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Кратные бифуркации Тьюринга и
Андронова-Хопфа в системе "реакция-диффузия"

Юмагулов Марат* Габдрахманов Роберт

Аннотация
В статье обсуждаются вопросы исследования локальных бифуркаций в окрестностях
пространственно однородных положений равновесия системы “реакция-диффузия” в
ограниченной области с однородными краевыми условиями Неймана. Основные результаты
касаются изучения задач о бифуркации Тьюринга и бифуркации Андронова-Хопфа в ситуации
кратного вырождения линеаризованной системы. В рассматриваемой ситуации коразмерность
бифуркации не совпадает с кратностью собственных значений соответствующих линейных
операторов, что приводит к существенному усложнениюзадачи. В статье проведен анализ случаев,
приводящих к возникновению кратных бифуркаций, определены условия кратного вырождения,
предложены подходы исследования задач об устойчивости и бифуркациях в окрестностях
положений равновесия в указанных условиях. Основным результатом является исследование и
описание структуры многообразия возникающих при бифуркации решений системы “реакция-
диффузия”. Обсуждаются также возможные направления развития предложенных результатов
в задачах исследования кратных бифуркаций.
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1. Введение и постановки задачи

Изучению систем типа “реакция-диффузия” традиционно посвящается большое количество работ в силу
широкой области ее приложений (см., например, [1-5]) и имеющуюся там библиографию). Одним из важнейших
направлений исследований таких систем является изучение критических явлений и связанных с ними бифуркаций,
приводящих к возникновению в окрестности положений равновесия диссипативных структур (бифуркация
Тьюринга) и автоволновых процессов (бифуркация Андронова-Хопфа). Возникновение таких решений связано с
тем, что собственные значения соответствующей линеаризованной системы переходят через мнимую ось: через
значение λ = 0 для диссипативных структур и через значение λ = iω (где ω ̸= 0) для автоволн.

Волновые числа, соответствующие указанным бифуркациям, часто оказываются такими, что соответствующий
линейный оператор будет иметь собственные значения, кратность которых не совпадает с коразмерностью
бифуркации. Наличие таких ситуаций существенно усложняет применение стандартных методов исследования
бифуркаций. Как правило, известные работы по изучениюбифуркаций в системе “реакция-диффузия” направлены
на исследований ситуаций, когда кратность собственных значений и коразмерность бифуркаций совпадают (см.,
например, [4-11]). Вопросы исследования ситуаций, когда кратность собственных значений и коразмерность
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бифуркации различны, остаются малоизученной темой. В настоящей работе обсуждаются некоторые аспекты
задач о бифуркациях Тьюринга и Андронова-Хопфа в указанных ситуациях.
Основным объектом исследования является система “реакция-диффузия” (см., например, [2-11]), описываемая

дифференциальным уравнением

dw

dt
= A(µ)w +D∆w + h(w), w ∈ RN , (1.1)

в которой A(µ) – матрица Якоби, гладко зависящая от параметра µ, D – ненулевая матрица диффузии с

неотрицательными элементами,∆ – оператор Лапласа:∆ =
∂2

∂x21
+ . . .+

∂2

∂x2m
, нелинейность h(w) удовлетворяет

соотношению: ∥h(w)∥ = o(∥w∥) при w → 0 . Уравнение (1.1) изучается в параллелипипеде

Ω = {x : 0 ⩽ x1 ⩽ π, 0 ⩽ x2 ⩽ π, . . . , 0 ⩽ xm ⩽ π} .

В качестве граничных условий рассматриваются условия Неймана

∂w

∂n

∣∣∣∣
∂Ω

= 0 . (1.2)

Система (1.1)-(1.2) имеет стационарное нулевое peшение w = 0; оно является решением краевой задачи

A(µ)w +D∆w + h(w) = 0,
∂w

∂n

∣∣∣∣
∂Ω

= 0 . (1.3)

2. Основные понятия и обозначения

Через L2(Ω) будем обозначать гильбертово пространство функций v(x), определенных на Ω, а черезW 2
2 (Ω) –

соболевское пространство с нормой

∥v(x)∥W 2
2
=

(∫
Ω

Σ
|α|⩽2

∥Dαv∥2 dx
)1/2

;

здесь Dα – оператор дифференцирования: Dα =
∂|α|

∂x1α1∂x2α2 ...∂xmαm
, |α| = α1 + α2 + ...+ αm , ∥ · ∥ –

евклидова норма в Rn. Через C(Ω) и C2(Ω) обозначим пространства непрерывных и дважды непрерывно
дифференцируемых функций. Определим также множество

C2
0 (Ω) =

{
v ∈ C2 :

∂v

∂n

∣∣∣∣
∂Ω

= 0

}
.

