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Решение уравнения Монжа-Ампера с
использованием геометрических преобразований

Абдуллаазиз Артикбаев, Гулноза Холмуродова *

Аннотация
Геометрическая задача восстановления выпуклой поверхности по заданной функции
эквивалентна решению определенного уравнения Монжа-Ампера. В этом случае внешняя
кривизна определяется как функция борелевских множеств. И. Я. Бакельман построил
эту теорию и доказал существование и единственность решения уравнения Монжа-Ампера
эллиптического типа в односвязной выпуклой области. А. Артыкбаев обобщил это решение
на случай неодносвязной области, применяя геометрию галилеева пространства. Данная
работа посвящена аналитическому решению уравнения Монжа-Ампера в неодносвязной
области. Внешняя кривизна поверхности определяется в неодносвязной области, ограниченной
концентрическими окружностями.Применяя преобразование, представляющее собой движение
галилеева пространства, и переход в полярную систему координат, уравнение модифицируется, в
котором можно разделить переменные решения, уравнение ищется для суммы трех функций.
В результате получен аналитический вид решения в неодносвязной области, ограниченной
концентрическими окружностями.
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1. Введение

УравнениеМонжа–Ампера было впервые введено Г.Монжем иА.М.Ампером ишироко применяется во многих
областях науки [4,24]. В частности, оно встречается в анализе, геометрии, газовой динамике, метеорологии,
экономике и задачах оптимального транспорта [11,13,20,22,25,26]. Проблемы существования и единственности
задачи Дирихле для уравнения Монжа–Ампера были исследованы в следующих работах [16,18].В экономике это
уравнение связано с производственными функциями [13].

Известно, что задача восстановления выпуклой поверхности по её внешней кривизне в геометрии эквивалентна
решению эллиптического типа уравнения Монжа–Ампера[10]. В геометрии задача восстановления выпуклой
поверхности в евклидовом пространстве по её внешней кривизне была исследована А. Д. Александровым и
А. В. Погореловым [1,2,27].При этом внешняя кривизна множества, заданного на поверхности, определяется
как площадь его сферического образа. В этом случае внешняя кривизна множества является неотрицательной,
вполне аддитивной функцией, определённой на борелевских множествах.Когда выпуклая поверхность является
регулярной, эта задача сводится к уравнению Монжа–Ампера.
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Пусть уравнение Монжа–Ампера имеет вид

zxxzyy − z2xy = µ(x, y)R(p, q)

тогда существование решения задачи Дирихле в евклидовом пространстве было установлено И. Я. Бакельманом
на основе априорной оценки функции в правой части уравнения [10].
Результаты, полученные в вышеуказанных работах, справедливы при условии выпуклости области.В случае

невыпуклой области задачи восстановления поверхности были исследованы А. Артикбаевым [8]. При этом
используется геометрия неевклидовых пространств, понятие сферического отображения обобщается для
неевклидовых пространств, и вводится понятие цилиндрического отображения поверхности.В частности, задачи
восстановления поверхности по её внешней кривизне в галилеевых и изотропных пространствах приведены в
работе [8]. Эквивалентность задач восстановления поверхности в изотропном пространстве по её внешней и
полной кривизне, а также то, что эти задачи являются частными случаями уравнения Монжа–Ампера, была
показана Ш. Исмаиловым [17].
В последние годы задачи восстановления поверхности по её полной кривизне получили широкое развитие.В

