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Некоторые Функциональные Тождества,
Выводимые Из Одной Конфлюэнтной

Гипергеометрической Функции E7 От Трех
Переменной

Юлдашова Хилола* Хасанов Анвар

Аннотация
В этой статье разбив конфлюэнтную гипергеометрическую функцию E7 на восемь частей,
мы показываем, как можно получить некоторые полезные и обобщенные соотношения между
гипергеометрическими функциями Srivastava F (3) и E7 . Показано, что другие основные
результаты конкретизируются, чтобы получить определенные соотношения между функциями
F1, Ξ1, 4F3, 2F3, 1F2, 1F1 и F 2:2;2

2:1;1 . Также рассматриваются некоторые другие интересные
функциональные соотношения между показательной функцией, гиперболическими функциями
и модифицированными функциями Бесселя.
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1. Это нумерованный заголовок раздела первого уровня

Исследование гипергеометрических функций от многих переменных по существу мотивировано тем, что
решения многих прикладных задач, включая теплопроводность и динамику, электромагнитные колебания
и аэродинамику, квантовую механику и теорию потенциала, могут быть получены с помощью таких
гипергеометрических (высших и специальных или трансцендентных) функций (см. [1], [7], [11], [23], [25]). Такие
функции часто называют специальными функциями в математической физике. Они в основном появляются при
решении уравнений в частных производных методом гармонического анализа.

Ввиду разнообразных приложений важно и само по себе интересно проводить непрерывное исследование
кратных гипергеометрических функций. Фактически, в работе в работе Сриваставы и Карлссона [27] приведен
обширный список из 205 гипергеометрических функций трёх переменных вместе с их областями сходимости.
Отмечено, что функции Риммана и фундаментальные решения вырожденных уравнений в частных производных
второго порядка выражаются через гипергеометрические функции многих переменных (см. [2], [4], [5], [6], [11],
[12], [13], [14], [15], [16], [17], [24], [26], [29], [30], [31]). Для решения краевых задач для рассматриваемых
уравнений в частных производных необходимо исследовать некоторые свойства гипергеометрических функций
многих переменных (см. [18], [19], [20], [21], [22], [29]).
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Ларднер [21] дал некоторые связи между функциями Бесселя и гипергеометрическими рядами 0F3 , например
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где Jν и Iν обозначают функцию Бесселя и модифицированную функцию Бесселя порядка ν, ([1], [10], [28], [33]),
определяемую формулой
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ber (x) и bei (x) (где x вещественное число) обозначают функции Келвина, определяемые как
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Карлссон [8] обобщил эти результаты для произвольных параметров, получив следующие результаты:
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где pFq обобщенная гипергеометрическая функция [27] определяется следующим образом.
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Ружанский, Хасанов, Эргашев в статье [32] используя результаты Сривастава и Карлссон [27], определили 395
конфлуентные гипергеометрические функции второго порядка от трех переменных. Один из них представлен
следующим образом:
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где C и Z−
0 - обозначают множество комплексных чисел и множество неположительных целых чисел

соответственно, (λ)n символ Похгаммера, определяемый (для λ ∈ C) [9], [27] формулой :
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{
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)
,

Γ (λ)—— хорошо известная гамма-функция. Трёхмерная область сходимости функции (1.9) задана Ружанский,
Хасанов, Эргашев [32]: {r < 1, s < 1, t < ∞}, |x| := r, |y| := s, |z| := t, где положительные величины r, s, t

связаны с радиусами сходимости функции (1.9).
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2. Соотношения между гипергеометрическими функциями

В этом разделе мы устанавливаем некоторые интересные и полезные тождества, связанные с функциями E7,
F (3), F p:q;k

l:m;n. Вспомним определения функций Аппеля [9] и функций Кампе де Ферие двух переменных [3], [27],
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F (3) Обобщенная гипергеометрическая функция Сриваставы определяется как [27]
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Для этого мы просто разделяем суммирования в (1.9) на нечётные и чётные степени каждого из xm,yn и
zp. Фактически, для любого комплексного c ∈ C/Z−

0 и любых конечных комплексных x, y и z, ряд E7 (x, y, z)

абсолютно сходится в области сходимости и следовательно, может быть переписан как в следующих восьми
суммированиях:
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Теперь воспользуемся следующим хорошо известным (или легко выводимым) тождеством для символа
Похгаммера (см. [9], [33]):
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после некоторого упрощения получаем следующая теорема.