Оператор Лапласа ∆ =
∂2

∂x21
+ . . .+

∂2

∂x2m
: C2

0 → C может быть (см., например, [6]) расширен до замкнутого

самосопряженного оператора ∆ : L2 → L2 с областью определения G0, образованного замыканием в W 2
2

множестваC2
0 (Ω). Спектр оператора∆ состоит из изолированных собственных значенийλ = −k21 + k22 + · · ·+ k2m

конечной кратности (ki – целые неотрицательные числа).
Решениями системы (1.1)-(1.2) будем называть функции w(x, t), которые:

– при каждом фиксированном значении t являются элементами пространстваW 2
2 (Ω);

– при каждом фиксированном значении x ∈ Ω являются непрерывно дифференцируемыми по t функциями;
– удовлетворяют уравнению (1.1) и граничным условиям (1.2) при всех t ⩾ 0 и x ∈ Ω.
Точку равновесия w = v0(x) системы (1.1)-(1.2) называют (см., например, [3, 4]) устойчивой по Ляпунову,

если для каждого ε > 0 существует δ > 0 такое, что если ∥u0(x)− v0(x)∥W 2
2
< δ, то решение w(x, t) системы
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(1.1)-(1.2) удовлетворяет неравенству ∥w(x, t)− v0(x)∥W 2
2
< ε для всех t > 0; здесь w(x, t) – решение задачи

Коши для системы (1.1)-(1.2) с начальным условием w(x, 0) = u0(x). Если, кроме того, ∥w(x, t)− v0(x)∥W 2
2
→ 0

при t→ ∞, то точку равновесия w = v0(x) называют асимптотически устойчивой.
Характер устойчивости нулевой точки равновесия w = 0 системы (1.1)-(1.2) определяются свойствами спектра

линейного оператора
S(µ) = A(µ) +D∆ : L2(Ω) → L2(Ω) , (2.1)

с плотной вL2(Ω) областьюопределенияG0. Оператор (2.1) является замкнутым, его спектр является дискретным,
а именно, состоит из изолированных собственных значений конечной кратности (см., например, [11]). Если все
собственные значения оператора (2.1) имеют отрицательные вещественные части, то точка равновесия w = 0

системы (1.1)-(1.2) является асимтотически устойчивой. Если же этот оператор имеет собственное значение
с положительной вещественной частью, то точка равновесия w = 0 будет неустойчивой. Соответственно, если
оператор (2.1) при некотором µ = µ0 имеет собственное значение с нулевой вещественной частью, то значение
µ0 будет точкой бифуркации.
Будем говорить, что значение µ = µ0 является точкой бифуркации Тьюринга системы (1.1)-(1.2), если

оператор S(µ0) имеет собственное значение λ = 0, а остальные его собственные значения имеют отрицательные
вещественные части.
Будем говорить, что значение µ = µ0 является точкой бифуркации Андронова-Хопфа системы (1.1)-(1.2),

если оператор S(µ0) имеет пару чисто мнимых собственных значений λ1,2 = ±iω0, а остальные его собственные
значения имеют отрицательные вещественные части.
Remark 2.1. Требование, чтобы остальные собственные значения оператора S(µ0) имели отрицательные
вещественные части, связано со следующим обстоятельством. Если допустить, что оператор S(µ0) имеет
собственное значение с положительной вещественной частью, то возникающие при бифуркации диссипативные
структуры или автоволны будут заведомо неустойчивы. Отметим, в частности, что обязательным условием обоих
видов бифуркаций является требование, чтобы матрица A(µ0) была устойчивой. Обсуждение соответствующих
вопросов приведено в [7, 12].
Отметим справедливость следующих утверждений (см., например, [10, 11]).

Lemma 2.1. Бифуркация Тьюринга для системы (1.1)-(1.2) возможна только при N ⩾ 2.

