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Shomurodov Nozmbek ∗ To’rayev Alimardon

Abstract
Random variables seen in many practical problems of statistical physics, quantum field theory,
and reliability theory are associated connected random variables. This article focuses on
nonparametric estimates for statistics constructed by associated random variables. It proves a
theorem for a sequence of stationary associated random variables with two identical marginal
distributions.
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1. INTRODUCTION

It is well-known that independent random variables have been extensively studied in science. However, in
nature and technology, random variables are often dependent. Therefore, the study of dependent random
variables, specifically associated random variables, under certain conditions, and demonstrating their
applications in practical problems has been the focus of many prominent experts. In this field, renowned
mathematicians such as Newman, Prakasa Rao, Harris, Fortuin, Lebowitz, Hoeffding, Wilcoxon, Mann,
Whitney, and their students have achieved fundamental results. Currently, with the development of several
directions in mathematical statistics, the importance of the theory of associated random variables has
significantly increased, which is well-known among specialists. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.

1.1. Preliminaries

Definition 1.1. Let (𝑋,𝑌 ) be a random vector with 𝐸 [𝑋2] < ∞ and 𝐸 [𝑌2] < ∞. Define

𝐻 (𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) − 𝑃(𝑋 ≤ 𝑥)𝑃(𝑌 ≤ 𝑦). (1.1)

Recall the Hoeffding identity [8]:
cov(𝑋,𝑌 ) =

∫
R2

𝐻 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (1.2)

This identity was extended to the multivariate case by Block and Fang (1988) using the concept of cumulants
for random vectors. Yu (1993) generalized Newman’s (1984) earlier work by extending the covariance identity to
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absolutely continuous functions of the components of the random vector 𝑋 . Cuesta-Molina (1992) generalized
the Hoeffding identity to semi-monotonic functions 𝐾 (·) in the following form:

𝐾 (𝑥′, 𝑦′) − 𝐾 (𝑥, 𝑦′) − 𝐾 (𝑥′, 𝑦) + 𝐾 (𝑥, 𝑦) ≥ 0 [9]

for all 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′. This was proven as:

𝐸 [𝐾 (𝑋,𝑌 )] − 𝐸 [𝐾 (𝑋∗, 𝑌 ∗)] =
∫
R2
𝐻 (𝑥, 𝑦)𝐾 (𝑑𝑥, 𝑑𝑦),

where 𝑋∗ and 𝑌 ∗ are independent random variables with the same marginal distributions as 𝑋 and 𝑌 ,
respectively. These results were further generalized by Yu (1993), Cuesta-Molina (1992), and Prakasa Rao
(1998) to the multivariate case. Cuadras (2002) showed that if 𝛼(𝑥) and 𝛽(𝑦) are functions with finite variation,
then:

cov(𝛼(𝑋), 𝛽(𝑌 )) =
∫
R2
𝐻 (𝑥, 𝑦)𝛼(𝑑𝑥)𝛽(𝑑𝑦).

This result is a special case of (1.2.). From this, we can see that cov(𝑋1, 𝑋𝑛) → 0 as 𝑛→ ∞. In particular, we
have:

sup
𝑛

|cov(𝑋1, 𝑋𝑛) | < ∞.

Using the association property of 𝑋1, . . . , 𝑋𝑛, we observe that cov(𝑋1, 𝑋𝑛) > 0 and obtain:

0 ≤ cov(𝑋1, 𝑋 𝑗) = [cov(𝑋1, 𝑋 𝑗)]2/3 [cov(𝑋1, 𝑋 𝑗)]1/3 ≤ [sup cov(𝑋1, 𝑋𝑛)]2/3 [cov(𝑋1, 𝑋 𝑗)]1/3.

Therefore,
𝑛∑︁
𝑗=2

cov(𝑋1, 𝑋 𝑗) ≤ [sup cov(𝑋1, 𝑋𝑛)]2/3
𝑛∑︁
𝑗=2

[cov(𝑋1, 𝑋 𝑗)]1/3 < ∞. (1.3)

Let 𝑅1, 𝑅2, . . . , 𝑅𝑛 be the ranks of 𝑋1, 𝑋2, . . . , 𝑋𝑛. The Wilcoxon signed-rank statistic is defined as...