Теорема 2.1. Имеет место следующей соотношение между E7 и F (3)
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Далее, меняя знаки x, y, z в определении E7, мы легко выражаем F (3) через E7 из (2.4).

Теорема 2.2. Справедливы следующие восемь соотношений между F (3) и E7.
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c (c+ 1)

xz = E7 (x, y, z)−E7 (−x, y, z) + E7 (x,−y, z)−E7 (x, y,−z)

−E7 (−x,−y, z) + E7 (−x, y,−z)−E7 (x,−y,−z) + E7 (−x,−y,−z) ,

F (3)

[
− ::

c+2
2 , c+3

2 ::

a1+1
2 , a1+2

2 ;

−;

−;

−;

− :

− :

a2

2 , a2+1
2 ;

1
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

x2, y2,
z2

4

]

×8
a1a3a4
c (c+ 1)

yz = E7 (x, y, z) + E7 (−x, y, z)−E7 (x,−y, z)− E7 (x, y,−z)
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−E7 (−x,−y, z)− E7 (−x, y,−z) + E7 (x,−y,−z) + E7 (−x,−y,−z) ,

F (3)

[
− ::

c+3
2 , c+4

2 ::

a1+2
2 , a1+3

2 ;

−;

−;

−;

− :

− :

a2+1
2 , a2+2

2 ;
3
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

x2, y2,
z2

4

]

×8
a1 (a1 + 1) a2a3a4
c (c+ 1) (c+ 2)

xyz = E7 (x, y, z)− E7 (−x, y, z)−E7 (x,−y, z)− E7 (x, y,−z)

+E7 (−x,−y, z) + E7 (−x, y,−z)+E7 (x,−y,−z)−E7 (−x,−y,−z) ,

где для простоты обозначено E7 (x, y, z) = E7 (a1, a2, a3, a4; c;x, y, z) обозначается как (1.9).

Следствие 2.1. Если в соотношение (2.4) полагать z = 0 то мы имеем

F1 (a1; a2, a3; c;x, y) = E7 (a1, a2, a3, a4; c;x, y, 0) = (2.5)

= F 2:2;2
2:1;1

[
a1

2 , a1+1
2 :

c
2 ,

c+1
2 :

a2

2 , a2+1
2 ;
1
2 ;

a3

2 , a3+1
2 ;
1
2 ;

x2, y2

]

+
a1a2
c

xF 2:2;2
2:1;1

[
a1+1

2 , a1+2
2 :

c+1
2 , c+2

2 :

a2+1
2 , a2+2

2 ;
3
2 ;

a3

2 , a3+1
2 ;
1
2 ;

x2, y2

]

+
a1a3
c

yF 2:2;2
2:1;1

[
a1+1

2 , a1+2
2 :

c+1
2 , c+2

2 :

a2

2 , a2+1
2 ;
1
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

x2, y2

]

+
a1 (a1 + 1) a2a3

c (c+ 1)
xyF 2:2;2

2:1;1

[
a1+2

2 , a1+3
2 :

c+2
2 , c+3

2 :

a2+1
2 , a2+2

2 ;
3
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

x2, y2

]
.

Следствие 2.2. Меняя знаки x, y переменных в (2.5), мы легко выражаем F 2:2;2
2:1;1 через F1

4F 2:2;2
2:1;1

[
a1

2 , a1+1
2 :

c
2 ,

c+1
2 :

a2

2 , a2+1
2 ;
1
2 ;

a3

2 , a3+1
2 ;
1
2 ;

x2, y2

]
(2.6)

= F1 (x, y) + F1 (−x, y) + F1 (x,−y) + F1 (−x,−y) ,

4
a1a2
c

xF 2:2;2
2:1;1

[
a1+1

2 , a1+2
2 :

c+1
2 , c+2

2 :

a2+1
2 , a2+2

2 ;
3
2 ;

a3

2 , a3+1
2 ;
1
2 ;

x2, y2

]
(2.7)

= F1 (x, y)−F1 (−x, y) + F1 (x,−y)− F1 (−x,−y) ,

4
a1a3
c

yF 2:2;2
2:1;1

[
a1+1

2 , a1+2
2 :

c+1
2 , c+2

2 :

a2

2 , a2+1
2 ;
1
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

x2, y2

]
(2.8)