частности, изучение этих задач в неевклидовых пространствах позволило получить их решения в более широком
классе случаев. В случае, когда полная кривизна равна нулю или постоянна, решения для различных классов
поверхностей приведены в работах [9,15,19]. Для двойственных поверхностей с постоянной полной кривизной
задачи восстановления были решены в работах [12,23]. В изотропном пространстве, когда полная кривизна
представлена в виде произведения функции от двух раздельных переменных, уравнение поверхности было
получено в работе [17]. В этой работе задача была решена для случая, когда полная кривизна задана как функция
на плоскости, в семействе одно-параметрических поверхностей переноса. В работе [5] было показано, что для
уравнения Монжа–Ампера, правая часть которого зависит только от первых частных производных, его общее
решение было найдено в семействе поверхностей переноса. В двухсвязной кольцевой области при точно заданной
полной кривизне аналитическое решение уравнения Монжа–Ампера приведено в работе [21]. В работе [3] Ю.
Аминов и другие соавторы рассматривают для уравнения Монжа-Ампера

zxxzyy − z2xy = b20x
2 + b11xy + b02y

2 + b00

задача о существование решения z(x, y) в классе полиномов. Задача восстановления выпуклой поверхности была
изучена в работе [6], посредством интерпретации полугиперболического пространства внутри сферы изотропного
пространства. Кроме того, в работе [7] сделан вывод о том, что задачи восстановления поверхности в других
трехмерных неевклидовых пространствах являются частными случаями задачи в евклидовом пространстве. В
данной работе мы ищем общее решение уравнения Монжа–Ампера в кольцевой области для функций, заданных
в этой области.

2. Предварительные сведения

Пусть дана двумерную аффинную плоскость π с аффинной системой координат Oxy. В этом случае любая
точка плоскости имеет свою пару координат (x, y). Расстояние между точками A (x1, y1) и B (x2, y2) равно [30]:

d =

 |x2 − x1| , x1 ̸= x2

|y2 − y1| , x1 = x2

. (2.1)

По аналогии евклидовой плоскости и плоскости Минковского галилееву плоскость можно определяет с помощью
скалярного произведение.
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Определение 2.1. Аффинная плоскость в котором скалярное произведение векторов A(x1, y1) и B(x2, y2)

определено по формуле

(X · Y ) =

x1x2, x1x2 ̸= 0

y1y2 x1x2 = 0
(2.2)

называется галилеевой плоскостью [8].

Рассмотрим следующее аффинное преобразование:x′ = x+ a

y′ = hx+ y + b
. (2.3)

Это преобразование является галилеевское движение в плоскости, сохраняющее заданное расстояние (2.1) [8].
Галилеевское движение относится к группе преобразований Гейзенберга, в которой матрица перехода имеет
следующий вид [14,31]:

C =

(
1 0

h 1

)
(2.4)

Здесь, поскольку det |C| = 1, площадь области также инвариантна относительно этого преобразования.
Основы геометрии галилеевой плоскости, изложена в книге Яглома [32], где впервые систематически изложена

планиметрия галилеевой плоскости. Изучение геометрии галилеевой плоскости начинается определением свойств
движения этой плоскости [8].

Движение (2.3) состоит из следующих двух частей [16]:x′ = x+ a

y′ = y + b
.

 x′ = x

y′ = hx+ y
. (2.5)

Первый из них — параллельный перенос, а второй — поворот на плоскости Галилея. При этом ось Oy сохраняет
своё направление, а ось Ox заменяется прямой y = hx+ l. Геометрическое значение параметра h вводится через
понятие угла между прямыми[8].

Сначала приводится понятия окружности галилеевой плоскости.

Определение 2.2. Окружностью называется геометрическое место точек равноудалённой от данной точки.

Если центр окружности в начале координат и радиусе равно r, уравнения окружности галилеевой плоскости
имеет вид:

x2 = r2

Отсюда окружность является парой прямой параллельной оси Oy.

x = ±r

Если A и B точки окружности, то |OA| = |OB| = r.

По аналогии евклидовой плоскости определяется угол между прямыми, как длина дуги единичной окружности,
когда центр окружности является точка пересечения прямых.

