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Abstract
The Lotka – Volterra systems arise in questions of biology, population genetics, epidemiology,
ecology, economics as well as in some branches of theoretical physics, in particular, in solid
state physics. Some important questions of ecology (for example, biogens cycles) can be studied
using Lotka – Volterra mappings operating in a four-dimensional simplex with homogeneous
tournaments. In this regard, the work is devoted to the construction and study of cards of
fixed points of Lotka – Volterra mappings operating in a four-dimensional simplex in the
case of homogeneous tournaments (for arbitrary coefficients of a skew-symmetric matrix). The
card of fixed points gives us a more detailed understanding of the asymptotic behavior of the
trajectories of discrete dynamical Lotka – Volterra systems. In the paper, we show that even
if the tournaments corresponding to the Lotka – Volterra mappings are homogeneous, among
them it is possible to distinguish a class of mappings with skew-symmetric matrices that are
not matrices in a general position. It is not possible to generalize this kind of mappings; each
of them represents a map of fixed points of a different type. This is clearly noted in the work. It
is also shown that even in the case when the tournament corresponding to the Lotka – Volterra
mapping is homogeneous, the set of fixed points is infinite and the card of fixed points consists
of a convex hull of fixed points belonging to strong faces.
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1. Introduction

One of the main problems in mathematical biology, epidemiology and ecology is the study of the
asymptotic behavior of the trajectories of dynamical systems. The works [1-4] are devoted to the study of
continuous dynamical systems and the asymptotic behavior of their trajectories. The proposed work is devoted
to the analysis of the trajectories of interior points of quadratic Lotka – Volterra mappings operating in a
four-dimensional simplex that are not in a general position. Before presenting the main results, let us start with
preliminary information and a review of the literature.
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Let

𝑆𝑚−1 = {𝑥 ∈ R𝑚 : 𝑥 = (𝑥1, ..., 𝑥𝑚) : 𝑥𝑖 ≥ 0,
𝑚∑︁
𝑖=1

𝑥𝑖 = 1}

the standard simplex in R𝑚 and 𝐴 = (𝑎𝑘𝑖), 𝑘, 𝑖 = 1, 𝑚 − is a skew-symmetric matrix with conditions |𝑎𝑘𝑖 | ≤ 1.
The mapping 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1 defined by equality

𝑉 : 𝑥′𝑘 = 𝑥𝑘

(
1 +

𝑚∑︁
𝑖=1

𝑎𝑘𝑖𝑥𝑖

)
, 𝑘 = 1, 𝑚, (1.1)

is called the discrete Lotka – Volterra operator. Mappings of the form (1.1) arise in problems of population
genetics that describe the evolution of a certain population over time, and time is considered discrete [5].

Each Lotka – Volterra operator and its corresponding skew-symmetric matrix are associated with a complete
oriented tournament graph [6], [7] and a partially oriented graph [8].

A complete directed graph – tournament is constructed if the skew-symmetric matrix is in the general
position [6]. To build a tournament, let us take 𝑚 points numbered 1, 2, ..., 𝑚 on the plane and connect the
point with the number 𝑘 to the point with the number 𝑖 with an arc directed from 𝑘 to 𝑖 if 𝑎𝑘𝑖 < 0 and in the
opposite direction if 𝑎𝑘𝑖 > 0.

So, the graph constructed in this way is called a tournament corresponding to the Lotka – Volterra operator
and we denote it by 𝑇𝑚.

A tournament is called strong if there is a path from any vertex to any other according to the orientation
(direction of the arc).

A tournament that does not have strong subtournaments is called a transitive.
Definition 1.1. [9] A tournament is called homogeneous if any of its sub-tournaments is either strong or

transitive.
Theorem 1.2. 𝐴 is a skew-symmetric matrix, then the sets

𝑃 = {𝑥 ∈ 𝑆𝑚−1 : 𝐴𝑥 ≥ 0} and 𝑄 = {𝑥 ∈ 𝑆𝑚−1 : 𝐴𝑥 ≤ 0}

non-empty convex polyhedra.
Theorem 1.3. If 𝐴 is a generic skew-symmetric matrix, then the set 𝑃 (respectively 𝑄) consists of a single

point.