Lemma 2.2. Бифуркация Андронова-Хопфа для системы (1.1)-(1.2) возможна только при N ⩾ 3.

3. Вспомогательные матрицы

Ниже квадратную вещественную матрицу B будем называть устойчивой, если все ее собственные значения
имеют отрицательные вещественные части.

Множество собственных значений оператора (2.1) совпадает с множеством собственных значений матриц

Bκ(µ) = A(µ)−
(
k21 + k22 + . . .+ k2m

)
D , (3.1)

где kj – целые неотрицательные чмсла, а через κ обозначен мультииндекс κ = (k1, k2, . . . , km). Если все эти
матрицы являются устойчивыми, то и точка равновесия w = 0 будет асимптотически устойчивым решением
системы (1.1)-(1.2). Если же хотя бы одна из матриц (3.1) имеет собственное значение с положительной
вещественной частью, то точка равновесия w = 0 будет неустойчивой.
Понятия бифуркаций Тьюринга и Андронова-Хопфа полезно переформулировать с использованием матриц

(3.1). Определим числа
ρk = k21 + k22 + . . .+ k2m. (3.2)

Будем говорить, что значение µ = µ0 является точкой бифуркации Тьюринга системы (1.1)-(1.2), если:
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T1) при некотором мультииндексе κ0 = (k1, k2, . . . , km) матрица B0 = Bκ0(µ0) имеет собственное значение
λ = 0, а остальные собственные значения матрицы B0 имеют отрицательные вещественные части;

T2) матрицы Bκ(µ0) при κ ̸= κ0 являются устойчивыми.

Будем говорить, что значение µ = µ0 являетсяточкой бифуркации Андронова-Хопфа системы (1.1)-(1.2), если:

H1) при некотором мультииндексе κ0 = (k1, k2, . . . , km) матрица B0 = Bκ0(µ0) имеет пару чисто мнимых
собственных значений λ1,2 = ±iω0, а остальные собственные значения матрицы B0 имеют отрицательные
вещественные части;

H2) матрицы Bκ(µ0) при κ ̸= κ0 являются устойчивыми.

Сценарий бифуркации Тьюринга связан с тем, что при переходе параметра µ через значение µ0 в системе (1.1)
в окрестности точки равновесия w = 0 возникают ненулевые пространственно неоднородные точки равновесия
w = w(x, µ). Соответственно, сценарий бифуркации Андронова-Хопфа связан с тем, что при переходе параметра
µ через значение µ0 в системе (1.1) в окрестности точки равновесия w = 0 возникают нестационарные
периодические решения w = w(x, t, µ).

4. Свойства множества чисел (3.2)

Сравнение приведенных определений точек бифуркаций, основанных на свойствах определенного равенством
(2.1) оператора S(µ) и определенных равенствами (3.1) матриц Bκ(µ), приводит к следующему вопросу. Пусть
λ0 – собственное значение матрицы Bκ0(µ0) при некотором мультииндексе κ0 = (k1, k2, . . . , km). Тогда λ0 будет
собственным значением и оператора S(µ0). Но будут ли одинаковы и кратности этого собственного значения для
обоих операторов?
С целью обсуждения этого вопроса введем обозначения:
– Z+ – множество целых неотрицательных чисел;
– Z0(m) – множество чисел вида (3.2);
– Z1(m) – множество чисел, состоящее из тех ρ ∈ Z0(m), для которых существует единственный мультииндекс

κ = (k1, k2, . . . , km) такой, что ρ = k21 + k22 + . . .+ k2m;
– Z2(m) – множество чисел, состоящее из тех ρ ∈ Z0(m), для которых существуют два или более

мультииндексов κ = (k1, k2, . . . , km) таких, что ρ = k21 + k22 + . . .+ k2m;
– Z(m) = {ρ : ρ = mj2 , j = 0, 1, 2, . . .}.
По построению имеем:

Z1(m) ∪ Z2(m) = Z+ , Z1(m) ∩ Z2(m) = ∅ , Z(m) ⊂ Z0(m) .

