условия для коэффициентов уравнения (1.1), кроме того
пусть выполненые 2a(x)− µK(x) > δ1 > 0, µ c(x, t)− ct(x, t) > δ2 > 0 , для всех (x, t) ∈ Q, где µ = const > 0,

c(x, 0) = c(x, T ), для всех x ∈ [−1, 1]. Тогда для любой функции f ∈ W 1,3
2 (G),такой, что f(x, 0, z) = f(x, T, z),

существует единственное обобщенное решение задачи (1.1)-(1.4) из пространства W 2,3
2 (G), и для нее

справедливы следующие оценки:
I). ∥u∥2W 1,3

2 (G) ≤ c1 ∥f∥2W 0,3
2 (G) ,

II). ∥u∥2W 2,3
2 (G) ≤ c2 ∥f∥2W 1,3

2 (G) .

В дальнейшем через ci − обозначим положительные, вообще говоря, разные постоянные числа, отличные от
нуля.
Доказательство теоремы проведем по следующей схеме:
1. Для задачи (1.1)–(1.4) формально по переменным применим преобразование Фурье и получим новую задачу

(1.5)–(1.7).
2. Изучим однозначную разрешимость периодической задачи для уравнения третьего порядка с малым

параметром (вспомогательная задача).
3. Затем с помощью этой вспомогательной задачи докажем однозначную разрешимость задачи (1.5)–(1.7).
4. Используя однозначную разрешимость задачи (1.5)–(1.7), дадим обоснование сходимости интегралов Фурье

и докажем разрешимость задачи (1.1)–(1.4).
Приступим к реализации этой схемы.

Применяя для задачи (1.1)–(1.4) преобразование Фурье по переменным z, получим в областиQ = (−1, 1)× (0, T )

следующую задачу
ℑû = K(x)ûtt − ûxx + a (x) ût + (c (x, t) + λ2 )û = f̂ (x, t, λ), (1.5)
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Dp
t û|t=0 = Dp

t û|t=T , p = 0, 1 (1.6)

Dp
x û|x=−1 = Dp

x û|x=1, p = 0, 1, (1.7)

где λ ∈ R = (−∞,∞), f̂(x, t, λ) = (2π)
−1/2

∞∫
−∞

f(x, t, z)e−iλzdz− преобразование Фурье по переменной z

функции f(x, t, z).
Как известно, однозначная разрешимость и гладкость обобщенного решения задачи (1.5)–(1.7) в случае, когда

λ = 0, изучены в пространствах Соболева W m+2
2 (Q),m = 0, 1, 2, ... в работах [11],[12]. Рассмотрим задачи

(1.5)–(1.7) в случае, когда λ ̸= 0. В этом случае решения задачи (1.5)–(1.7) û(x, t, λ) и f̂(x, t, λ) правая часть
уравнения (1.5) зависит от параметра λ. С возрастанием |λ| → ∞ может расти и правая часть уравнения (1.5),
поэтому в этом случае возникает вопрос: как можно получит априорные оценки, обеспечивающше однозначную
разрешимость задачи (1.5)–(1.7). Поэтому сначала при фиксированном λ ∈ R, используя результаты работы [9]–
[12] получим необходимые оценки для решения задачи (1.5)–(1.7). В дальнейшем эти результаты используем для
исследования задачи (1.1)–(1.4) в анизотропных пространствах Соболева Wm+2,s

2 (G), m = 0, 1, 2, ...; s ≥ m+ 3

в неограниченном параллелепипеде

Теорема 1.2. Пусть выполнены высщее перечисленные условия для коэффициентов уравнения (1.5), кроме того
пусть выполненые 2a(x)− µK(x) ≥ δ1 > 0, µ c(x, t)− ct(x, t) ≥ δ2 > 0, для всех (x, t) ∈ Q, где µ = const > 0,

c(x, 0) ≤ c(x, T ), для всех x ∈ [−1, 1]. Тогда, если для любой функции f̂(x, t, λ) ∈ L2(Q) существует решение
задачи (1.5)-(1.7) из пространства W 2