2. Main part

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of stationary random variables. We can express 𝑇 as a linear combination of
two U-statistics (Hettmansperger (1984)):

𝑇 = 𝑛𝑈
(1)
𝑛 +

(
𝑛

2

)
𝑈

(2)
𝑛 , (2.1)

where

𝑛𝑈
(1)
𝑛 =

𝑛∑︁
𝑖=1

𝜙(𝑋𝑖),(
𝑛

2

)
𝑈

(2)
𝑛 =

∑︁
1≤𝑖< 𝑗≤𝑛

𝜓(𝑋𝑖 , 𝑋 𝑗), (2.2)

and

𝜓(𝑥, 𝑦) = 𝐼 (𝑥 + 𝑦 > 0). (2.3)

For a stationary sequence {𝑋𝑛, 𝑛 ≥ 1}, we have:
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𝐸 (𝑈 (2)
𝑛 ) = 1(𝑛

2
) ∑︁

1≤𝑖< 𝑗≤𝑛
𝑃𝑖 𝑗 =

1(𝑛
2
) 𝑛∑︁

𝑗=2

(𝑛 − 𝑗 + 1)𝑝1, 𝑗 ,

where 𝑝𝑖 𝑗 = 𝑃[𝑋𝑖 + 𝑋 𝑗 > 0]. Define:

𝜃 =

∫ ∞

−∞

∫ ∞

−∞
𝜓(𝑥, 𝑦)𝑑𝐹 (𝑥)𝑑𝐹 (𝑦),

𝜃 =

∫ ∞

−∞

∫ ∞

−∞
𝜓(𝑥, 𝑦)𝑑𝐹 (𝑥)𝑑𝐹 (𝑦) = 1 −

∫ ∞

−∞
𝐹 (−𝑥)𝑑𝐹 (𝑥),

𝜓1(𝑥1) = 𝐸 (𝜓(𝑥1, 𝑥2)) =
∫ ∞

−∞
𝜓(𝑥1, 𝑥2)𝑑𝐹 (𝑥2) = 1 − 𝐹 (−𝑥1).

Then,

ℎ (1) (𝑥1) = 𝜓1(𝑥1) − 𝜃, (2.4)

and

ℎ (2) (𝑥1, 𝑥2) = 𝜓(𝑥1, 𝑥2) − 𝜓1(𝑥1) − 𝜓1(𝑥2) + 𝜃 = 𝜓(𝑥1, 𝑥2) + 𝐹 (−𝑥1) + 𝐹 (−𝑥2) − 2 + 𝜃. (2.5)

The Hoeffding decomposition (H-decomposition) for𝑈 (2)
𝑛 is given by (Lee (1990)):

𝑈
(2)
𝑛 = 𝜃 + 2𝐻 (1)

𝑛 + 𝐻 (2)
𝑛 , (2.6)

where 𝐻 ( 𝑗 )
𝑛 is the 𝑗-th degree U-statistic based on the kernel ℎ ( 𝑗 ) , 𝑗 = 1, 2:

𝐻
( 𝑗 )
𝑛 =

1(𝑛
𝑗

) ∑︁ ℎ ( 𝑗 ) (𝑋𝑖1 , . . . , 𝑋𝑖 𝑗 ), (2.7)

with the sum taken over all subsets 1 ≤ 𝑖1 < . . . < 𝑖 𝑗 ≤ 𝑛 of {1, . . . , 𝑛}.

2.1. Variance Decomposition

Here, the sum is taken over all subsets {1, . . . , 𝑛} for 1 ≤ 𝑖1 < . . . < 𝑖 𝑗 ≤ 𝑛. Considering the H-decomposition,
we obtain the following:

Var
(
𝑈

(2)
𝑛

)
= 4Var

(
𝐻

(1)
𝑛

)
+ Var

(
𝐻

(2)
𝑛

)
+ 4Cov

(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
. (2.8)

Now, consider the following equality (Dewan and Prakasa Rao (2001)):

Var
(
𝐻

(1)
𝑛

)
=

1
𝑛

©­«𝜎2
1 + 2

∞∑︁
𝑗=2

𝜎2
1 𝑗
ª®¬ + 𝑜

(
1
𝑛

)
, (2.9)

where

𝜎2
1 = Var (𝐹 (−𝑋1)) ,

𝜎2
1 𝑗 = Cov

(
𝐹 (−𝑋1), 𝐹 (−𝑋1+ 𝑗)

)
. (2.10)

Using Newman’s inequality and (1.3), we can write:
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∞∑︁
𝑗=2

𝜎2
1 𝑗 =

∞∑︁
𝑗=2

Cov
(
𝐹 (−𝑋1), 𝐹 (−𝑋1+ 𝑗)

)
< ∞.