Когда прямые задана уравнением:

l1 : y1 = k1x1

l2 : y2 = k2x2
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то длина дуги галилеевой окружности
AB = h|k2 − k1| (2.6)

будет углом между прямыми l1 и l2 . Это угол называется параболическим, и оно принимает значение от 0 до∞.
Прямые параллельные координатьные оси Oy очень характерные. По этим прямым измеряется вторая часть

расстоения, угол и она является "дугой"окружности.
Поэтому прямые параллельные оси Oy - названа "особыми"[16].
Пусть дана выпуклая регулярная поверхность F . Мы можем найти её уравнение по её полной кривизне.

Нахождение поверхности по её полной кривизне, то есть когда известна правая часть, эквивалентно решению
уравнения Монжа-Ампера[10]:

zxxzyy − z2xy = ϕ (x, y, z, zx, zy) (2.7)

Левая часть уравнения представляет собой операторМонжа-Ампера. Нижемынайдём решение уравненияМонжа-
Ампера (2.7) в частном случае, используя преобразование (2.3), когда полная кривизна является функцией,
заданной на кольцевой области. Для этого, прежде всего, найдём вид уравнения Монжа-Ампера в полярной
системе координат:

3. Основной результат

Рассмотрим следующую замену: x = ρ cosφ

y = ρ sinφ
. (3.1)

Подставив эту замену в уравнение (2.3), получим следующее уравнение:x′ = ρ cosφ+ a

y′ = ρ(h cosφ+ sinφ) + b
. (3.2)

Вид уравнения Монжа-Ампера в новой системе координат следующий:

zx′x′zy′y′ − z2x′y′ = K (x′, y′) (3.3)

Ниже мы находим частные производные:

zρ = zx′ cosφ+ zy′ (h cosφ+ sinφ), zφ = zx′ (−ρ sinφ) + zy′ (ρ (−h sinφ+ cosφ))

zρρ = zx′x′cos2φ+ 2zx′y′ cosφ (h cosφ+ sinφ) + zy′y′(h cosφ+ sinφ)
2 (3.4)

zφφ = zx′x′ρ2 sin2 φ− 2zx′y′ρ2 sinφ(−h sinφ+ cosφ) + zy′y′ρ2(−h sinφ+ cosφ)−

−zx′ρ cosφ− zy′ρ(h cosφ+ sinφ)

Упростим выражение zφφ, отсюда

zρ
ρ

+
zφφ

ρ2
= zx′x′sin2φ+ 2zx′y′

(
hsin2φ− sinφ cosφ

)
+ zy′y′(cosφ− h sinφ)

2 (3.5)

Вычислим смешанную частную производную:

zρφ = −zx′x′ρ sinφ cosφ+ zy′y′ρ(cosφ− h sinφ)(h cosφ+ sinφ) + zx′y′ρ cosφ(cosφ− h sinφ)−

−zx′y′ρ sinφ(h cosφ+ sinφ)− zx′ sinφ− zy′(h sinφ− cosφ)
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из этого следует:
zρφ
ρ

− zφ
ρ2

= −zx′x′ sinφ cosφ+ zx′y′ (cos 2φ− h sin 2φ) + zy′y′
(
h cos 2φ− (h2 − 1) sinφ cosφ

)
(3.6)

Путём сложения и вычитания выражений (3.4) и (3.5) получаем следующие равенства:

zρρ +
zρ
ρ

+
zφφ

ρ2
= zx′x′ + 2hzx′y′ + (h2 + 1)zy′y′

zρρ −
zρ
ρ

− zφφ

ρ2
= zx′x′ cos 2φ+ 2hzx′y′(h cos 2φ+ sin 2φ) + zy′y′((h2 − 1) cos 2φ+ 2h sin 2φ)

В результате упрощения вышеприведённого выражения и равенства (3.6) получаем следующую систему:
zx′x′ + 2hzx′y′ +