Далее верны следующие включения:
Z1(m) ⊂ Z(m) , (4.1)

Z0(m) ̸= Z+ для 1 ⩽ m ⩽ 3 , Z0(m) = Z+ для m ⩾ 4 . (4.2)

Равенство в (4.2) следует из теоремы Лагранжа о представимости любого натурального числа в виде суммы
четырех квадратов.
Обсудим свойства множеств Z1(m) и Z2(m) для различныхm. Имеем:

m = 1 ⇒ Z1(m) = Z(m) = {0, 1, 4, 9, . . . , k2, . . .} , Z2(m) = ∅ ;
m = 2 ⇒ Z1(m) = {0, 2, 8, 18, 32, 72, 98, 128, 162, . . .} , Z2(m) = {1, 3, 4, 5, . . .} ;
m = 3 ⇒ Z1(m) = {0, 3, 12, . . .} , Z2(m) = {1, 2, 4, 5, . . .} ;
m ⩾ 4 ⇒ Z1(m) = {0} ; Z2(m) = Z+/{0} = {1, 2, 3, 4, . . . } .
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Приведенные свойства множеств Z1(m) и Z2(m) показывают, что если матрица Bκ0(µ0) имеет собственное
значение кратности l, а другие матрицы Bκ(µ0) при κ ̸= κ0 не имеют собственного значения λ0, то оператор
S(µ0) также имеет собственное значение λ0, кратность которого совпадает с кратностью l (кратностью rl), если
ρ ∈ Z1(m) (если ρ ∈ Z2(m) и ρ представимо r различными способами).

Отсюда следует, что верны следующие утверждения

Theorem 4.1. Пусть ρ0 ∈ Z1(m) и пусть κ0 – соответствующий единственный мультииндекс. Пусть λ0
– собственное значение матрицы (3.1) при мультииндексе κ0. Пусть, наконец, матрицы (3.1) при других
мультииндексах не имеют собственного значения λ0. Тогда оператор (2.1) имеет собственное значение λ0
той же алгебраической и геометрической кратности, что и матрица (3.1) при мультииндексе k0.

Theorem 4.2. Пусть ρ0 ∈ Z2(m) и пусть ему соответствуют в точности два разных мультииндекса κ1

и κ2. Пусть λ0 – собственное значение матрицы (3.1) при мультииндексе κ1 (или, что то же самое, при
мультииндексе κ2), алгебраическая и геометрическая кратности которого равны ν и κ соответственно.
Пусть, наконец, матрицы (3.1) при других мультииндексах не имеют собственного значения λ0. Тогда оператор
(2.1) имеет собственное значение λ0, алгебраическая и геометрическая кратности которого равны 2ν и 2κ
соответственно.

Аналогичные утверждения имеют место и в ситуациях, когда числу ρ0 ∈ Z2(m) соответствуют более двух
различных мультииндексов.
В силу теорем 4.1 и 4.2 в задаче о бифуркациях кратность собственных значений оператора (2.1) и коразмерность

соответствующих бифуркаций приm ⩾ 2 могут не совпадать. Для иллюстрации этого факта рассмотрим случай
m = 2. Пусть при некотором мультииндексе κ0 = (k1, k2) таком, что k1 ̸= k2 (тогда ρ = k21 + k22 ∈ Z2(m)),
матрица B0 = Bκ0(µ0) имеет простое собственное значение λ = 0. Пусть остальные собственные значения
матрицы B0 и всех других матриц Bκ(µ0) при κ ̸= κ0 и |κ| ̸= k21 + k22 , имеют отрицательные вещественные
части. Тогда µ0 – точка бифуркации Тьюринга системы (1.1)-(1.2). При этом коразмерность бифуркации равна
одному. Но кратность собственного значения λ = 0 оператора S(µ0) будет больше или равна двух.

Отметим, что при m = 1 кратность собственных значений оператора (2.1) и коразмерность соответствующих
бифуркаций совпадают.