2 (Q), то оно единственно и для нее справедлива следующая первая
априорная оценка

1.1). ∥û∥2W 1
2 (Q) ≤ c1

∥∥∥f̂∥∥∥2
L2(Q)

,

Доказательство. Докажем единственность решения задачи (1.5)–(1.7) с помощью метода интеграла энергии.
Пусть существует решение задачи (1.5)–(1.7) изW 2

2 (Q). Рассмотрим тождество:

(ℑû, 2ût + µû)0 = (f̂ , 2ût + µû)0, µ = const > 0 (1.8)

В силу условий теоремы 1.2, для любой функции û ∈ W 2
2 (Q), интегрируя по частям тождество (1.8), легко

получить следующее неравенство∫
Q

ℑû · (2ût + µû)dxdt ≥
∫
Q

{
(2a− µK(x)) · û2

t+

+µû2
x +

(
(µc− ct) + µλ2

)
· û2dxdt+ (1.9)

+

∫
∂Q

{
(K(x)û2

t + µK(x)ûtû+ û2
x +

(
0, 5µa+ c+ λ2

)
· û2)et − (2 · ûxût + µûxû)ex)

}
ds.

где µ = const > 0, e⃗ = (et, ex) единичный вектор внутренней нормали к границе ∂Q. Условия теоремы 1.2
обеспечивают не отрицательность интеграла по области Q. Учитывая краевые условие (1.6)-(1.7) и используя
условия теоремы 1.2 получим, что граничные интегралы равны нулю.
Учитывая выше сказанное, из неравенства (1.9) получим следующее неравенство снизу∫

Q

ℑû · (2ût + µû)dxdt ≥

≥
∫
Q

{
(2a− µK(x)) · û2

t + µû2
x +

(
(µc− ct) + µλ2

)
· û2

}
dxdt ≥ (1.10)
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≥ δ0

∫
Q

{û2
t + û2

x + û2}dxdt.

где δ0 = min {δ1, µ, δ2} . Теперь из неравенства (1.10) в левой части применяя неравенство Коши с σ, получим
необходимую первую оценку 1.1) для задачи (1.1)-(1.4).

∥û∥2W 1
2 (Q) ≤ c1

∥∥∥f̂∥∥∥2
L2(Q)

, (1.11)

из которой следует единственность решения задачи (1.5)–(1.7) изW 2
2 (Q) [12]. Теорема 1.2 доказана.

2. Уравнение третьего порядка с малым параметром.

Разрешимость задачи (1.5)–(1.7) докажем методом "ε-регуляризации”, а именно: в области
Q = (−1, 1)× (0, T ) рассмотрим семейство уравнений третьего порядка с малым параметром

ℑεûε = −ε
∂3ûε

∂t3
+ ℑûε = f̂(x, t, λ) (2.1)

и с периодическими краевыми условиями

Dq
t ûε|t=0 = Dq

t ûε|t=T , q = 0, 1, 2, (2.2)

Dp
x ûε|x=−1 = Dp

x ûε|x=1, p = 0, 1, (2.3)

где ε− малое положительное число, Dq
zw = ∂qw

∂zq , q = 1, 2; D0
zw = w.

Ниже используем системы уравнений третьего порядка с малым параметром (2.1) в качестве ε-
регуляризирующего уравнения для уравнения (1.5). [12],[17], [20].

Определим пространство функции

W (Q) = { ûε| ûε ∈ W 2
2 (Q), ûεttt ∈ L2(Q)},

удовлетворяющие соответствующим условиям (2.1)–(2.3) с конечной нормой

∥|ûε|∥2W = ε ∥ûεttt∥20 + ∥ûε∥22 . (B)

Очевидно, что пространствоW (Q) с нормой (B) является гильбертовым пространством [12],[15],[20].

Определение 2.1. Обобщенным решением задачи (2.1)–(2.3) будем называть функцию {ûε(x, t, λ)} ∈ W (Q),
удовлетворяющую уравнению (2.1) почти всюду в области Q.

