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максимумами
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Аннотация
В данной статье рассматриваются вопросы краевой задачи с двухточечными граничными
условиями для системы обыкновенных дифференциальных уравнений первого порядка с
максимумами. Используется метод параметризации. Получены условия сходимости и построены
алгоритмы решения. Установлены необходимые и достаточные условия на коэффициенты
для корректности рассматриваемой задачи. В доказательстве однозначной разрешимости
функционально-интегральных уравнений в пространстве BD

(
[0, ω],Rn

)
используется метод

сжимающих отображений.
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1. Введение. Постановка проблемы

Рассмотрим линейную двухточечную краевую задачу

d

dt
x(t) = A(t)x(t) +B(t)max

{
x(τ) : τ ∈ [t− h, t]

}
+ f(t), x ∈ Rn, t ∈ (0, T ), (1.1)

x(ξ) = ϕ(ξ), ξ ∈ [−h, 0], (1.2)

B0x(0) + C0x(T ) = D0, (1.3)

где 0 < h = const – запаздывание, A(t), B(t) и f(t) непрерывны на [0, T ], B0 и C0 – заданные (n× n) матрицы,
D0 – заданный n-мерный вектор, ϕ(t) ∈ C[−h, 0].
Обозначим через C

(
[0, T ],Rn

)
банахово пространство, состоящее из непрерывных вектор-функций x(t) с

нормой ∥∥x(t) ∥∥
C[0,T ]

=

√√√√ n∑
j=1

max
t∈[0,T ]

∣∣xj(t)
∣∣.
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Мы используем линейное пространство BD ([0, T ],Rn), которое является банаховым пространством со
следующей нормой

∥x(t) ∥BD[0,T ] = ∥x(t) ∥C[0,T ] + h ∥x′(t) ∥C[0,T ] ,

где 0 < h = const.

ПустьX(t) – фундаментальная матрица дифференциального уравнения dX
dt = A(t)X . Тогда из уравнения (1.1)

получаем

x(t) =

t∫
0

X(t)X−1(s)
(
A(s)x(s) +B(s)max

{
x(τ) : τ ∈ [s− h, s]

}
+ f(s)

)
ds. (1.4)

Однозначную разрешимость уравнения (1.4) мы доказываем в пространстве BD ([0, T ],Rn).
Отметим, что решение задачи (1.1)–(1.3) – это функция x∗(t) ∈ C

(
[0, T ],Rn

)
, непрерывно дифференцируемая

на (0, T ) и удовлетворяющая дифференциальному уравнению (1.1) и граничному условию (1.3).
Краевые задачи для дифференциальных уравнений имеют широкий спектр применений [1]–[19]. В работах

[2]–[8], [10, 12] используются различные методы качественной теории дифференциальных уравнений. На основе
этих методов были установлены условия разрешимости краевых задач и предложены практические способы их
решения. В работах [9, 11] особое значение приобретают приближенные и численные методы построения решений
краевых задач для систем обыкновенных дифференциальных уравнений.
Данная статья посвящена установлению критериев единственной разрешимости двухточечных краевых задач

для системыобыкновенныхдифференциальныхуравнений смаксимумамиипостроениюметодомпараметризации
приближенного решения задачи (1.1)–(1.3). Следует отметить, что метод параметризации был разработан во
многих работах Д. С. Джумабаева и его учеников (см., например, [20]–[32]).

2. О разрешимости уравнения (1.4)

Воспользуемся следующей леммой.

Лемма 2.1 ([33]). Для разности двух функций с максимумами справедлива следующая оценка

∥max {x(τ) : τ ∈ [t− h, t]} −max {y(τ) : τ ∈ [t− h, t]}∥C ≤

≤ ∥x(t)− y(t) ∥C + h

∥∥∥∥ ∂

∂ t
[x(t)− y(t)]

∥∥∥∥
C

,

где 0 < h = const.

Для уравнения (1.4) рассмотрим следующий итерационный процесс:

x0(t) = g(t) ≡
t∫

0

X(t)X−1(s)f(s)ds, t ∈ [0, T ],

xk+1(t) = g(t) +

t∫
0

X(t)X−1(s)
(
A(s)xk(s) +B(s)max

{
xk(τ) : τ ∈ [s− h, s]

})
ds, (2.1)

где k = 0, 1, 2, ...

Теорема 2.1. Пусть выполнены следующие условия

t∫
0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)max
{
∥A(s)∥C[0,T ]; ∥B(s)∥C[0,T ]

}
ds ≤ C1,
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то функционально-интегральное уравнение (1.4) имеет единственное решение в классе BD
(
[0, T ],Rn

)
, где

0 < C1 = const < ∞, ∥g(t)∥ ≤ g0 < ∞, g0 = const и ρ = max
{
C2;C3

}
< 1, 0 < C2 и 0 < C3 определяются

формулами (2.5) ниже.