5. Основные утверждения

Обсудим задачу о бифуркациях в системе (1.1)-(1.2) в случае, когда кратность собственных значений оператора
S(µ0) и коразмерность бифуркации не совпадают. Ограничимся рассмотрением задачи о бифуркации Тьюринга.
Для задачи о бифуркации Андронова-Хопфа рассуждения аналогичны.
Для простоты будем рассматривать систему (1.1)-(1.2) при m = 2. Другими словами, будем рассматривать

систему (1.1)-(1.2) вида

dw

dt
= A(µ)w +D∆w + h(w), w ∈ RN ,

∂w

∂n

∣∣∣∣
∂Ω

= 0 , (5.1)

относительно неизвестной функции w = w(x, y, t). Здесь∆ – оператор Лапласа: ∆ =
∂2

∂x2
+

∂2

∂y2
, а Ω – квадрат:

Ω = {(x, y) : 0 ⩽ x ⩽ π, 0 ⩽ y ⩽ π} .
Матрицы (3.1) здесь примут вид

Bκ(µ) = A(µ)− (k2 + l2)D , (5.2)

где k и l – целые неотрицательные чмсла, а через κ обозначен мультииндекс κ = (k, l).
Пусть µ0 – точка бифуркации Тьюринга системы (5.1), а именно, пусть выполнено условие:
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P1 матрица B0 = Bκ1(µ0) при некотором мультииндексе κ1 = (k0, l0) имеет простое собственное значение
λ = 0, причем ρ = k20 + l20 ∈ Z2(m), k0 ̸= l0, и числу ρ соответствуют в точности два разных мультииндекса
κ1 = (k0, l0) и κ2 = (l0, k0). Пусть остальные собственные значения матрицы B0 и всех других матриц
Bκ(µ0) при κ ̸= κ1 и κ ̸= κ2 имеют отрицательные вещественные части.

Пусть e0 и e∗0 – это собственные векторы матрицы B0 и транспонированной матрицы B∗
0 , соответствующие

простому собственному значению λ = 0. Эти векторы можно нормировать в соответствии с равенством

(e0, e
∗
0) = 1 . (5.3)

В силу условия P1 операторS(µ0), определенный равенством (2.1), имеет собственное значениеλ = 0 кратности
2. Соответствующими собственными функциями оператора S(µ0) и сопряженного оператора S∗(µ0) будут
функции {

u0(x, y) = e0 cos k0x cos l0y; u∗0(x, y) = e∗0 cos k0x cos l0y;

v0(x, y) = e0 cos l0x cos k0y; v∗0(x, y) = e∗0 cos l0x cos k0y.
(5.4)

Эти функции можно нормировать в соответствии с равенствами

(u0, u
∗
0)L2

= (v0, v
∗
0)L2

= 1, (u0, v
∗
0)L2

= (v0, u
∗
0)L2

= 0 .

Обозначим через Ec двумерное подпространство в L2(Ω), базисом которого являются функции u0 и v0.
Наряду с (5.1) будем рассматривать также расширенную систему{

w′
t = A(µ)w +D∆w + h(w) ,

µ′
t = 0 ,

(5.5)

Положим Λ = {µ : µ ∈ R1}. Определим два линейных пространства

H = {(w, µ) : w ∈ L2 , µ ∈ Λ } , Ec
µ = {(w, µ) : w ∈ Ec , µ ∈ Λ};

Ec
µ является трехмерным подпространством пространства H .
В соответствии в теоремой о центральном многообразии (см., например, [13]) при выполнении условия P1

система (5.5) в пространстве H имеет трехмерное гладкое многообразие U , обладающее свойствами:
1) многообразие U содержит точку (0, µ0);
2) многообразие U касается подпространства Ec

µ в точке (0, µ0);
3) многообразие U содержит все точки равновесия и периодические орбиты системы (5.5), лишь бы их траектории
располагались в малой окрестности точки (0, µ0). Многообразие U называют центральным многообразием
системы (5.5).
В соответствии с общей теорией бифуркаций [13], возникающие при выполнении условия P1 бифуркационные

решения системы (5.1) образуют (локально в окрестности точки (0, µ0)) двумерное гладкое многообразие Uc,
располагающееся на многообразии U . Многообразие Uc можно представить как семейство непрерывных ветвей
бифуркационных решений системы (5.1), которые можно описать следующими параметрически заданными
функциями {

w = w(x, y, ε) = εe1(x, y) + ε2e2(x, y) + . . . ,

µ = µ(ε) = µ0 + εµ1 + ε2µ2 + . . . ,
(5.6)