Теорема 2.1. Пусть выполнены высщее перечисленные условия для коэффициентов уравнения (2.1), кроме того
пусть выполненые: 2a(x)− µK(x) ≥ δ1 > 0, µc(x, t)− ct(x, t) ≥ δ2 > 0 для всех (x, t) ∈ Q, где µ = const > 0,

c(x, 0) = c(x, T ) для всех x ∈ [−1, 1]. Тогда для любой функции f̂(x, t, λ) ∈ W 1
2 (Q), такой, что f̂(x, 0, λ) =

f̂(x, T, λ), существует единственное обобщенное решение задачи (2.1)-(2.3) из пространства W (Q) и для нее
справедливы следующие оценки

2.1) ε ∥ûεtt∥20 + ∥ûε∥21 ≤ c1

∥∥∥f̂∥∥∥2
0
,

2.2) ε ∥ûεttt∥20 + ∥ûε∥22 ≤ c2

∥∥∥f̂∥∥∥2
1
.
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Доказательство Теоремы 2.1 осуществляется поэтапно, с использованием метода Галеркина и соответствующих
априорных оценок [11],[12]. Сначала докажем первую априорную оценку 2.1) для задачи (2.1)-(2.3). Для этого
рассмотрим следующую тождество:∫

Q

ℑεûε · (2ûεt + µ ûε) dx dt =

∫
Q

f̂ ·(2ûεt + µ ûε) dx dt. (2.4)

Интегрируя по частям тождество (2.4), учитывая условие Теоремы 2.1 нетрудно получить 2.1)-первую априорную
оценку, аналогичную как первую оценку 1.1), откуда следует единственность обобщенного решения задачи (2.1)-
(2.3) из пространстваW (Q).
Теперь докажем справедливость 2.2) вторую априорную оценку Для этого рассмотрим тождество:∫

Q

ℑεûε · Pûε dx dt =

∫
Q

f̂ ·Pûε dxd t, (2.5)

гдеPûε = (−2ûεttt + µ ûεtt − µûεxx + µûεt).Интегрируя по частям (2.5), с учетом условий теоремы 2.1 и краевых
условий (2.2),(2.3), применяя неравенство Коши с σ, получим следующее неравенство:

c2

[
∥ft∥20 + ∥f∥20

]
≥ ε ∥ûεttt∥20 +

∫
G

{(2a− µK(x))û2
εtt +µû2

εxx + µû2
εtx

}
dxdt +

∫
∂G

[(K(x)û2
εtt + 2aûεtûεtt − 2ûεxxûεtt + 2c ûεûεtt)et − 2ûεttûεxtex]ds− (2.6)

−σ( ∥ûεxt∥20 + ∥ûεtt∥20 )− c (σ) ∥ûε∥21 =

3∑
i=1

Ji,

где σ, c(σ)− коэффициенты неравенства Коши с σ, Ji (i = 1, 3)− интегралы по области, J2- интеграл по границе.
Учитывая условие теоремы 2.1 и краевые условия (2.2), (2.3), получим, что Ji > 0, (i = 1, 3) и J2 = 0. Пусть
δ3 = min {δ1, µ, δ2} , выбирая δ3 − σ > δ0 > 0, из неравенства (2.6) получим необходимую вторую оценку

ε ∥ ûεttt ∥20 + ∥ûε∥22 ≤ c2

∥∥∥f̂∥∥∥2
1
. (2.7)

Из доказанных оценок методом Галеркина получим однозначную разрешимость задачи (2.1)-(2.3) из пространства
W (Q) [12]. Теорема 2.1 доказана.
Перейдем к доказательству разрешимости задачи (1.5)-(1.7).

2.1. Существование решения задачи.

Теорема 2.2. Пусть выполнены все условия теоремы 1.1-2.1. Тогда существует единственное обобщенное
решение задачи (1.5)-(1.7) в пространствеW 2

2 (Q).

Доказательство. Единственность решения задачи (1.5)-(1.7) в пространстве W 2
2 (Q) доказана в теореме 1.2.

