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О сохранении знака гауссовой кривизны при
геодезических отображениях
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Аннотация
Геодезические отображения имеют важные приложения в римановой геометрии, в теории
геодезии и картографии, моделирование, физике и механике. В данной работе исследуется
вопрос о сохранении знака гауссовой кривизны при геодезических отображениях. Доказано,
что если поверхности вращения имеют постоянную гауссову кривизну, то при нетривиальном
геодезическом отображении сохраняется знак гауссовой кривизны.
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1. Введение

Геодезические отображения играют важную роль в римановой геометрии и её приложениях, связывая различные
многообразия посредством сохранения геодезических линий. Эти отображения естественным образом возникают
в задачах математической физики, теории относительности и даже в машинном обучении, где геодезические
потоки используются для оптимизации и анализа данных. Изучение таких отображений тесно связано с
проблемами эквивалентности римановых структур, поиском симметрий и инвариантов геометрических потоков.
В частности, два римановых пространства, допускающие геодезическое отображение друг на друга, описывают
процессы, протекающие при эквивалентных внешних нагрузках по одним и тем же «траекториям», но при
различных энергетических режимах. Следовательно, один из этих процессов можно моделировать другим [1].

История изучения геодезических отображений берет начало в работах Бельтрами, который в 1865 году впервые
сформулировал данную задачу, хотя и не в наиболее общей постановке, а в частном случае отображения
поверхности V2 (двумерного риманова многообразия) на евклидову плоскость E2. Эти исследования можно
рассматривать как один из первых толчков к последующему признанию и развитию неевклидовой геометрии,
заложенной Лобачевским, Бойяи и Гауссом.
В 1779 году Ж. Лагранж обнаружил первые нетривиальные примеры геодезических отображений [2]. Далее,

в 1869 году, У. Дини сформулировал более общую задачу существования геодезических отображений между
поверхностями (V2) и (V 2) и, по существу, дал её полное решение. Несмотря на то что предложенный им метод
был достаточно сложным, в дальнейшем он неоднократно перерабатывался, упрощался и уточнялся. В 1896 году
Т. Леви-Чивита, исследуя преобразования уравнений динамики, рассмотрел проблему в более широком контексте
и вывел основные уравнения, описывающие геодезические отображения между классическими римановыми
пространствами. С развитием тензорных методов в дифференциальной геометрии Г. Вейль, Л. П. Эйзенхарт

Received : 5–август–2025, Accepted : 30–ноябрь–2025
* Corresponding author

 https://doi.org/10.56143/10.56143/ujmcs.v1i1.14/\ 


А.Шарипов, З. Усмонхужаев

и другие ученые разработали инвариантную и более универсальную теорию геодезических отображений.
Модифицированный подход в этом направлении представлен, в частности, в работе И. Хинтерляйтнера [3].
Геодезические отображения финслеровых пространств были рассмотрены Г. Рундом. Существенное значение
имеют также исследования, в которых методы геометрии Лобачевского применяются к анализу и интегрированию
нелинейных уравнений современной математической физики [4].
Геодезические отображения пространства на само себя называются проективными (или геодезическими)

преобразованиями. Совокупность проективных преобразований римановых многообразий, а также многообразий
с аффинными связностями, образует группу Ли.
В данной статье развиваются результаты Ж. Микеша [5, с. 318], посвящённые проблеме Бельтрами.

Известно, что полученные Ж. Микешем результаты справедливы также и в двумерном случае задачи
Бельтрами. В настоящей работе доказано, что если задана поверхность вращения с постоянной гауссовой
кривизной, то при её нетривиальном геодезическом отображении полученная поверхность также обладает
постоянной гауссовой кривизной того же знака. Поскольку знак кривизны поверхности играет существенную
роль при исследовании её геометрических свойств, указанное обстоятельство обосновывает актуальность
рассматриваемой задачи. Подобными задачами в неевклидовых пространствах исследовались профессором
А. Артыкбаевым и его учениками. В частности, в работах [6], [7] исследованы двойственные отображения
и инвариантные геометрические характеристики поверхностей в неевклидовых пространствах, что позволило
получить фундаментальные результаты о геодезичности и конформности при двойственном отображении
поверхности в неевклидовых пространствах. Кроме того, поверхности с ненулевой постоянной полной кривизной в
многомерном пространстве имеет важное место при исследовании свойств внутренней геометрии поверхностей. В
работе [8] исследовались трансляционные поверхности с ненулевой постоянной полной кривизной в многомерном
изотропном пространстве. Было установлено существование таких поверхностей, соответствующих заданным
полной и средней кривизнам.
Нетрудно убедится, что всякое изометрическое отображение является геодезическим отображением, однако