2. The card of fixed points of the operator V

Let us recall the concept of a card of fixed points for a dynamic system (1.1) [9], [10]:
Let 𝛼 ⊂ 𝐼 = {1, ..., 5}. We represent the set of all fixed points {𝑥 ∈ 𝑆4 : 𝑉𝑥 = 𝑥} of the operator 𝑉 as points

on the plane, then for each 𝛼 ⊂ 𝐼 the fixed point 𝑄𝛼 is connected by an arc to a fixed point 𝑃𝛼 directed from
𝑃𝛼 to 𝑄𝛼. The resulting directed graph is called the card of fixed points of the operator 𝑉 we denote it by 𝐺𝑉 .

It is known [11], [12] that for 𝑚 = 5, only the next four tournaments are homogeneous. These are the
tournaments shown in Figure 1.

In case a), the tournament is transitive. If the tournament is transitive, then any trajectory of the Lotka –
Volterra mapping converges to one of the vertices of the simplex [10]. This means that the fixed point card 𝐺𝑉

coincides with the tournament itself 𝑇5. In the case of transitivity, the operator has no fixed points except the
vertices of the simplex [12]. Next, we mark the vertices of the tournaments with the numbers 1, 2, 3, 4, 5 from
top to bottom, and the substructure with vertices, for example, 1, 2, 5, is denoted by 125 .

Definition 2.1.[11] A skew-symmetric matrix 𝐴 = (𝑎𝑘𝑖) is called a general position matrix if all major
minors of even order are nonzero.
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Figure 1. Homogeneous tournament.

If the skew-symmetric matrix of general position, then the corresponding Lotka – Volterra mapping 𝑉 with
coefficients 𝑎𝑘𝑖 is also a general position operator. The task assigned to us is to study quadratic Lotka – Volterra
mappings operating in a four-dimensional simplex that are not in a general position. That is, we show that
even if the tournament corresponding to the skew-symmetric matrix is homogeneous, but the matrix itself and,
accordingly, the operator may not be in the general position. Since the skew-symmetric matrix of the system
is not a matrix of general position, i.e. all major minors of the fourth order (there are only five of them in
this case) are zero. Fixed point cards have been constructed and studied for such mappings, since the structure
of fixed point cards gives a detailed idea of the asymptotic behavior of the trajectories of interior points of
discrete Lotka – Volterra dynamical systems.

In [12], [13] it is proved that skew-symmetric matrices of general position form an open and everywhere
dense subset in the set of all skew-symmetric matrices.

For example, the mapping of Lotka-Volterra 𝑉 : 𝑆3 → 𝑆3 has the form:
𝑥
′

1 = 𝑥1(1 + 𝑎12𝑥2 − 𝑎13𝑥3 + 𝑎14𝑥4),
𝑥
′

2 = 𝑥2(1 − 𝑎12𝑥1 + 𝑎23𝑥3 − 𝑎24𝑥4),
𝑥
′

3 = 𝑥3(1 + 𝑎13𝑥1 − 𝑎23𝑥2 + 𝑎34𝑥4),
𝑥
′

4 = 𝑥4(1 − 𝑎14𝑥1 + 𝑎24𝑥2 − 𝑎34𝑥3),

where 𝑎𝑘𝑖 ∈ [−1; 1], 𝑘, 𝑖 = 1, 4
This operator is a general position operator if and only if the coefficients 𝑎𝑘𝑖 ∈ [−1; 1], 𝑘, 𝑖 = 1, 4 satisfy

the following conditions:

𝑎𝑘𝑖 ≠ 0, 𝑘, 𝑖 = 1, 4 and 𝑎12𝑎34 − 𝑎13𝑎24 + 𝑎14𝑎23 ≠ 0.