(
h2 + 1

)
zy′y′ = zρρ +

zρ
ρ +

zφφ

ρ2

zx′y′ + hzy′y′ = 1
2

(
zρρ − zρ

ρ − zφφ

ρ2

)
sin 2φ+

(
zρφ
ρ − zφ

ρ2

)
cos 2φ

zx′x′ + 2hzx′y′ +
(
h2 − 1

)
zy′y′ =

(
zρρ − zρ

ρ − zφφ

ρ2

)
cos 2φ− 2

(
zρφ
ρ − zφ

ρ2

)
sin 2φ

. (3.7)

Из (3.7) получаем:

zx′x′ =
h2 + 1

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
+

(
1− h2

2
cos 2φ− h sin 2φ

)(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+

+

(
3h2 − 1

2
sin 2φ− 2h cos 2φ

)(
zρφ
ρ

− zφ
ρ2

)
(3.8)

zx′y′ = −h

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
+

sin 2φ+ h cos 2φ

2

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+ (cos 2φ− h sin 2φ)

(
zρφ
ρ

− zφ
ρ2

)
(3.9)

zy′y′ =
1

2

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
− cos 2φ

2

(
zρρ −

zρ
ρ

− zφφ

ρ2

)
+ sin 2φ

(
zρφ
ρ

− zφ
ρ2

)
(3.10)

Если подставить найденные выражения в уравнение Монжа-Ампера, то найдем его уравнение в полярных
координатах:

zx′x′zy′y′ − z2x′y′ = zρρ

(
zρ
ρ

+
zφφ

ρ2

)
+

+

(
zρφ
ρ

− zφ
ρ2

)(
h2 + 1

4
sin 2φ

(
zρρ +

zρ
ρ

+
zφφ

ρ2

)
− h2 + 1

4

(
zρρ −

zρ
ρ

− zφφ

ρ2

))
+

+

(
zρφ
ρ

− zφ
ρ2

)2(
h2 − 1

2
sin22φ− cos22φ

)
(3.11)

Отсюда следует следующая основная теорема:

Теорема 3.1. Если положительная непрерывная функция задана формулой

Φ = Φ
(√

x2 + y2 − b2,
√
a2 − x2 − y2

)
определенной на кольцевой областиD = {(x, y) : b2 ≤ x2 + y2 ≤ a2}, общее решение эллиптического уравнения
Монжа-Ампера:

zxxzyy − z2xy = Φ
(√

x2 + y2 − b2,
√
a2 − x2 − y2

)
имеет следующее:

z (ρ, φ) =

∫ [√
λ2 + d1 +

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ

]
dρ+ ρ (c1 cosφ+ c2 sinφ) + d2 (3.12)

где, z (ρ, φ) = z
(√

x2 + y2, arctg y
x

)
, и λ, ci, di − const, i = 1, 2.
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Доказательство. Решение ищем в следующем виде [28,29]:

z (ρ, φ) = (f (ρ) + g (φ)) ρ (3.13)

zρ = ρf ′ + f + g, zφ = ρg′, zρρ = ρf ′′ + 2f ′, zφφ = ρg′′, zρφ = zφρ = g′

Если подставить найденные выражения в правую часть равенства (3.11), то получим следующее:(
ρf ′′ + 2f ′

)(
f ′ +

f

ρ
+

1

ρ
(g′′ + g)

)
= Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
(3.14)

Упростив это выражение, получим:

g′′ + g =
ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
−
(
ρf ′′ + 2f ′) · (ρf ′ + f)

ρf ′′ + 2f ′ = λ (3.15)

где, λ− const.
Общее решение левой части (3.15) имеет следующий вид:

g (φ) = c1 cosφ+ c2 sinφ+ λ (3.16)

Упростив правую часть, получим:

((ρf ′ + f) + λ)
2
=

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Из этого уравнения мы получаем только одно решение:

(ρf ′ + f) + λ =

√∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Из этого,

(ρf)
′
= −λ+

√∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

Интегрируя, получаем следующее уравнение:

f (ρ) = −λ+
1

ρ

∫ [√∫
2ρΦ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ+ λ2 + d1

]
dρ+

d2
ρ

(3.17)