существуют примеры геодезических отображений, которые не являются изометриями. Кроме того, существует
ряд работ авторов, посвящённых изометриям по сечениям. В этих работах изучены поверхности имеющие
положительные гауссовы кривизны. В частности, в классе выпуклых многогранников, изометричных по сечениям,
рассматривались задачи существования и единственности по заданным внешним кривизнам в вершинах [9], [10].
Для таких многогранников сначала вводится понятие дефекта в вершинах, после чего с использованием этого
дефекта исследуются задачи построения выпуклого многогранника [11]. Значит в данной работа исследуется
более широкий класс поверхностей по сравнению с ранее изученной нами.

2. Общие понятия геодезических отображений римановых пространств

ПустьM и N - гладкие многообразия размерности n с аффинными связностями.

Определение 2.1 ([1, c. 70]). Геодезическим отображением f многообразие M на N , называется взаимно
однозначное соответствие между их точками, при котором каждая геодезическая линия многообразия M

переходит в геодезическую линию многообразия N .

Рассмотрим эти многообразия в общей по отображению f системе координат x1, x2, ..., xn. Обозначим
компоненты объектов связности многообразий M и N , в соответствующих точках (M) и M через Γh

ij (x) и
Γ
h

ij (x), предполагая их симметричными, и положим

Γ
h

ij (x) = Γh
ij (x) + Ph

ij (x) (h, i , j = 1, 2, ... , n) , (2.1)

где P k
ij−тензор деформации .
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Теорема2.1 ([1, c. 72]). . Длятого чтобыотображение f многообразия аффинной связностиM намногообразие
аффинной связностиN было геодезическим, необходимо и достаточно, чтобы тензор деформации связности
Ph
ij отображения f представлялся в виде:

Ph
ij (x) = ψi (x) δ

h
j + ψj (x) δ

h
i , (2.2)

где δhi — символы Кронекера, а ψi — некоторый ковариантный вектор .

Условия (2.2) носят тензорный характер и потому инвариантны относительно выбора общей по отображению f
системы координат x1, x2, ..., xn. На основании этих условий уравнение (2.1) принимает вид

Γ
h

ij (x) = Γh
ij (x) + ψi (x) δ

h
j + ψj (x) δ

h
i . (2.3)

Замечание 2.1. Когда вектор ψi (x) тождественно равен нулю, то геодезическое отображение f называется
тривиальным или аффинным.

Пример 2.1. Пусть поверхность S является образом поверхности S при гомотетии в трёхмерном пространстве
и k— коэффициент гомотетии. Тогда метрические тензоры поверхностей связаны соотношением gij = k2 ·
gij . Следовательно, символы Кристоффеля совпадают Γ

k

ij = Γk
ij и геодезическая ℓ на S отображается на

геодезическую ℓ на S, где канонические параметры s на ℓ и s на ℓ связаны соотношением s = k · s+ const.

3. Геодезические отображения римановых пространств постоянной кривизны

Имея возможность использовать теорию геодезических отображений римановых многообразий, мы обратим
внимание на специальные типы римановых пространств постоянной кривизны. Рассмотрим геодезические
отображения (фиксированного) пространства Vn постоянной кривизны на (произвольное) риманово пространство
V n.
Поскольку приn > 2 в пространствеVn тензорВейля обращается в нуль,W = 0, то тензорВейля отображаемого

пространства V n также должен быть равен нулю,W = 0. Следовательно, в силу теоремы [5. p.318], пространство
V n является пространством постоянной кривизны. Оказывается, что это утверждение справедливо и при n = 2.

Данная ситуация описывается так называемой теоремой Бельтрами.

Теорема 3.1 ([5, с 318]). Единственными римановыми многообразиями, геодезические которых при
геодезических отображениях переходят в геодезические пространств постоянной кривизны, являются сами
пространства постоянной кривизны.

Вопрос о существовании геодезических отображений проясняется следующим.