Доказательство. Мы используем итерационный процесс (2.1). Тогда получаем следующие оценки:

∥∥x0(t)
∥∥
C[0,T ]

≤ ∥g(t)∥C[0,T ] =

t∫
0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)∥f(t)∥C[0,T ]ds ≤ g0, (2.2)

∥∥xk+1(t)− xk(t)
∥∥
C[0,T ]

≤
t∫

0

∥X(t)X−1(s)∥
C
(
[0,T ]×[0,T ]

)[∥A(s)∥C[0,T ]×

×
∥∥xk(s)− xk−1(s)

∥∥
C[0,T ]

+ ∥B(s)∥C[0,T ]

∥∥max
{
xk(τ) : τ ∈ [s− h, s]

}
−

−max
{
xk−1(τ) : τ ∈ [s− h, s]

}∥∥
C[0,T ]

]
ds ≤ C1

[∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+

+
∥∥max

{
xk(τ) : τ ∈ [t− h, t]

}
−max

{
xk−1(τ) : τ ∈ [t− h, t]

}∥∥
C[0,T ]

]
.

Применяя лемму 2.1 к последнему неравенству, получаем

∥∥xk+1(t)− xk(t)
∥∥
C[0,T ]

≤ C1

[
2
∥∥xk(t)− xk−1(t)

∥∥
C[0,T ]

+ h
∥∥∥ d

dt

(
xk(t)− xk−1(t)

)∥∥∥
C[0,T ]

]
. (2.3)

Аналогично, из уравнения (1.1) выводим∥∥∥ d

dt

(
xk+1(t)− xk(t)

)∥∥∥
C[0,T ]

≤
∥∥A(t)

∥∥
C[0,T ]

∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+

+
∥∥B(t)

∥∥
C[0,T ]

∥∥max
{
xk(τ) : τ ∈ [t− h, t]

}
−max

{
xk−1(τ) : τ ∈ [t− h, t]

}∥∥
C[0,T ]

≤

≤
(∥∥A(t)

∥∥+
∥∥B(t)

∥∥)∥∥xk(t)− xk−1(t)
∥∥
C[0,T ]

+ h
∥∥B(t)

∥∥∥∥∥ d

dt

(
xk(t)− xk−1(t)

)∥∥∥
C[0,T ]

. (2.4)

Обозначим

C2 ≥ max
{
2C1;

∥∥A(t)
∥∥
C[0,T ]

+
∥∥B(t)

∥∥
C[0,T ]

}
, C3 ≥ max

{
hC1;h

∥∥B(t)
∥∥
C[0,T ]

}
. (2.5)

Тогда из оценок (2.3) и (2.4) получаем∥∥xk+1(t)− xk(t)
∥∥
BD[0,T ]

≤ ρ
∥∥xk(t)− xk−1(t)

∥∥
BD[0,T ]

, (2.6)

где ρ = max
{
C2;C3

}
. Из оценок (2.2) и (2.6) следует, что оператор в правой части уравнения (1.4) является

сжимающим отображением, и уравнение (1.4) имеет единственное решение в пространстве BD[0, T ]. Теорема
доказана.

3. Практические способы нахождения единственного решения

Выберем некоторый шаг h0 > 0, такой что Nh0 = T (N ∈ N), и разобем интервал [0, T ) на подынтервалы:

[0, T ) =

N⋃
r=1

[
(r − 1)h0, rh0

)
.
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Обозначено через C
(
[0, T ], h0,RnN

)
банахово пространство непрерывных вектор-функций x(t) ∈ RnN с нормой

∥x(t) ∥1 = max
r=1:N

sup
t∈
[
(r−1)h0,rh0

) ∥xr(t) ∥,

где lim
t→rh0−0

xr(t) для всех r = 1, N – конечно. Обозначим через xr(t) =
{
xr(t) = x(t), t ∈

[
(r −

1)h0, rh0

)
, r = 1, N

}
ограничение вектор-функции x(t) на r-й интервал

[
(r − 1)h0, rh0

)
и сведем задачу

(1.1)–(1.3) к эквивалентной многоточечной краевой задаче:

d

dt
xr(t) = A(t)xr +B(t)max

{
xr(τ) : τ ∈ [t− h, t]

}
+ f(t), t ∈

(
(r − 1)h0, rh0

)
, (3.1)

x(ξ) = ϕ(ξ), ξ ∈ [−h, 0], (3.2)

B0x1(0) + C0 lim
t→Nh0−0

xN (t) = D0, (3.3)

lim
t→lh0−0

xl(t) = xl+1(lh0), l = 1, (N − 1), (3.4)