где ε – вспомогательный малый параметр. При этом в качестве функции e1(x, y) могут быть использованы любые
ненулевые функции из Ec, т.е. функции вида

e1(x, y) = C1u0(x, y) + C2v0(x, y) ,

в котором C1 и C2 (C2
1 + C2

2 > 0) – постоянные.
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Обсудим вопрос о построении семейства бифуркационных решений (5.6). Для простоты рассуждений будем
считать, что нелинейность h(w) в системе (5.1) имеет вид

h(w) = h3(w) + h4(w) , (5.7)

где h3(w) является однородным полиномом третьей степени (тогда h3(λw) ≡ λ3h3(w)), h4(w) удовлетворяет
условию: h4(w) = O(∥w∥4) при w → 0. Общий случай (когда нелинейность h(w) начинается с квадратичных
слагаемых) приводит к более сложным формулам и поэтому здесь рассматриваться не будет.

Theorem 5.1. Пусть выполнено условие P1. Пусть

(A′(µ0)e0, e
∗
0) ̸= 0; (5.8)

здесь A′(µ) – производная матрицы A(µ). Тогда система (5.1) имеет непрерывную ветвь бифуркационных
решений вида {

w = w(x, y, ε) = εu0(x, y) +O(ε3) ,

µ = µ(ε) = µ0 + ε2µ2 +O(ε3) ,
(5.9)

в котором

µ2 = − (h(e0), e
∗
0)

16(A′(µ0)e0, e∗0)
. (5.10)

Приведенное утверждение позволяет получить только одну из непрерывных ветвей (5.6). Главной асимптотикой
(по степеням малого параметра ε) этой ветви является функция εu0(x, y). Естественен вопрос о получении
остальных ветвей бифуркационных решений (5.6).
Рассмотрим набор функций{

e1(x, y) = C1u0(x, y) + C2v0(x, y); e∗1(x, y) = C∗
1u

∗
0(x, y) + C∗

2v
∗
0(x, y);

e2(x, y) = C1v0(x, y)− C2u0(x, y); e∗2(x, y) = C∗
1v

∗
0(x, y)− C∗

2u
∗
0(x, y) ,

(5.11)

в которых C1, C2, C
∗
1 , C

∗
2 – вещественные константы. Эти функции можно нормировать в соответствии с

равенствами
(e1, e

∗
1)L2 = (e2, e

∗
2)L2 = 1, (e1, e

∗
2)L2 = (e2, e

∗
1)L2 = 0 .

Theorem 5.2. В условиях теоремы 5.1 система (5.1) имеет непрерывную ветвь бифуркационных решений вида{
w = w(x, y, ε) = εe1(x, y) +O(ε3) ,

µ = µ(ε) = µ0 + ε2µ2 +O(ε3) ,
(5.12)

в которой µ2 определяется равенством (5.10).

Таким образом, семейство непрерывных ветвей бифуркационных решений (5.6) системы (5.1) может быть
представлено в виде (5.12), в котором значение µ2 не зависит от выбора функции e1(x, y). В этой связи отметим,
что в задаче о бифуркациях одним из основных является вопрос о направленности бифуркаций, т.е. вопрос о том,
при каких значениях параметра возникают бифуркационные решения. Из теорем 5.1 и 5.2 следует, что верна

Theorem 5.3. Пусть в условиях теоремы 5.1 выполнено неравенство µ2 > 0 (µ2 < 0). Тогда бифуркационные
решения системы (5.1) возникают при µ > µ0 (при µ < µ0).

6. Доказательство теоремы 5.1

Приведем схему доказательства теоремы 5.1 (теорема 5.2 доказывается по той же схеме).
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Задача о бифуркации Тьюринга системы (5.1) приводит к необходимости изучения краевой задачи (1.3). Так
как матрица D обратима, то задача (1.3) равносильна нелинейной краевой задаче Неймана

∆w = −D−1[A(µ)w + h(w)] ,
∂w

∂n

∣∣∣∣
∂Ω

= 0 , (6.1)

которая, в свою очередь, равносильна операторному уравнению

w = T (µ)w + b(w) , (6.2)

в котором

T (µ)w(x, y) =

∫
Ω

G(x, y, ψ)K(µ)w(ψ) dψ , b(w(x, y)) =

∫
Ω

G(x, y, ψ)D−1h(w(ψ)) dψ ; (6.3)