Теперь докажем существование решения задачи (1.5)-(1.7) вW 2
2 (Q). Для этого при ε > 0 в областиQ рассмотрим

уравнение (2.1) с краевыми условиями (2.2),(2.3). Так как выполнены все условия теоремы 2.1, то существует
единственное обобщенное решение задачи (2.1)-(2.3) в W (Q), при ε > 0 и для нее справедливы 2.1) первая
и 2.2) вторая оценки. Отсюда следует, по известной теореме о компактности [15,23], что из множества
функций { ûε(x, t, λ)} , ε > 0, можно извлечь слабо сходящуюся подпоследовательность функций, такую, что
{ ûεi(x, t, λ) } → û (x, t, λ) при εi → 0 в W (Q). Покажем, что предельная функция û(x, t, λ) удовлетворяет
уравнению Lû = f̂ (1.5) почти всюду вW 2

2 (Q). В самом деле, так как подпоследовательность {ûεi(x, t, λ)} слабо
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сходится в W (Q), а подпоследовательность {√εiûεittt(x, t, λ)} равномерно ограничена в L2(Q) и оператор L

линейный, то имеем

ℑû− f̂ = ℑû−ℑûεi + εi
∂3û εi

∂t3
= ℑ (û− ûεi ) + εi

∂3û εi

∂t3
. (2.8)

Из равенства (2.8), переходя к пределу при εi → 0, получим единственное обобщенное решение задачи (1.5)-(1.7)
из пространства СоболеваW 2

2 (Q) [12],[21]. Таким образом, Теорема 2.2 доказана.

3. Существование решения задачи (1.1)-(1.4).

Теперь перейдем к доказательству Теоремы 1.1 об однозначной разрешимости обобщенного решения задачи
(1.1)-(1.4) в пространстве W 2,3

2 (G). Для доказательства Теоремы 1.1 сначала докажем справедливость оценки I),
II). Как нам известно в Теореме 2.1 для решения задачи (1.5)-(1.7) доказана справедливость первой оценки 2.1),
то есть

∥û∥2W 1
2 (Q) ≤ c1

∥∥∥f̂∥∥∥2
L2(Q)

. (3.1)

Чтобы доказать, что uz ∈ L2(G), нам необходимо умножить неравенство (3.1) на (2π)
−1/2 · (1 + |λ|2)

3
и

проинтегрировать по λ от −∞ до +∞, тогда получим I) оценку

∥u∥2W 1,3
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
3
· ∥û∥2W 1

2 (Q) dλ ≤

≤ (2π)
−1/2 · c1 ·

+∞∫
−∞

(1 + |λ|2)
3
·
∥∥∥f̂∥∥∥2

L2(Q)
dλ = c1 ∥f∥2W 0,3

2 (G) . (3.2)

Точно так же используя условия Теоремы 2.1 с предельным переходом при ε → 0, из 2.2) второй оценки нетрудно
получить для решения задачи (1.5)-(1.7) следующей оценки

∥û∥2W 2
2 (Q) ≤ c2

∥∥∥f̂∥∥∥2
W 1

2 (Q)
. (3.3)

Чтобы доказать, что uzz ∈ L2(G), нам необходимо умножить неравенство (3.3) на (2π)
−1/2 · (1 + |λ|2)

3
и

интегрировать по λ от −∞ до +∞, тогда получим

∥u∥2W 2,3
2 (G) = (2π)

−1/2 ·
+∞∫

−∞

(1 + |λ|2)
3
· ∥û∥2W 2

2 (Q) dλ ≤

≤ (2π)
−1/2 · c2 ·

+∞∫
−∞

(1 + |λ|2)
3
·
∥∥∥f̂∥∥∥2

W 1
2 (Q)

dλ = c2 ∥f∥2W 1,3
2 (G) , (3.4)

из которой следует справедливость II) второй оценки теоремы 1.1.
Из I)-первой априорной оценки следует единственность обобщенного решения задачи (1.1)-(1.4), а из

справедливости II)-второй априорной оценки следует существование обобщенного решения задачи (1.1)-(1.4)
из пространстваW 2,3

2 (G) [13,14]. Теорема 1.1 доказана.
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4. Гладкость обобщенного решения задачи (1.1)-(1.4).