где (3.4) – условия, связывающие решение задачи (1.1)–(1.3) во внутренних точках разбиения интервала [0, T ].
Пусть λr – значение функции xr(t) в точке t = (r − 1)h0. Производя замену ur(t) = xr(t)− λr, r = 1, N на
интервале

[
(r − 1)h0, rh0

)
, из (3.1)–(3.4) получаем многоточечную краевую задачу с параметрами:

d

dt
ur(t) =

(
A(t) +B(t)

)
λr+

+A(t)ur(t) +B(t)max
{
ur(τ) : τ ∈ [t− h, t]

}
+ f(t), t ∈

(
(r − 1)h0, rh0

)
, (3.5)

u0(ξ) = ϕ0(ξ), ξ ∈ [−h, 0], t ∈ [0, h0 − h], (3.6)

ur

(
(r − 1)h0

)
= 0, r = 2, N, (3.7)

B0λ1 + C0λN + C0 lim
t→Nh0−0

uN (t) = D0, (3.8)

λl + lim
t→lh0−0

ul(t) = λl+1, l = 1, N − 1. (3.9)

Пара
(
λ∗, u∗(t)

)
с элементами λ∗ ∈ RnN , u∗(t) ∈ C

(
[0, T ], h0,RnN

)
является решением задачи (3.5)–(3.9).

Здесь функция u∗
r(t) является решением задачи (3.5), (3.7) при λr = λ∗

r , r = 1, N. Для λ∗
r и lim

t→rh0−0
u∗
r(t),

r = 1, N выполняются равенства (3.8), (3.9).
Если x∗(t) является решением задачи (1.1)–(1.3), то пара (λ∗, u∗(t)) является решением задачи (3.5)–(3.9).

Наоборот, если пара
(
λ̃, ũ(t)

)
является решением задачи (3.5)–(3.9), то функция

x̃(t) = λ̃r + ũr(t), t ∈
[
(r − 1)h0, rh0

)
, r = 1, N

является решением задачи (1.1)–(1.3) и x̃(T ) = λ̃N + lim
t→Nh0−0

ũN (t).

Для дальнейшего изложения используем следующие обозначения: пусть P (t) – произвольная квадратная
матрица, непрерывная на интервале

[
(r − 1)h0, rh0

)
иимеющаяконечныйпредел lim

t→rh0−0
P (t), r = 1, N.Возьмем

число ν ∈ N и обозначим через Eν,r

(
A(·), P (·), t

)
сумму

t∫
(r−1)h0

P (s1)ds1 +

t∫
(r−1)h0

A(s1)

s2∫
(r−1)h0

P (s2)ds2ds1 + . . .+

+

t∫
(r−1)h0

A(s1) . . .

sν−2∫
(r−1)h0

A(sν−1)

sν−1∫
(r−1)h

P (sν)dsνdsν−1 . . . ds1, t ∈
[
(r − 1)h0, rh0

)
, r = 1, N.
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Сумма Eν,r(A(·), P (·), t) непрерывна на
[
(r − 1)h0, rh0

)
и имеет конечный предел

lim
t→rh0−0

Eν,r(A(·), P (·), t) = Eν,r(A(·), P (·), rh0) для всех ν ∈ N, r = 1, N.

Очевидно, что E∗,r(A(·), P (·), t) = lim
ν→∞

Eν,r(A(·), P (·), t) является суммой равномерно сходящегося ряда на
[(r − 1)h0, rh0), и эта сумма непрерывна на интервале

[
(r − 1)h0, rh0

)
и имеет конечный предел

lim
t→rh0−0

E∗,r(A(·), P (·), t) = E∗,r(A(·), P (·), rh0), r = 1, N.

Для фиксированного значения параметра λr, r = 1, N , из уравнения (3.1) получаем интегральное уравнение
Вольтерры второго рода:

ur(t) =

t∫
(r−1)h0

[
A(s) +B(s)

]
λrds+

t∫
(r−1)h0

f(s)ds+

t∫
(r−1)h0

A(s)ur(s)ds+

+

t∫
(r−1)h0

B(s)max
{
ur(τ) : τ ∈ [s− h, s]

}
ds, t ∈

[
(r − 1)h0, rh0

)
, r = 1, N. (3.10)

Подставляя правую часть (3.10) в ur(s) в (3.10) и повторяя этот процесс ν (ν ∈ N) раз, получаем следующее
представление функции ur(t):

ur(t) = Fν,r(t)λr +Gν,r(ur, t) +Hν,r(ur, t) +Kν,r(t), t ∈
[
(r − 1)h0, rh0

)
, r = 1, N, (3.11)

где

Fν,r(t) = Eν,r(A(·), A(·) +B(·), t), Kν,r(t) = Eν,r(A(·), f(·), t), Hν,r(t) = Eν,r

(
A(·), B(·)max{ur(τ)}, t

)
,

и

Gν,r(ur, t) =

t∫
(r−1)h0

A(s1) . . .

sν−1∫
(r−1)h0

A(sν)ur(sν)dsν . . . ds1, t ∈
[
(r − 1)h0, rh0

)
, r = 1, N.