Fixed point cards for the Lotka – Volterra operators were first introduced in [5] and it also introduced the
concept of a homogeneous card for Lotka – Volterra mappings. Many other useful properties of the fixed point
card are given in [12], [13]. But these papers do not consider in detail the cases when the skew-symmetric
matrix corresponding to the Lotka – Volterra mapping is not in the general position. Our goal is to consider
these cases in more detail, since these mappings can serve as a discrete model of the biogen cycle in an
ecosystem. In [14], the Lotka – Volterra mapping is investigated, acting in a four-dimensional simplex as a
discrete model of the phosphorus and carbon cycle, depending on the nature of the card of fixed points of this

27 ujmcs.tstu.uz

http://ujmcs.tstu.uz


Analysis of the dynamics of quadratic mappings of a simplex with skew-symmetric matrices that are not in general position

mapping. Here we show that among those operators there can also be those that are not in general position and
the set of their fixed points is an infinite set. Let us go over each case in detail.

3. Main results

a) Consider the Lotka – Volterra operator acting in

𝑆4 = {𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ R5, 𝑥𝑖 ≥ 0,
5∑︁
𝑖=1

𝑥𝑖 = 1},

with the corresponding transitive tournament 𝑇5.

Figure 2. Transitive tournament.

The skew-symmetric matrix corresponding to this operator has the form:

𝐴 =

©­­­­­­­«

0 −𝑎12 −𝑎13 −𝑎14 −𝑎15

𝑎12 0 −𝑎23 −𝑎24 −𝑎25

𝑎13 𝑎23 0 −𝑎34 −𝑎35

𝑎14 𝑎24 𝑎34 0 −𝑎45

𝑎15 𝑎25 𝑎35 𝑎45 0

ª®®®®®®®¬
where |𝑎𝑘𝑖 | ≤ 1.

It is easy to see from the classical algebra course that there are only five major minors of the fourth order for
this matrix.

𝐴11
1 =

©­­­­­«
0 −𝑎23 −𝑎24 −𝑎25

𝑎23 0 −𝑎34 −𝑎35

𝑎24 𝑎34 0 −𝑎45

𝑎25 𝑎35 𝑎45 0

ª®®®®®¬
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The determinant of the skew-symmetric matrix 𝐴11
1 is equal to the following expression:

𝐴11
1 =

����������
0 −𝑎23 −𝑎24 −𝑎25

𝑎23 0 −𝑎34 −𝑎35

𝑎24 𝑎34 0 −𝑎45

𝑎25 𝑎35 𝑎45 0

���������� = (𝑎23𝑎45 − 𝑎24𝑎35 + 𝑎25𝑎34)2.

Similarly, we can calculate the values of the remaining fourth-order minors:

𝐴22
2 = (𝑎15𝑎34 − 𝑎14𝑎35 + 𝑎13𝑎45)2,

𝐴33
3 = (𝑎15𝑎24 − 𝑎14𝑎25 + 𝑎12𝑎45)2,

𝐴44
4 = (𝑎15𝑎23 − 𝑎13𝑎25 + 𝑎12𝑎35)2,

𝐴55
5 = (𝑎14𝑎23 − 𝑎13𝑎24 + 𝑎12𝑎34)2.