Теперь обратимся к исследованию гладкости обобщенного решения задачи (1.1)-(1.4) в пространствах
W m+2,s

2 (G), гдеm, s−целые конечные положительные числа, такие, чтоm ≥ 0, s ≥ 3.

Ниже, для простоты предположим, что коэффициенты уравнения (1.1) достаточно дифференцируемыефункции
в замкнутой области Q.

Теорема 4.1. Пусть выполнены все условия теоремы 1.1, кроме того, пусть D q
t c |t=0 = D q

t c |t=T . Тогда
для любой функции f ∈ W m+1,s

2 (G), такой, чтоD q
t f |t=0 = D q

t f |t=T (q = 0, 1, 2, ...,m), существует, причем
единственное, обобщенное решение задачи (1.1)-(1.4) из пространства W m+2,s

2 (G), где m, s−любые целые
конечные положительные числа, такие, что s ≥ m+ 3,m = 0, 1, 2, 3, ....

Доказательство. Отметим, что в работах [11],[12] для уравнения Чаплигина в случае, когда λ = 0 исследована
гладкость обобщенного решения периодической краевой задачи (1.5)-(1.7) в пространствах Соболева Wm+2

2 (Q)

и доказаны соответствующие априорные оценки.

∥û∥2Wm+2
2 (Q) ≤ cm+1

∥∥∥f̂∥∥∥2
Wm+1

2 (Q)
(m = 0, 1, 2, ...). (4.1)

Аналогично такие же результаты можем получить в случае, когда λ ̸= 0. Теперь чтобы доказать, что Ds−1
z u ∈

L2(G), где s ≥ m+ 3, m = 0, 1, 2, 3, ..., и применить теорему вложения Соболева, нам необходимо умножить
неравенство (4.1) на (2π)−1/2 · (1 + |λ|2)s и интегрируя по λ от −∞ до +∞, можем получить

∥u∥2Wm+2,s
2 (G) = (2π)

−1/2

+∞∫
−∞

(1 + |λ|2)
s
· ∥û∥2Wm+2

2 (Q) dλ ≤

≤ (2π)
−1/2

cm+1

+∞∫
−∞

(1 + |λ|2)
s
·
∥∥∥f̂∥∥∥2

Wm+1
2 (Q)

dλ = cm+1 ∥f∥2Wm+1,s
2 (G) . (4.2)

Отсюда получим существование единственного обобщенного решения задачи (1.1)–(1.4) из пространствах
Wm+2,s

2 (G). Теорема 4.1 доказана.

Замечание 4.1. Аналогично изучаются периодические краевые задачи для многомерного уравнения Чаплыгина.

5. Заключение.

В данной статье в неограниченном параллелепипеде доказаны теоремы единственности, существования и
гладкости обобщенного решения периодической краевой задачи для трехмерного уравнения Чаплыгина в
анизотропных пространствах Соболева W m+2,s

2 (G), где m, s−целые конечные положительные числа, причем
m = 0, 1, 2, 3, ..... , s ≥ m+ 3. Доказательство теоремы основано на методах преобразования Фурье, "ε-
регуляризации” и априорных оценок. Рассмотренный метод доказательства может быть применен в исследованиях
нелокальных и периодических краевых задачах для многомерного уравнения смешанного типа.
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On the smoothness of the periodic boundary value problem for the
three-dimensional Chaplygin equation in an unbounded parallelepiped

Dzhamalov Sirojiddin Z., Turakulov Khamidulla Sh. and Sipatdinova Biybinaz R.

Abstract

The article investigates the uniqueness, existence, and smoothness of a generalized solution to the periodic
boundary value problem for the three-dimensional Chaplygin equation in an unbounded parallelepiped. To prove
the theorems on uniqueness, existence, and smoothness of the solution, the Fourier transform, the methods of
ε-regularization, and a priori estimates are used.
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