= F1 (x, y) + F1 (−x, y)−F1 (x,−y)− F1 (−x,−y) ,

4
a1 (a1 + 1) a2a3

c (c+ 1)
xyF 2:2;2

2:1;1

[
a1+2

2 , a1+3
2 :

c+2
2 , c+3

2 :

a2+1
2 , a2+2

2 ;
3
2 ;

a3+1
2 , a3+2

2 ;
3
2 ;

x2, y2

]
= (2.9)

= F1 (x, y)−F1 (−x, y)− F1 (x,−y) + F1 (−x,−y) ,

где F1 (x, y) = F1 (a1; b1, b2; c;x, y) .
Комментарий 1. Если в разложениях (2.6) -(2.9) воспользоваться формулой

F1 (α;β, β
′;β + β′;x, y) = (1− y)

−α
F (α, β;β + β′; (x− y) / (1− y)) ,
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то мы получим функциональные соотношения между функциями F 2:2;2
2:1;1 и гипергеометрическими функциями

Гаусса F .
Комментарий 2. При y = 0 из равенств (2.5), (2.6), (2.7), следуют функциональные тождества

F (a1, a2; c;x)=4F3

(
a1
2
,
a1 + 1

2
,
a2
2
,
a2 + 1

2
;
c

2
,
c+ 1

2
,
1

2
;x2

)

+
a1a2
c

x4F3

(
a1 + 1

2
,
a1 + 2

2
,
a2 + 1

2
,
a2 + 2

2
;
c+ 1

2
,
c+ 2

2
,
3

2
;x2

)
,

24F3

(
a1
2
,
a1 + 1

2
,
a2
2
,
a2 + 1

2
;
c

2
,
c+ 1

2
,
1

2
;x2

)
= F (a1, a2; c;x) + F (a1, a2; c;−x) ,

2
a1a2
c

x4F3

(
a1 + 1

2
,
a1 + 2

2
,
a2 + 1

2
,
a2 + 2

2
;
c+ 1

2
,
c+ 2

2
,
3

2
;x2

)
= F (a1, a2; c;x)− F (a1, a2; c;−x) .

Если воспользоваться, например равенствами [33]:

F

(
−1

2
,−1

2
;
1

2
;x

)
=

√
1− x+

√
x arcsin

√
x, 0 ≤ x ≤ 1,

F

(
−1

2
,−1

2
;
1

2
;−x

)
=

√
1 + x−

√
x ln

(√
x+

√
1 + x

)
, 0 ≤ x ≤ 1,

То мы получим следующие функциональные тождества

3F2

(
−1

4
,−1

4
,
1

4
;
3

4
,
1

2
;x2

)
+

1

2
x3F2

(
1

4
,
1

4
,
3

4
;
5

4
,
3

2
;x2

)
=

√
1− x+

√
x arcsin

√
x,

3F2

(
−1

4
,−1

4
,
1

4
;
3

4
,
1

2
;x2

)
− 1

2
x3F2

(
1

4
,
1

4
,
3

4
;
5

4
,
3

2
;x2

)
=

√
1 + x−

√
x ln

(√
x+

√
1 + x

)
,

23F2

(
−1

4
,−1

4
,
1

4
;
3

4
,
1

2
;x2

)
=
√
1− x+

√
1 + x+

√
x
[
arcsin

√
x− ln

(√
x+

√
1 + x

)]
,

x3F2

(
1

4
,
1

4
,
3

4
;
5

4
,
3

2
;x2

)
=

√
1− x−

√
1 + x+

√
x
[
arcsin

√
x+ ln

(√
x+

√
1 + x

)]
.

Следствие 2.3. Если в соотношение (2.4) полагать x = 0, то мы имеем

Ξ1 (a1, a4, a3; c; y, z) = E7 (a1, a2, a3, a4; c; 0, y, z) (2.10)

= F 0:4;2
2:1;1

[
− :

c
2 ,

c+1
2 :

a1

2 , a1+1
2 , a3

2 , a3+1
2 ;
1
2 ;

a4

2 , a4+1
2 ;
1
2 ;

y2,
z2

4

]

+
a1a3
c

yF 0:4;2
2:1;1

[
− :

c+1
2 , c+2

2 :

a1+1
2 , a1+2

2 , a3+1
2 , a3+2

2 ;
3
2 ;

a4

2 , a4+1
2 ;
1
2 ;

y2,
z2

4

]

+
a4
c
zF 0:4;2

2:1;1

[
− :

c+1
2 , c+2

2 :

a1

2 , a1+1
2 , a3

2 , a3+1
2 ;
1
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

y2,
z2

4

]

+
a1a3a4
c (c+ 1)

yzF 0:4;2
2:1;1

[
− :

c+2
2 , c+3

2 :

a1+1
2 , a1+2

2 , a3+1
2 , a3+2

2 ;
3
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

y2,
z2

4

]

ujmcs.tstu.uz 140

http://ujmcs.tstu.uz


Х. Юлдашова, А. Хасанов

где функция Гумберта [3], [9] определяется следующим образом:

Ξ1 (α1, α2, β; γ;x, y) =

∞∑
m,n=0

(α1)m (α2)n (β)m
(γ)m+n m!n!

xmyn.