Now we can select the elements of the skew-symmetric matrix so that the values of these minors are zero,

𝑎12 = 𝑎13 = 𝑎14 = 𝑎15 = 𝑎23 = 𝑎34 = 𝑎45 =
1
3
, 𝑎24 = 𝑎35 =

2
3
, 𝑎25 = 1

i.e.
𝐴11

1 = (𝑎23𝑎45 − 𝑎24𝑎35 + 𝑎25𝑎34)2 = (1 − 4 + 3)2 = 0

𝐴22
2 = (𝑎15𝑎34 − 𝑎14𝑎35 + 𝑎13𝑎45)2 = (1 − 2 + 1)2 = 0,

𝐴33
3 = (𝑎15𝑎24 − 𝑎14𝑎25 + 𝑎12𝑎45)2 = (2 − 3 + 1)2 = 0,

𝐴44
4 = (𝑎15𝑎23 − 𝑎13𝑎25 + 𝑎12𝑎35)2 = (1 − 3 + 2)2 = 0,

𝐴55
5 = (𝑎14𝑎23 − 𝑎13𝑎24 + 𝑎12𝑎34)2 = (1 − 2 + 1)2 = 0.

The picture is clear here, since the tournament is transitive, the card of fixed points completely coincides with
it.

The tournament shown in Figure is strong and in its expanded form looks as shown in Figure 3.
From the Figure 3 we see that 𝑇5 has three cyclic triples 125, 135, 145, i.e. three strong substructures with

three vertices. It is known [], [] that if a tournament with three vertices is strong, then the mapping corresponding
to this tournament has a fixed point inside the simplex, unlike its vertices. Below we will find the coordinates
of these points.

The skew-symmetric matrix corresponding to this strong tournament has the form:

𝐴 =

©­­­­­­­«

0 −𝑎12 −𝑎13 −𝑎14 𝑎15

𝑎12 0 −𝑎23 −𝑎24 −𝑎25

𝑎13 𝑎23 0 −𝑎34 −𝑎35

𝑎14 𝑎24 𝑎34 0 −𝑎45

−𝑎15 𝑎25 𝑎35 𝑎45 0

ª®®®®®®®¬
In [], the same operator was investigated when it is in a general position and it is proposed as a discrete

model of the carbon and phosphorus cycle in an ecosystem, depending on the type of fixed point map. But as it
turned out, for this operator, too, the elements of the skew-symmetric matrix can be selected so that all major
minors of the fourth order are equal to zero,
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Figure 3. Strong tournament.

𝑎14 = 𝑎15 = 𝑎23 = 𝑎25 = 𝑎34 = 𝑎35 = 𝑎45 =
1
3
, 𝑎13 = 𝑎24 =

2
3
, 𝑎12 = 1

𝐴11
1 = (𝑎23𝑎45 − 𝑎24𝑎35 + 𝑎25𝑎34)2 = (1 − 2 + 1)2 = 0

𝐴22
2 = (𝑎14𝑎35 − 𝑎13𝑎45 + 𝑎15𝑎34)2 = (1 − 2 + 1)2 = 0,

𝐴33
3 = (𝑎14𝑎25 − 𝑎12𝑎45 + 𝑎15𝑎24)2 = (1 − 3 + 2)2 = 0,

𝐴44
4 = (𝑎13𝑎25 − 𝑎12𝑎35 + 𝑎15𝑎23)2 = (2 − 3 + 1)2 = 0,

𝐴55
5 = (𝑎12𝑎34 − 𝑎13𝑎24 + 𝑎14𝑎23)2 = (1 − 4 + 3)2 = 0.

The mapping in this case looks like

𝑥
′

1 = 𝑥1(1 − 𝑥2 − 2
3𝑥3 − 1

3𝑥4 + 1
3𝑥5),

𝑥
′

2 = 𝑥2(1 + 𝑥1 − 1
3𝑥3 − 2

3𝑥4 − 1
3𝑥5),

𝑥
′

3 = 𝑥3(1 + 2
3𝑥1 + 1

3𝑥2 − 1
3𝑥4 − 1

3𝑥5),

𝑥
′

4 = 𝑥4(1 + 1
3𝑥1 + 2

3𝑥2 + 1
3𝑥3 − 1

3𝑥5),

𝑥
′

5 = 𝑥5(1 − 1
3𝑥1 + 1

3𝑥2 + 1
3𝑥3 + 1

3𝑥4).