Теорема 3.2 ([5, с 318]). Для пары пространств постоянной кривизны всегда найдётся нетривиальное
геодезическое отображение, отображающее одного пространство на другое.

Исследуя следствия из этой теоремы, мы хотим исследовать класс поверхностей, сохраняющих знак гауссовой
кривизны при геодезическом отображении. Начнём рассматривать, как меняются метрики поверхностей вращения
при геодезическом отображении, как показано в [5, с. 301], но более подробно.

Рассмотрим регулярную (k раз непрерывно дифференцируемую) поверхность вращения F [12] и r = r(ω, t)—
её некоторую регулярную параметризацию, где ω ∈ [ω1, ω2], t ∈ [0, 2π)—координаты, а параметры ω1 и ω2 могут
достигать значений ±∞.
Далее в статье мы будем рассматривать исключительно регулярные поверхности. Для регулярных поверхностей

[ru, rv] ̸= 0, где [ , ]— векторное произведение.
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Пусть f — геодезическое отображение и F — поверхность вращения, которая имеет метрику вида

ds2 = a(ω)dω2 + b(ω)dt2 (3.1)

где r2ω(ω, t) = a(ω) и r2t (ω, t) = b(ω) — положительные функции. Обозначим через F1 образ поверхности
вращения F при отображении f . Предположим, что геодезические линии ℓ = ℓ(t), t ∈ R из F отображаются
в геодезические F1 и метрика поверхности F1 имеет следующий вид:

ds21 = A(ω)dω2 +B(ω)dt2 (3.2)

где A(ω) и B(ω)— положительные функции. Тогда тензор деформации

Ph
ij(x) = Γ

h

ij(x)− Γh
ij(x)

имеет вид:
P 1
11 =

1

2

(
A′

A
− a′

a

)
; P 1

12 = P 1
21 = 0; P 1

22 = −1

2

(
B′

A
− b′

a

)
;

P 2
11 = 0; P 2

12 = P 2
21 =

1

2

(
B′

B
− b′

b

)
; P 2

22 = 0,

где Γh
ij(x) и Γ

h

ij(x)— символы Кристоффеля поверхностей F и F1.
Согласно теореме [1, с. 72], перепишем тензор деформации:

P 1
11 =

1

2

(
A′

A
− a′

a

)
= ψ1δ

1
1 + ψ1δ

1
1 = 2ψ1 ⇒ A′

A
− a′

a
= 4ψ1

P 2
12 = P 2

21 =
1

2

(
B′

B
− b′

b

)
= ψ1δ

2
2 + ψ2δ

2
1 = ψ1 ⇒ B′

B
− b′

b
= 2ψ1;

P 1
22 = −1

2

(
B′

A
− b′

a

)
= ψ2δ

1
2 + ψ2δ

2
1 = 0 ⇒ B′

A
− b′

a
= 0;

P 1
12 = P 1

21 = ψ1δ
1
2 + ψ2δ

2
1 = 0; P 2

11 = 0; P 2
22 = 0.

Вводим обозначения следующим образом:

A(ω) = α(ω)a(ω) и B(ω) = β(ω)b(ω). (*)

Так как A(ω), B(ω) и a(ω), b(ω)— положительные функции, то следует, что α(ω) и β(ω)— тоже положительные
функции.

A′

A
− a′

a
=

(
A

a

)′

·
( a
A

)
=
α′

α
= 4ψ1;

B′

B
− b′

b
=

(
B

b

)′

·
(
b

B

)
=
β′

β
= 2ψ1;

B′

A
− b′

a
= 0.

Приравняв первое равенство ко второму и переписав третье равенство, получим:

α′

α
= 2

β′

β
,

(βb)′

A
− b′

a
=
β′b+ βb′

αa
− b′

a
= 0 ⇒ α =

β′b+ βb′

b′
, где b′(ω) ̸= 0.

Из этих равенств вытекает:

α′

α
=

(
β′b+βb′

b′

)′
β′b+βb′

b′

=
(β′b+ βb′)

′ · b′ − (β′b+ βb′) · b′′

b′ · (β′b+ βb′)
=

(β′′b+ 2β′b′ + βb′′) · b′ − (β′b+ βb′) · b′′

b′ · (β′b+ βb′)
= 2

β′

β
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ββ′′bb′ − ββ′bb′′

b′ · ββ′b′ − ββ′b′′
= 2β′2bb′(

b′

β′

)′

= −2
b′

β
.