Следствие 2.4. Аналогичным образом, меняя знаки y, z переменных в (2.9), мы выражаем
гипергеометрическую функцию F 0:4;2

2:1;1 через функцию Ξ1.

4F 0:4;2
2:1;1

[
− :

c
2 ,

c+1
2 :

a1

2 , a1+1
2 , a3

2 , a3+1
2 ;
1
2 ;

a4

2 , a4+1
2 ;
1
2 ;

y2,
z2

4

]
=

= Ξ1 (y, z) + Ξ1 (−y, z) + Ξ1 (y,−z) + Ξ1 (−y,−z) ,

4
a1a3
c

yF 0:4;2
2:1;1

[
− :

c+1
2 , c+2

2 :

a1+1
2 , a1+2

2 , a3+1
2 , a3+2

2 ;
3
2 ;

a4

2 , a4+1
2 ;
1
2 ;

y2,
z2

4

]
=

= Ξ1 (y, z)− Ξ1 (−y, z) + Ξ1 (y,−z)− Ξ1 (−y,−z) ,

4
a4
c
zF 0:4;2

2:1;1

[
− :

c+1
2 , c+2

2 :

a1

2 , a1+1
2 , a3

2 , a3+1
2 ;
1
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

y2,
z2

4

]
=

= Ξ1 (y, z) + Ξ1 (−y, z)− Ξ1 (y,−z)− Ξ1 (−y,−z) ,

4
a1a3a4
c (c+ 1)

yzF 0:4;2
2:1;1

[
− :

c+2
2 , c+3

2 :

a1+1
2 , a1+2

2 , a3+1
2 , a3+2

2 ;
3
2 ;

a4+1
2 , a4+2

2 ;
3
2 ;

y2,
z2

4

]
=

= Ξ1 (y, z)− Ξ1 (−y, z)− Ξ1 (y,−z) + Ξ1 (−y,−z) ,

где Ξ1 (y, z) = Ξ1 (a1, a4, a3; c; y, z).
Следствие 2.5. Если в соотношение (2.10)полагать y = 0, то мы имеем

1F1 (a4; c; z) = 2F3

(
a4
2
,
a4 + 1

2
;
c

2
,
c+ 1

2
,
1

2
;
z2

4

)
a4
c
z2F3

(
a4 + 1

2
,
a4 + 2

2
;
c+ 1

2
,
c+ 2

2
,
3

2
;
z2

4

)
,

где 1F1 функция Куммера, а 2F3 обобщенная гипергеометрическая функция Гаусса.
Из функционального равенство (2.10) не трудно получить следующие соотношения, которые связывают

обобщенные гипергеометрические ряды с функциями Куммера

22F3

(
a5
2
,
a5 + 1

2
;
c

2
,
c+ 1

2
,
1

2
;
z2

4

)
= 1F1 (a5; c; z) + 1F1 (a5; c;−z) ,

2
a5
c
z2F3

(
a5 + 1

2
,
a5 + 2

2
;
c+ 1

2
,
c+ 2

2
,
3

2
;
z2

4

)
= 1F1 (a5; c; z)− 1F1 (a5; c;−z) .