(3.1)

and it is not in the general position, since all major minors of the fourth order are zero and the card of fixed
points for this operator has the form shown in Figure 4.

The card of fixed points has the form of an undirected graph, which means that the set of fixed points
is infinite and consists of a convex hull of three fixed points that belong to the strong faces of the simplex
Γ125, Γ135, Γ145. Now, in order to investigate the characters of fixed points belonging to the convex hull of
fixed points belonging to strong faces, we first find their coordinates explicitly by solving the equation 𝑉𝑥 = 𝑥,
according to [10]:
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Figure 4. The card of fixed point for homogeneous tournament.

𝑀1

(
1
5
,

1
5
, 0, 0,

3
5

)
, 𝑀2

(
1
4
, 0,

1
4
, 0,

1
2

)
, 𝑀3

(
1
3
, 0, 0,

1
3
,

1
3

)
Now let us take their convex hull:

𝑀1

(
1
5
,

1
5
, 0, 0,

3
5

)
| 𝛼

𝑀2

(
1
4
, 0,

1
4
, 0,

1
2

)
| 𝛽

𝑀3

(
1
3
, 0, 0,

1
3
,

1
3

)
| 𝛾

For the considered mapping, an arbitrary fixed point belonging to this shell has coordinates of the form:

𝑀

(
1
5
𝛼 + 1

4
𝛽 + 1

3
𝛾;

1
5
𝛼;

1
4
𝛽;

1
3
𝛾;

3
5
𝛼 + 1

2
𝛽 + 1

3
𝛾

)
, 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1

Let 𝛼 = 𝛽 = 𝛾 = 1
3 , then the fixed point has the form 𝑀

(
47

180 ,
1

15 ,
1
12 ,

1
9 ,

43
90

)
.

Now we calculate the eigenvalues for this fixed point, i.e. we analyze the spectrum of the Jacobian at this
point and get the following:

𝜆1 =
1
90

(
90 + 𝑖

√
510

)
𝜆2 =

1
90

(
90 − 𝑖

√
510

)
𝜆3 = 1, 𝜆4 = 1, 𝜆5 = 1.

It is easy to see that the modulo eigenvalues are greater than one. This means that the entire convex hull
consists of repulsive fixed points. The definitions describing the characters of fixed points are given in [11],
[12].

Now, let us move on to the third tournament from Figure 1 (see Figure 5).
This strong tournament, unlike the previous one, has four strong sub-tournaments, with three vertices -

135, 145, 235, 245. Each of these strong triples has one interior fixed point. Let us select the elements of the
skew-symmetric matrix

𝑎12 = 𝑎14 = 𝑎24 = 𝑎25 = 𝑎34 = 𝑎35 = 𝑎45 = 1, 𝑎15 = 𝑎23 = 2, 𝑎13 = 3
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Figure 5. The homogeneous tournament.

and then

𝐴 =
1
3

©­­­­­­­«

0 −1 −3 −1 2

1 0 −2 −1 1

3 2 0 −1 −1

1 1 1 0 −1

−2 −1 1 1 0

ª®®®®®®®¬
we get the minors equal to zero, i.e.

𝐴11
1 = (𝑎24𝑎35 − 𝑎23𝑎45 + 𝑎25𝑎34)2 = (1 − 2 + 1)2 = 0

𝐴22
2 = (𝑎14𝑎35 − 𝑎13𝑎45 + 𝑎15𝑎34)2 = (1 − 3 + 2)2 = 0,

𝐴33
3 = (𝑎12𝑎45 − 𝑎15𝑎24 + 𝑎14𝑎25)2 = (1 − 2 + 1)2 = 0,

𝐴44
4 = (𝑎12𝑎35 − 𝑎15𝑎23 + 𝑎13𝑎25)2 = (1 − 4 + 3)2 = 0,

𝐴55
5 = (𝑎12𝑎34 − 𝑎13𝑎24 + 𝑎14𝑎23)2 = (1 − 3 + 2)2 = 0.