Вводя обозначение b′

β′ = u, получим следующее дифференциальное уравнение:

u′ = −2
b′

β
или u′ = −2

uβ′

β
,

Следовательно,
u′

u
= −2

β′

β
.

Интегрируя обе части по ω:

ln |u| = −2 lnβ + c; |u| = ec

β2
; u = ± ec

β2
,

где c— некоторая константа. Вводя обозначение C1 = ±ec, имеем:

u =
C1

β2
.

Учитывая обозначение u = b′

β′ , получим:

b′

β′ =
C1

β2
; b′ =

C1β
′

β2
; b = −C1

β
+ C2; β =

C1

C2 − b
.

α =
β′b+ βb′

b′
=

C1C2

(C2 − b(ω))
2 .

Замечание 3.1.Мыне будем рассматривать случаи, когдаα(ω) и β(ω) являются константами, то естьα′(ω) = 0,
β′(ω) = 0, поскольку в этом случае геодезические отображения являются тривиальными.
Вернёмся к обозначениям (*):

A(ω) = α(ω)a(ω) =
C1C2a(ω)

(C2 − b(ω))2
, B(ω) = β(ω)b(ω) =

C1b(ω)

C2 − b(ω)
.

Учитывая, что A(ω) и B(ω) являются коэффициентами первой квадратичной формы, константы C1 и C2

необходимо выбрать так, чтобы коэффициенты A(ω) и B(ω) первой квадратичной формы были положительно
определёнными и невырожденными. Если ввести новые параметры

p =
C1

C2
, q = − 1

C2
,

то получаем

A(ω) =
pa(ω)

(1 + qb(ω))
2 и B(ω) =

pb(ω)

1 + qb(ω)
.

Первая квадратичная форма (3.2) имеет вид:

ds2 =
pa(ω)

(1 + qb(ω))
2 dω

2 +
pb(ω)

1 + qb(ω)
dt2 (3.3)

где 1 + qb(ω) ̸= 0, qb′(x) ̸= 0 и ω— тот же параметр, что и на поверхности F , и t ∈ [0, 2π).
Замечание 3.2. В первой квадратичной форме (3.3) параметры p и q имеют глубокий геометрический смысл:

параметр p всегда является положительным множителем всей метрики и сохраняет тип геометрии. Параметр q
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меняет тип геометрии поверхностей вращения. В частности, если q > 0, то первая квадратичная форма (3.3)
определяет простые поверхности в смысле Микеша [5, c.353]. Следует из этого, что C1 и C2 отрицательны и
параметры p и q положительны.
Исследуем теперь образы поверхностей вращения постоянной гауссовой кривизны при геодезическом

отображении. Начнём рассматривать поверхности положительной постоянной кривизны с метрикой

ds2 = dω2 + cos2
ω

R
dt2

где R— радиус вращения и ω ∈ [ω1, ω2], t ∈ [0, 2π). Параметры ω1 и ω2 могут достигать значений ±∞.

Теорема 3.3. Если поверхности вращения положительной постоянной гауссовой кривизны допускают
нетривиальное геодезическое отображение, то полученные поверхности имеют постоянную положительную
гауссову кривизну.

Доказательство. По формуле (3.3), метрика поверхностей вращения положительной постоянной гауссовой
кривизны имеет следующий вид:

ds2 =
p(

1 + q cos2 ω
R

)2 dω2 +
p cos2 ω

R

1 + q cos2 ω
R

dt2. (3.4)

Согласно [13, с. 499], гауссова кривизна двумерного многообразия определяется следующим образом:

K =
R1212

g11g22 − g212
=

(
∂Γi

11

∂t − ∂Γi
21

∂ω +
∑
j

Γi
2j · Γ

j
11 −

∑
j

Γi
1j · Γ

j
21

)
· gi2

g11g22 − g212
(3.5)

где Γk
ij – символы Кристоффеля, R1212 — компонента тензора Римана.