здесьK(µ) = D−1A(µ),G(x, y, ψ) –функция Грина задачиНеймана (6.1), аψ = (ψ1, ψ2) – двумерная переменная
(переменная интегрирования), определяющая квадрат Ω = {(ψ1, ψ2) : 0 ⩽ ψ1 ⩽ π, 0 ⩽ ψ2 ⩽ π} .
Операторы (6.3) действуют и вполне непрерывны в пространстве L2, при этом:
– линейный оператор T (µ0) имеет собственное значение λ = 1 кратности 2;
– нелинейный оператор b(w) с учетом равенства (5.7) представим в виде b(w) = b3(w) + b4(w) .
Задача о бифуркации для операторного уравнения (6.2) имеет ту особенность, что коразмерность

бифуркации равна одному, а кратность собственного значения λ = 1 оператора T (µ0) равна двум. Поэтому
стандартные методы исследования бифуркации задачи не проходят. Предлагается следующая схема построения
бифуркационных решений уравнения (6.2). Введем в уравнение (1.3) дополнительный параметр ν, а именно,
перейдем от однопараметрической задачи (1.3) к рассмотрению двупараметрической задачи

A(µ)w +D∆w + νP1w + h(w) = 0 ,
∂w

∂n

∣∣∣∣
∂Ω

= 0 , (6.4)

в которойP1 – операторP1w(x, y) = (w(x, y), u∗0(x, y))L2v0(x, y) . При ν = ν0 = 0 задача (6.4) совпадает с задачей
(1.3). Таким образом, от однопараметрического уравнения (6.2) перейдем к двупараметрическому уравнению

w = T (µ, ν)w + b3(w) + b4(w) , (6.5)

где с учетом равенства (5.7):

T (µ, ν)w(x, y) =

∫
Ω

G(x, y, ψ)K(µ, ν)w(ψ) dψ , bj(w(x, y)) =

∫
Ω

G(x, y, ψ)D−1hj(w(ψ)) dψ (j = 3, 4) ;

здесьK(µ, ν) = D−1(A(µ) + νP1w) .
Для анализа двупараметрического уравнения (6.5) воспользуемся методами исследования многопараметриче-

ских бифуркаций [14, 15]. По указанной в этих работах схеме для каждого набора функций вида (5.11) и, в
частности, для функций (5.4) однозначно определяется непрерывная ветвь бифуркационных решений уравнения
(6.5): 

w = w∗(x, y, ε) = εu0(x, y) + ε3u2(x, y) + . . . ,

µ = µ(ε) = µ0 + ε3µ2 + . . . ,

ν = ν(ε) = ν0 + ε3ν2 + . . . ,

(6.6)

где ε – вспомогательный малый параметр. В этой ветви коэффициенты функций µ(ε) и ν(ε) однозначно
определятся по выбранным функциям (5.4). В работах [14, 15] приводятся и алгоритмы построения
коэффициентов формул (6.6). Для завершения доказательства теоремы 5.1 достаточно показать, что
двупараметрическое уравнение (6.5) можно построить таким образом, чтобы в формулах (6.6) получили: ν2 =
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ν3 = . . . = 0. Тогда функции (6.6) будут решениями и однопараметрического уравнения (1.3) и, следовательно,
будут бифуркационными решениями исходной системы (5.1).

Ограничимся доказательством того, что для уравнения (6.5) получим ν2 = 0 . Для вычисления коэффициентов
µ2 и ν2 воспользуемся приведенными в [15] формулами. Основным здесь является вопрос об обратимостиматрицы

Q =

[
(Tµ(µ, ν)u0(x, y), u

∗
0(x, y))L2 (Tν(µ, ν)u0(x, y), u

∗
0(x, y))L2

(Tµ(µ, ν)u0(x, y), v
∗
0(x, y))L2

(Tν(µ, ν)u0(x, y), v
∗
0(x, y))L2

]
;

здесь Tµ(µ, ν) и Tν(µ, ν) – это производные оператора T (µ, ν) по µ и ν соответственно. Несложные вычисления
показывают, что в силу предположения (5.8) эта матрица обратима.
Тогда по указанным в [15] (стр. 10) формулам получим:[

µ2

ν2

]
= −Q−1

[
(b3(u0(x, y)), u

∗
0(x, y))L2

(b3(u0(x, y)), v
∗
0(x, y))L2

]
=

[
−(h(e0), e

∗
0)/(16(A

′(µ0)e0, e
∗
0))

0

]
.