Если воспользоваться формулами для функции Куммера [33], например:

1F1

(
3

4
;−1

4
; z

)
= (1− 4z) ez, 1F1

(
3

4
;−1

4
;−z

)
= (1 + 4z) e−z,

1F1

(
1

2
; 1; z

)
= I0

(z
2

)
e

z
2 , 1F1

(
1

2
; 1;−z

)
= I0

(z
2

)
e−

z
2 ,
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1F1

(
1

2
; 2; z

)
=

[
I0

(z
2

)
− I1

(z
2

)]
e

z
2 , 1F1

(
1

2
; 2;−z

)
=

[
I0

(z
2

)
+ I1

(z
2

)]
e−

z
2 ,

1F1 (a; 2a; z) =
(z
4

) 1
2−a

Γ

(
1

2
+ a

)
Ia− 1

2

(z
2

)
e

z
2 ,

1F1 (a; 2a;−z) =
(z
4

) 1
2−a

Γ

(
1

2
+ a

)
Ia− 1

2

(z
2

)
e−

z
2 ,

тогда мы получаем следующие функциональные соотношения

1F2

(
7

8
;−1

8
,
1

2
;
z2

4

)
= ch (z)− 4zsh (z) ,

3z1F2

(
11

8
;
3

8
,
3

2
;
z2

4

)
= 4zch (z)− sh (z) ,

2F3

(
1

4
,
3

4
;
1

2
, 1,

1

2
;
z2

4

)
= ch

(z
2

)
I0

(z
2

)
,

z2F3

(
3

4
,
5

4
; 1,

3

2
,
3

2
;
z2

4

)
= 2sh

(z
2

)
I0

(z
2

)
,

2F3

(
1

4
,
3

4
; 1,

3

2
,
1

2
;
z2

4

)
= ch

(z
2

)
I0

(z
2

)
− sh

(z
2

)
I1

(z
2

)
,

z2F3

(
3

4
,
5

4
;
3

2
, 2,

3

2
;
z2

4

)
= 4sh

(z
2

)
I0

(z
2

)
− 4ch

(z
2

)
I1

(z
2

)
,

2F3

( 1
4

2
,
1
4 + 1

2
;
1
2

2
,
1
2 + 1

2
,
1

2
;
z2

4

)
= Γ

(
3

4

)
ch

(z
2

)
4

√
z

4
I− 1

4

(z
2

)
,

z2F3

( 1
4 + 1

2
,
1
4 + 2

2
;
1
2 + 1

2
,
1
2 + 2

2
,
3

2
;
z2

4

)
= 2Γ

(
3

4

)
sh

(z
2

)
4

√
z

4
I− 1

4

(z
2

)
,

2F3

(
a

2
,
a+ 1

2
; a,

2a+ 1

2
,
1

2
;
z2

4

)
= Γ

(
1

2
+ a

)(z
4

) 1
2−a

ch
(z
2

)
Ia− 1

2

(z
2

)
,

z2F3

(
a+ 1

2
,
a+ 2

2
;
2a+ 1

2
, a+ 1,

3

2
;
z2

4

)
= 2Γ

(
1

2
+ a

)(z
4

) 1
2−a

sh
(z
2

)
Ia− 1

2

(z
2

)
,

то мы получаем функциональные тождества для обобщенной гипергеометрической функции Гаусса 2F3 с
модифицированной функцией Бесселя Iν .

3. Заключение

В данной статье представлено систематическое разложение вырожденной гипергеометрической функции E7

на восемь различных компонентов. С помощью этого аналитического разложения мы устанавливаем новые и
общие соотношения, связывающиеE7 с тройной гипергеометрической функцией СриваставыF (3). Предложенная
структура позволяет нам задавать явные формулы редукции и тождества преобразования, включающие несколько
классических и обобщенных гипергеометрических функций, в том числе F1, Ξ1, 4F3, 2F3, 1F2, 1F1 и F 2:2;2

2:1;1 .
Кроме того, в качестве частных случаев наших общих результатов мы получаем несколько новых и потенциально
полезных функциональных соотношений, которые включают элементарные и специальные функции, такие как
экспоненциальная функция, гиперболические функции и модифицированные функции Бесселя. Таким образом,
работа предлагает единый подход к выводу тождеств между различными гипергеометрическими формами и
расширяет известные связи в теории специальных функций.
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Some functional identities derived from a single confluent hypergeometric function
E7

Yuldashova Hilola, Hasanov Anvar

Abstract

In this paper, by decomposing the confluent hypergeometric functionE7 into eight parts, we demonstrate how some
useful and generalized relations between the hypergeometric functions of Srivastava F (3) and E7 can be obtained.
It is shown that other main results are specified in order to derive certain relations between the functions F1,
Ξ1, 4F3, 2F3, 1F2, 1F1 and F 2:2;2

2:1;1 . Some other interesting functional relations involving the exponential function,
hyperbolic functions, and modified Bessel functions are also considered.

Keywords
Confluent hypergeometric function;generalized hypergeometric series; functional identities; modified Bessel

functions; exponential function.
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