Для полученной метрики (3.4)

g11 =
p(

1 + q cos2 ω
R

)2 , g12 = g21 = 0, g22 =
p cos2 ω

R

1 + q cos2 ω
R

,

а символы Кристоффеля имеют вид:

Γ1
11 = − 1

R
·

q sin 2ω
R

1 + q cos2 ω
R

, Γ1
12 = Γ1

21 = 0, Γ1
22 = − 1

2R
sin

2ω

R
;

Γ2
11 = 0, Γ2

12 = Γ2
21 = − 1

R
·

sin ω
R

cos ω
R

(
1 + q cos2 ω

R

) , Γ2
22 = 0.

Используя формулу (3.5), будем вычислять гауссову кривизну поверхности вращения:
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K =
R1212

g11g22 − g212
=

(
∂Γ1

11

∂t − ∂Γ1
21

∂ω + Γ1
21 · Γ1

11 + Γ1
22 · Γ2

11 − Γ1
11 · Γ1

21 − Γ1
12 · Γ2

21

)
· g12

g11g22 − g212
+

+

(
∂Γ2

11

∂t − ∂Γ2
21

∂ω + Γ2
21 · Γ1

11 + Γ2
22 · Γ2

11 − Γ2
11 · Γ1

21 − Γ2
12 · Γ2

21

)
· g22

g11g22 − g212
=

=

(
∂Γ2

11

∂t − ∂Γ2
21

∂ω + Γ2
21 · Γ1

11 + Γ2
22 · Γ2

11 − Γ2
11 · Γ1

21 − Γ2
12 · Γ2

21

)
· g22

g11g22
=

=
1

g11
·
(
∂Γ2

11

∂t
− ∂Γ2

21

∂ω
+ Γ2

21 · Γ1
11 + Γ2

22 · Γ2
11 − Γ2

11 · Γ1
21 − Γ2

12 · Γ2
21

)
=

=

(
1 + qcos2 ω

R

)2
p

·

(
1

R

∂

∂ω
·

(
sin ω

R

cos ω
R

(
1 + qcos2 ω

R

))− 1

R2
·

sin2 ω
R(

1 + qcos2 ω
R

)2 (q + 1

cos ω
R

))
=

=
1

pR2

(
cos2 ω

R + qcos2 ω
R

cos2 ω
R

)
.

Упрощая выражение, получаем:

K =
1

R2
· 1 + q

p
. (3.6)

Так как p и q — положительные константы, то гауссова кривизна (3.6) постоянная и положительна. Теорема
доказана.

Рассмотрим поверхности вращения отрицательной постоянной гауссовой кривизны с метрикой

ds2 = dω2 + ch2
ω

R
dt2

где R— радиус вращения и ω ∈ [ω1, ω2], t ∈ [0, 2π). Параметры ω1 и ω2 могут достигать значений ±∞.

Теорема 3.4. Поверхности вращения отрицательной постоянной гауссовой кривизны допускают
нетривиальное геодезическое отображение, а поверхности, полученные при этом отображении, обладают
отрицательной постоянной гауссовой кривизной.

Доказательство. Метрика поверхностей вращения отрицательной постоянной кривизны при геодезическом
отображении имеет следующий вид:

ds2 =
p(

1 + q ch2 ω
R

)2 dω2 +
p ch2 ω

R

1 + q ch2 ω
R

dt2. (3.7)

Находим для этой метрики:

g11 =
p(

1 + q ch2 ω
R

)2 , g12 = g21 = 0, g22 =
p ch2 ω

R

1 + q ch2 ω
R

,

символы Кристоффеля:

Γ1
11 = − 1

R
·

q sh 2ω
R

1 + q ch2 ω
R

, Γ1
12 = Γ1

21 = 0, Γ1
22 = − 1

2R
sh

2ω

R
;

Γ2
11 = 0, Γ2

12 = Γ2
21 =

1

R
·

sh ω
R

ch ω
R

(
1 + q ch2 ω

R

) , Γ2
22 = 0.

ujmcs.tstu.uz 120

http://ujmcs.tstu.uz


А.Шарипов, З. Усмонхужаев

Теперь вычислим гауссову кривизну, используя формулу (3.5), как в доказательстве теоремы 3.3. Имеем:

K = − 1

R2
· 1 + q

p
. (3.8)

Так как p и q — положительные константы, то гауссова кривизна (3.8) постоянная и отрицательна. Теорема
доказана.
Замечание 3.3. Если поверхности вращения нулевой гауссовой кривизны допускают нетривиальное

геодезическое отображение, то образы при этом отображении имеют ненулевую гауссову кривизну, а если они
допускают тривиальное геодезическое отображение, то имеют нулевую гауссову кривизну.
Пример 3.1.ПустьF – круговой конус в евклидовом пространствеR3, который задан в декартовых координатах

(x; y; z) уравнениями
x = ω cos t, y = ω sin t, z = ω

где ω ∈ (0, ω1], t ∈ [0, 2π). Параметры ω1 может достигать значений +∞. Первая квадратичная форма круглого
конуса F имеет следующий вид:

ds2 = 2dω2 + ω2dt2.