Другими словами, коэффициент µ2 определяется равенством (5.10), а коэффициент ν2 является нулевым: ν2 = 0 .
При этом вычисления показывают, что значение коэффициента (5.10) не зависит от выбора функций (5.11).

7. Пример.

В качестве приложения рассмотрим задачу о бифуркации Тьюринга в распределенной модели “брюсселятор”
(см., например, [6]), описываемую двумерной системой уравненийu′t = (µ− 1)u+ a2v + d1∆u+ u2v ,

v′t = −µu− a2v + d2∆v − u2v ,
(7.1)

относительно неизвестных функций u = u(x, y, t) и v = v(x, y, t); здесь a, µ, d1 и d2 – положительные

коэффициенты, ∆ – оператор Лапласа: ∆ =
∂2

∂x2
+

∂2

∂y2
. Эту систему будем изучать в квадрате Ω =

{(x, y) : 0 ⩽ x ⩽ π, 0 ⩽ y ⩽ π} с граничными условиями Неймана
∂w

∂n

∣∣∣∣
∂Ω

= 0 .

Система (7.1) представима в виде (5.1) при

w =

[
u

v

]
, A(µ) =

[
µ− 1 a2

−µ −a2

]
, D =

[
d1 0

0 d2

]
, h(w) =

[
u2v

−u2v

]
.

Система (7.1) имеет нулевую точку равновесия u = v = 0. В отсутствии диффузии (т.е. когда d1 = d2 = 0) эта
точка равновесия устойчива, если µ < a2 + 1. При переходе к системе с диффузией (т.е. когда d1 > 0 , d2 > 0)
положение равновесия u = v = 0 уже может стать неустойчивым и, как следствие, привести к бифуркации
Тьюринга.
Матрица (5.2) в рассматриваемом примере имеет вид

Bκ(µ) = A(µ)− (k2 + l2)D =

[
µ− 1− (k2 + l2)d1 a2

−µ −a2 − (k2 + l2)d2

]
.

Эта матрица при k = k0 = 1 и l = l0 = 2 и следующих значениях параметров

µ0 = 2 , a2 = 2 , d1 =
1

10
, d2 =

6

5
,

имеет собственные значения λ1 = 0 и λ2 = −7, 5.

ujmcs.tstu.uz 98

http://ujmcs.tstu.uz


Ю. Марат, Г. Роберт

Все условия теоремы 5.1 для рассматриваемой системы (7.1) при указанных значениях параметров выполнены.
В качестве собственных векторов e0 и e∗0 матрицы B0 = Bκ0

(µ0) (где κ0 = (1, 2)) и транспонированной матрицы
B∗

0 , соответствующих собственному значению λ1 = 0 и нормированных условиями (5.3), можно взять векторы

e0 =

[
4

−1

]
, e∗0 = C

[
4

1

]
,

где C =
1

15
. Несложные вычисления по формуле (5.10) показывают, что µ2 = −1

4
. Таким образом, в силу

теорем 5.1-5.3 значение µ0 = 2 является точкой бифуркации Тьюринга системы (7.1), при этом бифурцирующие
решения системы (7.1) возникают при µ < µ0 = 2.
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Multiple Turing and Andronov-Hopf Bifurcations in a Reaction-Diffusion System
Yumagulov Marat Gayazovich, Gabdrakhmanov Robert Ilgizovich

Abstract

This paper investigates the problem of local bifurcations in the vicinity of spatially homogeneous equilibrium
states of reaction-diffusion systems in a bounded domain with homogeneous Neumann boundary conditions. The
main results focus on studying Turing bifurcation and Andronov-Hopf bifurcation under conditions of multiple
degeneracy in the linearized system. In the considered case the codimension of the bifurcation does not match the
multiplicity of eigenvalues of the corresponding linear operators, which significantly complicates the analysis. The
paper provides a detailed examination of cases leading to multiple bifurcations, establishes conditions for multiple
degeneracy, and develops approaches for studying stability and bifurcations near equilibrium states under these
conditions. The key result consists of the investigation and characterization of the solution manifold structure
arising from bifurcations in reaction-diffusion systems. Potential directions for extending these results of the study
of multiple bifurcations are also discussed.
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