Additionally,

Var
(
𝐻

(2)
𝑛

)
=

(
𝑛

2

)−2 ∑︁
1≤𝑖< 𝑗≤𝑛

∑︁
1≤𝑘<𝑙≤𝑛

Cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}
,

where

Cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}
= Cov

{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

}
+

+Cov
{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (−𝑋𝑘)

}
+ Cov

{
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (−𝑋𝑙)

}
+

+Cov {𝜓(𝑋𝑘 , 𝑋𝑙), 𝐹 (−𝑋𝑘)} + Cov {𝜓(𝑋𝑘 , 𝑋𝑙), 𝐹 (−𝑋𝑙)} +

+Cov {𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)} + Cov {𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)} .

Using Newman’s (1980) inequality, we obtain: Using Newman’s (1980) inequality, we obtain:

|Cov (𝐹 (−𝑋𝑘), 𝐹 (−𝑋𝑙)) | ≤ sup
𝑥

( 𝑓 (𝑥))2 Cov (𝑋𝑘 , 𝑋𝑙) . (2.11)

Due to the boundedness of the density function, the following result from Bagai and Prakasa Rao (1991)
holds: ��Cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

) �� =
=
��𝑃 [

𝑋𝑖 + 𝑋 𝑗 > 0, 𝑋𝑘 + 𝑋𝑙 > 0
]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 > 0

]
𝑃 [𝑋𝑘 + 𝑋𝑙 > 0]

�� ≤
≤ 𝐶

[
Cov

(
𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘 + 𝑋𝑙

) ]1/3
=

= 𝐶
[
Cov (𝑋𝑖 , 𝑋𝑘) + Cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ Cov (𝑋𝑖 , 𝑋𝑙) + Cov

(
𝑋 𝑗 , 𝑋𝑙

) ]1/3
. (2.12)

Let 𝑍 = 𝑋𝑖 + 𝑋 𝑗 . Then, 𝜓(𝑋𝑖 , 𝑋 𝑗) = 𝐼 (𝑋𝑖 + 𝑋 𝑗 > 0) = 𝐼 (𝑍 > 0). Note that this function has a jump at 𝑧 = 0.
From equation (2.12), we can conclude that:��Cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (𝑋𝑘)

) �� =
=

����∫ ∞

−∞

(
𝑃
[
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

)
𝑑𝐹 (𝑥)

���� ≤
≤
∫ ∞

−∞
|𝑃[𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥] − 𝑃[𝑋𝑖 + 𝑋 𝑗 ≤ 0]𝑃[𝑋𝑘 ≤ 𝑥] |𝑑𝐹 (𝑥) ≤

≤ 𝐶
∫ ∞

−∞
[cov(𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘)]1/3𝑑𝐹 (𝑥) = 𝐶 [cov(𝑋𝑖 + 𝑋 𝑗 , 𝑋𝑘)]1/3 =

= 𝐶 [cov(𝑋𝑖 , 𝑋𝑘) + cov(𝑋 𝑗 , 𝑋𝑘)]1/3.
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Using equations (2.11), (2.12), and (2.13) in equation (2.10), we obtain the following:���cov
{
ℎ (2) (𝑋𝑖 , 𝑋 𝑗), ℎ (2) (𝑋𝑘 , 𝑋𝑙)

}��� ≤
≤ 𝐶

[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

) ] 1
3 +

[
cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+ [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3 +

+ cov (𝑋𝑖 , 𝑋𝑘) + cov
(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

)
≤

≤ 𝐶
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

+ [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3 +

= 𝐶
[
cov (𝑋𝑖 , 𝑋𝑘) + cov

(
𝑋 𝑗 , 𝑋𝑘

)
+ cov (𝑋𝑖 , 𝑋𝑙) + cov

(
𝑋 𝑗 , 𝑋𝑙

) ] 1
3 +

= [cov (𝑋𝑘 , 𝑋𝑖) + cov (𝑋𝑙, 𝑋𝑖)]
1
3 +

[
cov

(
𝑋𝑘 , 𝑋 𝑗

)
+ cov

(
𝑋𝑙, 𝑋 𝑗

) ] 1
3

𝑟 = ( |𝑖 − 𝑘 |]) + 𝑟 ( | 𝑗 − 𝑘 |]) + 𝑟 ( |𝑖 − 𝑙 |]) + 𝑟 [| 𝑗 − 𝑙 |]∑︁
𝑟 (𝑘) < ∞.

Therefore, from Serfling’s (1968) theorem, we obtain as 𝑛→ ∞

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝑣𝑎𝑟

(
𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (2.13)

Using the Cauchy-Schwarz inequality, the following follows

cov
(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
.