Круговой конус допускает нетривиальное геодезическое отображение, причём гауссова кривизна полученных
поверхностей постоянна и ненулевая. Обозначим образ круглого конуса при геодезическом отображении через
F1, а гауссову кривизнуKF1 . Метрика имеет следующий вид:

ds2 =
2p

(1 + qω2)
2 dω

2 +
pω2

1 + qω2
dt2.

Находим для этой метрики символы Кристоффеля:

Γ1
11 = − 2qω

1 + qω2
, Γ1

12 = Γ1
21 = 0, Γ1

22 = −ω
2
;

Γ2
11 = 0, Γ2

12 = Γ2
21 =

1

ω (1 + qω2)
, Γ2

22 = 0.

Используя формулу (3.5), имеемKF1
= q

2p .
Пример 3.2. Рассмотрим круговой цилиндр с метрикой

ds2 = dω2 + dt2

где ω ∈ [ω1, ω2] , t ∈ [0, 2π). Параметры ω1 и ω2 могут достигать до значений ±∞. Круговой цилиндр допускает
тривиальное геодезическое отображение, а полученные поверхности при этом отображении имеют нулевую
гауссовую кривизну. Обозначим гауссову кривизну кругового цилиндра при геодезическом отображении через
K0.
Метрика имеет следующий вид:

ds2 =
p

(1 + q)
2 dω

2 +
p

1 + q
dt2.

Символы Кристоффеля этой поверхности состоят из нулей, т.е. Γk
ij = 0, тогда гауссова кривизнаK0 = 0.

Замечание 3.4. Некоторые поверхности вращения непостоянной гауссовой кривизны также допускают
нетривиальное геодезическое отображение, и полученные поверхности сохраняют знак своей гауссовой кривизны.
Пример 3.3. Рассмотрим параболоид вращения в евклидовом пространстве R3, который задан в декартовых

координатах (x; y; z) уравнениями

x = ω cos t, y = ω sin t, z = ω2
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где ω ∈ [ω1, ω2], t ∈ [0, 2π). Параметры ω1 и ω2 могут достигать значений +∞. Первая квадратичная форма
параболоида вращения имеет следующий вид:

ds2 = (1 + 4ω2)dω2 + ω2dt2.

Параболоид вращения допускает нетривиальное геодезическое отображение. Метрика полученных
поверхностей при этом отображении имеет следующий вид [14]:

ds2 =
p(1 + 4ω2)

(1 + qω2)2
dω2 +

pω2

(1 + qω2)
dt2.

Символы Кристоффеля для этой метрики таковы:

Γ1
11 =

2ω(2− q − 2qω2)

(1 + 4ω2)(1 + qω2)
, Γ1

12 = Γ1
21 = 0, Γ1

22 = − ω

1 + 4ω2
;

Γ2
11 = 0, Γ2

12 = Γ2
21 =

1

ω(1 + qω2)
, Γ2

22 = 0.

Следовательно,

K =
1

p
· (4 + q + 8qω2)

(1 + 4ω2)2
.

Видно, что значениеK положительно для всех p и q.
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ON PRESERVATION OF THE SIGN OF GAUSSIAN CURVATURE UNDER
GEODETIC MAPPINGS
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Abstract

Geodesicmappings have important applications inRiemannian geometry, in the theory of geodesy and cartography,
modeling, physics and mechanics. In this paper, the question of preserving the sign of Gaussian curvature under
geodesic mappings is investigated. It is proved that if surfaces of revolution have constant Gaussian curvature, then
under a nontrivial geodesic mapping the sign of Gaussian curvature is preserved.

Keywords
smoothmanifolds; affine connection; geodesic curve; geodesic mapping; non-trivial geodesic mapping; Gaussian

curvature.
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