Определим lim
t→rh0−0

ur(t), r = 1, N из формулы (3.11). Подставляя соответствующие выражения в (3.8), (3.9) и
умножая (3.8) слева на h0 > 0 : Nh0 = T , получаем систему линейных алгебраических уравнений относительно
параметров:

Qν(h0)λ = −Kν(h0)−Gν(u, h0)−Hν(u, h0), λ ∈ RnN ,

где Qν(h0) =
h0B0 O O . . . O h0C0(I + Fν,N (Nh0))

I +Kν,1(h0) −I O . . . O O

O I +Kν,2(2h0) −I . . . O O
. . . . . . . . . . . . . . . . . .
O O O . . . −I O
O O O . . . I +Kν,N−1

(
(N − 1)h0

)
−I

,

I : Rn → Rn – единичная матрица, O : Rn → Rn – нулевая матрица,
Kν(h0) =

(
− h0D0 + h0C0Fν,N (Nh0), Kν,1(h0), . . . ,Kν,N−1((N − 1)h0)

)
∈ RnN ,

Gν(u, h0) =
(
h0C0Gν,N

(
uN , Nh0

)
, Gν,1

(
u1, h0

)
, · · · , Gν,N−1

(
uN−1, (N − 1)h0

))
. Аналогично определяется

Hν(u, h0).
Мы находим решение (λ, u(t)) многоточечной краевой задачи с параметрами (3.1)–(3.5). Предположим, что для

заданных ν, h0 матрица Qν(h0) : RnN → RnN имеет обратную.
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a) Найдем начальное приближение для параметра λ(0) =
(
λ
(0)
1 , λ

(0)
2 , . . ., λ(0)

N

)
∈ RnN , решая систему уравнений

Qν(h0)λ = −Fν(h).
b) Определим компоненты системы функций u(0)(t) =

(
u
(0)
1 (t), u

(0)
2 (t), . . ., u(0)

N (t)
)
по формулам

u(0)
r (t) = Fν,r(t)λ

(0)
r +Kν,r(t), t ∈

[
(r − 1)h0, rh0

)
, r = 1, N.

c) Найдем следующее приближение параметра λ(1) =
(
λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
N

)
∈ RnN , решая систему уравнений

Qν(h0)λ = −Kν(h0)−Gν(u
(0), h0)−Hν

(
u(0), h0

)
.

d) Определим компоненты системы функций u(1)(t) =
(
u
(1)
1 (t), u

(1)
2 (t), . . . , u

(1)
N (t)

)
по формулам

u(1)
r (t) = Fν,r(t)λ

(1)
r +Kν,r(t) +Gν,r

(
u(0)
r , t

)
+Hν,r

(
u(0)
r

)
, t ∈

[
(r − 1)h0, rh0

)
, r = 1, N

и так далее. Продолжая этот процесс, на k-м шаге алгоритма мы получаем пару
(
λ(k), u(k)(t)

)
, k = 0, 1, . . .. Ввиду

эквивалентности задач (1.1)–(1.3) и (3.1)–(3.4) получаем, что справедлива следующая теорема:

Теорема 3.1. Краевая задача (1.1)–(1.3) имеет единственное решениетогда итолькотогда, когда для заданного
h0 > 0 : Nh0 = T (N ∈ N), χ ∈ (0, 1] существует ν = ν(h0, χ) (ν ∈ N) такое, что матрица Qν(h0) : RnN →
RnN обратима, и выполнены условия теоремы 2.1.

Заключение

В работе исследованы существование и единственность решения системы обыкновенных дифференциальных
уравнений (1.1) с неизвестной функцией под знаком максимума. Система (1.1) изучается при начальных (1.2)
и краевых (1.3) условиях. Метод сжимающих отображений используется для доказательства единственной
разрешимости задачи (1.1)–(1.3) в пространстве BD ([0, ω],Rn). Практический способ решения задачи (1.1)–
(1.3) с помощью метода параметризации сводится к исследованию разрешимости системы уравнений (3.1)–(3.4).
Построен алгоритм решения задачи (3.1)–(3.4).
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Т. Юлдашев, М. Тлеубергенова, А. Танкеева & А. Молыбайкызы

Abstract

This article considers the questions of two-point boundary value problem for a system of first-order ordinary
differential equations withmaxima. The parametrizationmethod is using. The convergence conditions are obtained
and the algorithms of solving are built. The necessary and sufficient coefficient conditions for the well-posedness of
considered problem are established. The method of contracted mapping is used in the proof of unique solvability
of functional-integral equations in the space BD

(
[0, ω],Rn

)
.
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