Подставляя уравнения (3.16)-(3.17) в выражение (3.13), получаем следующее общее решение (3.12):

z (ρ, φ) = ρ (f (ρ) + g (φ)) =

∫ [√
λ2 + d1 +

∫
2ρ · Φ

(√
ρ2 − b2,

√
a2 − ρ2

)
dρ

]
dρ+ ρ (c1 cosφ+ c2 sinφ) + d2

Теорема доказана.
Пример. Если Φ = a2 − b2, то z(ρ, φ) =

∫
[
√
λ2 + d1 +

∫
2(a2 − b2)ρdρ]dρ+ ρ(c1 cosφ+ c2 sinφ) + d2 =∫ √

λ2 + d1 + (a2 − b2)ρ2dρ+ ρ(c1 cosφ+ c2 sinφ) + d2 =
√
a2 − b2

∫ √
λ2+d1

a2−b2 + ρ2dρ+ ρ(c1 cosφ+

c2 sinφ) + d2 = ρ
2

√
(a2 − b2)ρ2 + λ2 + d1 +

λ2+d1

2
√
a2−b2

ln |ρ+
√
ρ2 + λ2+d1

a2−b2 |+ ρ(c1 cosφ+ c2 sinφ) + d2

Упрщения данного выражения получаем следующее уравнение.
z(x, y) =

√
x2+y2

2

√
(a2 − b2)(x2 + y2) + λ2 + d1 +

λ2+d1

2
√
a2−b2

ln |
√
x2 + y2 +

√
x2 + y2 + λ2+d1

a2−b2 |+

+c1x+ c2y + d2
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4. Заключение

Когда правая часть уравненияМонжа–Ампера задана, нахождение его решения вместе с граничными условиями
является одной из актуальных задач теории дифференциальных уравнений с частными производными. В
дифференциальной геометрии эта задача в частном случае эквивалентна задачам восстановления поверхности
по её внешней или полной кривизне. Во многих исследованиях рассмотрение задачи восстановления поверхности
в неевклидовых пространствах имеет важное значение для нахождения её решений в частных случаях.В данной
работе с использованием неевклидового пространства, а именно движения Галилеевой плоскости, и перехода
к полярной системе координат, выражение уравнения Монжа–Ампера в полярной системе координат было
найдено. Для правой части, заданной функциями в кольцевой области, было получено общее решение уравнения
Монжа–Ампера в этой области с использованием геометрии неевклидовых пространств и преобразованийГалилея.
Галилеевское движение плоскости применяется для решения уравнения Монжа-Ампера. Результат расширяет
предыдущие исследования, демонстрируя эффективность предложенного геометрического подхода к решению
уравнения Монжа-Ампера.
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Solving the Monge-Ampere Equation using Geometric Transformations
Abdullaaziz Artykbaev, Gulnoza Kholmurodova

Abstract

The geometric problem of recovering a convex surface from a given function is equivalent to solving a certain Monge-
Ampère equation. In this case, the extrinsic curvature is defined as a function of Borel sets. I. Ya. Bakelman constructed
this theory and proved the existence and uniqueness of the solution of the Monge-Ampère equation of elliptic type in a
simply connected convex domain. A. Artykbaev generalized this solution for a non-simply connected domain applying
of the geometry of Galilean space. This paper is devoted to the analytical solution of the Monge-Ampère equation in a
non-simply connected domain. The extrinsic curvature of the surface is determined in a non-simply connected domain
which is bounded by concentric circles. By applying the transformation which is the motion of Galilean space and the
transition to the polar coordinate system, the equation is modified, in which it is possible to separate the variables of
the solution, the equation is sought for the sum of three functions. As a result, an analytical form of the solution in a
non-simply connected domain bounded by concentric circles is obtained.
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Galilean motion; Monge-Ampere equation; Heisenberg group; total curvature; polar coordinat system.
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