Using equations (2.8), (2.9), (2.16), and (2.17), we can write

var
(
𝑈

(2)
𝑛

)
= 4

𝜎2
1 + 2

∞∑︁
𝑗=1

𝜎2
1 𝑗

 + 𝑜
(

1
𝑛

)
.

To obtain the limit distribution of the U-statistic, we introduce the following theorem.

Theorem 2.1. Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of associated random variables. Suppose

∞∑︁
𝑘=1

𝑟 (𝑘) < ∞ holds. Then, as 𝑛→ ∞,

𝑛1/2
(
𝑈

(2)
𝑛 − 𝜃

)
𝑒−→ 𝑁 (0, 1)

where 𝜎2
𝑈
= 𝜎2

1 + 2
∑∞

𝑗=1 𝜎
2
1 𝑗 .
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Proof. Here, we also use relations (2.2)–(2.12), and make appropriate modifications in the remaining
relations: Using Newman’s (1980) inequality, we obtain

|cov (𝐹 (−𝑋𝑖), 𝐹 (−𝑋𝑘)) | ≤ sup
𝑥

( 𝑓 (𝑥))2 cov(𝑋𝑖 , 𝑋𝑘). (2.14)

Due to the boundedness of the density function, the following result follows from Bagai and Prakasa Rao’s
(1991) theorem: ��cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝜓(𝑋𝑘 , 𝑋𝑙)

) �� =
=
��𝑃 [

𝑋𝑖 + 𝑋 𝑗 > 0, 𝑋𝑖 + 𝑋𝑘 > 0
]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 > 0

]
𝑃 [𝑋𝑖 + 𝑋𝑘 > 0]

�� ≤
≤ 𝐶𝑟 ( |𝑖 − 𝑙 |) .

Let 𝑍 = 𝑋𝑖 + 𝑋 𝑗 . Note that the function 𝜓(𝑋𝑖 , 𝑋 𝑗) = 𝐼 (𝑋𝑖 + 𝑋 𝑗 > 0) = 𝐼 (𝑧 > 0) has a discontinuity at 𝑧 = 0.
Now, from equation (2.12), it follows that��cov

(
𝜓(𝑋𝑖 , 𝑋 𝑗), 𝐹 (𝑋𝑘)

) �� =
=

����∫ ∞

−∞

(
𝑃
[
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

)
𝑑𝐹 (𝑥)

���� ≤
≤
∫ ∞

−∞

��𝑃 [
𝑋𝑖 + 𝑋 𝑗 ≤ 0, 𝑋𝑘 ≤ 𝑥

]
− 𝑃

[
𝑋𝑖 + 𝑋 𝑗 ≤ 0

]
𝑃 [𝑋𝑘 ≤ 𝑥]

�� 𝑑𝐹 (𝑥) ≤
= 𝐶 [𝑟 ( |𝑖 − 𝑘 |) + 𝑟 ( | 𝑗 − 𝑘 |)] . (2.15)

Using equations (2.14) and (2.15) in equation (2.12)we obtain���cov
(
ℎ (2)

(
𝑋𝑖 , 𝑋 𝑗

)
, ℎ (2) (𝑋𝑘 , 𝑋𝑙)

)��� ≤
= 𝑟 ( |𝑖 − 𝑘 |) + 𝑟 ( | 𝑗 − 𝑘 |) + 𝑟 ( |𝑖 − 𝑙 |) + 𝑟 ( | 𝑗 − 𝑙 |) .

∞∑︁
𝑘=1

𝑟 (𝑘) < ∞.

From this and Serfling’s (1968) theorem, we obtain as 𝑛→ ∞

var
(
𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (2.16)

Using the Cauchy-Schwarz inequality, the following follows

cov
(
𝐻

(1)
𝑛 , 𝐻

(2)
𝑛

)
= 𝑜

(
1
𝑛

)
. (2.17)

Using equations (2.8), (2.9), (2.16), and (2.17), we can write

var
(
𝑈

(2)
𝑛

)
= 4

𝜎2
1 + 2

∞∑︁
𝑗=1

𝜎2
1 𝑗

 + 𝑜
(

1
𝑛

)
.
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3. Conclusion

It is well-known that independent random variables have been sufficiently studied in science. However, in
nature and technology, random variables are often dependent. Therefore, the study of dependent variables,
specifically associated random variables, under certain conditions, and demonstrating their applications in
practical problems has been the focus of many prominent experts. The topic of this master’s thesis is dedicated
to gathering future-relevant results on associated random variables, which have been relatively less studied
compared to dependent variables, and to studying nonparametric estimators for statistics constructed based on
associated variables.
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