Since in this case there are four interior fixed points belonging to strong faces, the card of fixed points looks
like a convex hull of them (see Figure 6).

Here, as in the previous case, we can explicitly calculate the coordinates of the vertices of the card and check
the characters of the fixed points belonging to this card.

The last – fourth tournament has five strong sub-tournaments, which means that the card has interior fixed
points belonging to the faces of the simplex Γ124, Γ134, Γ135, Γ235 and Γ245. Here, you can also select the
elements of a skew-symmetric matrix, so that all its fourth-order minors are equal to zero.

𝑎12 = 𝑎13 = 𝑎14 = 𝑎15 = 𝑎24 = 𝑎25 = 𝑎35 = 1, 𝑎23 = 𝑎45 = 2, 𝑎34 = 3

𝐴 =
1
3

©­­­­­­­«

0 1 1 −1 −1

−1 0 2 1 −1

−1 −2 0 3 1

1 −1 −3 0 2

1 1 −1 −2 0

ª®®®®®®®¬
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Figure 6. The card of fixed point for homogeneous tournament.

𝐴11
1 = (𝑎24𝑎35 − 𝑎23𝑎45 + 𝑎25𝑎34)2 = (1 − 4 + 3)2 = 0

𝐴22
2 = (𝑎13𝑎45 − 𝑎15𝑎34 + 𝑎14𝑎35)2 = (1 + 2 − 3)2 = 0,

𝐴33
3 = (𝑎14𝑎25 − 𝑎12𝑎45 + 𝑎15𝑎24)2 = (1 − 2 + 1)2 = 0,

𝐴44
4 = (𝑎12𝑎35 − 𝑎15𝑎23 + 𝑎13𝑎25)2 = (1 − 2 + 1)2 = 0,

𝐴55
5 = (𝑎13𝑎24 − 𝑎12𝑎34 + 𝑎14𝑎23)2 = (1 − 3 + 2)2 = 0.

The fixed points card of this operator has the form shown in Figure 7.

Figure 7. The card of fixed point for homogeneous tournament.

Inonclusion, we have constructively proved the following theorem.
Corollary 3.1. Let give a discrete Lotka – Volterra mapping of the form (1.1). If all the major minors of the

second order of the skew-symmetric matrix corresponding to this mapping are nonzero, then
– if all fourth-order minors are nonzero, then all eigenvalues of the skew-symmetric matrix are complex

numbers and the kernel is zero,

𝑑𝑒𝑡𝐴 ≠ 0, 𝐾𝑒𝑟𝐴 = {0},
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that is, the mapping is in the general position;
– if all the major minors of the fourth order are zero, then the core of the skew-symmetric matrix will be

nonzero, i.e. 𝐾𝑒𝑟𝐴 ≠ {0}. The equation 𝐴𝑥 = 0 has a solution and the eigenvalues of the skew-symmetric
matrix are modulo greater than one, which means that the card of fixed points consists of repulsive fixed points.

4. Conclusion

The main result of this paper, in contrast to works [5], [11], [12], is the study of quadratic Lotka – Volterra
mappings that are not mappings in general position. Mappings of this nature can be proposed as a discrete
model to study the biogen cycle in the ecosystem [13]. In the paper, we analyze the cases where all the principal
minors of even order are equal to zero, the set of fixed points is infinite, and the card of fixed points consists
of the convex hull of fixed points belonging to strong faces. The main result of the work is Theorem 3, in
which the kernel of a skew-symmetric matrix and its eigenvalues are analyzed. As a result, the nature of the
fixed points of the considered mappings is determined. The cases considered in this paper can be used as a
discrete model of the nitrogen cycle. We will consider the application in the next paper. In the paper we use
elements of the graph theory in order to clearly see the dynamic picture of the considered mappings, since the
use of elements of graph theory and the construction of cards of fixed points helps to visually build a picture
in problems of ecology, epidemiology etc.
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