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Аннотация
В статье изучается задача восстановления функции по интегралам по прямым, лежащим в
плоскостях, проходящих через фиксированную точку в R4, при условии, что направления в
каждой плоскости ограничены сектором. Рассматривается постановка с неполными данными
и доказываются теоремы об единственности и логарифмической устойчивости. Отмечаются
геометрические особенности задачи.
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Введение

Задачи интегральной геометрии представляют собой класс задач, в которых по значениям интегралов
неизвестной функции по определённым семействам подмногообразий требуется восстановить саму функцию.
Наиболее известным примером является задача восстановления функции по её значениям на прямых —
рентгеновское преобразование. Такие задачи находятширокое применение в томографии, геофизике, астрофизике
и других прикладных областях.
Однако в большинстве случаев задачи интегральной геометрии оказываются некорректными. В классической

монографии М.М. Лаврентьева [2] была предложена классификация задач интегральной геометрии на слабо и
сильно некорректные. Задачи, в которых оператор обращения не является непрерывным даже в пространствах с
конечным числом производных, относятся к сильно некорректным.
В более ранней работе [1] была исследована задача восстановления функции по её значениям рентгеновского

преобразования при ограниченном наборе направлений в плоском секторе. В работе была получена
логарифмическая оценка устойчивости в условиях сильной некорректности задачи.
Метод, основанный на применении гармонической меры и геометрического построения пучков прямых,

оказался актуальным и применимым в ряде последующих исследований. В частности, в работах Салазара
[10, 11], Уотерса [12], а также в ряде работ Стефанова и соавторов [13, 14, 9] рассматривались вопросы
устойчивости и восстановления в задачах с частичными данными, в том числе в постановках, связанных с
геодезическими/лучевыми преобразованиями и гиперболическими моделями.
Для полноты изложения кратко напомним постановку задачи и основные результаты, полученные нами ранее в

работе [1].
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Рассматривалась задача восстановления функции f ∈ C5
0 (Ω), где Ω ⊂ R3 — ограниченная область, по

значениям её интегралов по прямым, проходящим через фиксированную точку x0 и направленным вдоль
неполного множества направлений ω ∈ Γ ⊂ S2. Это соответствует рентгеновскому преобразованию:

Rf(ω) =

∫ ∞

−∞
f(x0 + sω) ds, ω ∈ Γ.

При этом множество направлений Γ описывается как сектор на сфере с центральным углом 2θ0, что приводит
к постановке задачи с неполными данными.
В указанной работе была доказана теорема об единственности восстановления функции, а также получена

логарифмическая оценка устойчивости решения. Основным инструментом служило сведение задачи к двумерной
с помощьюконформного отображения сектора на полудиск и применение теории гармоническоймеры в плоскости.
В настоящей работе рассматривается задача восстановления функции по значениям её интегралов по прямым,

проходящимчерезфиксированную вершину двуполостного конуса направлений—точкуx0 ∈ R4, расположенную
вне замкнутой области B, содержащей носитель искомой функции. Рассматриваются значения интегралов этой
функции по прямым, проходящим через x0 и направленным вдоль неполного множества направлений ω в каждой
двумерной плоскости, содержащей x0.
В пространстве R4 множество возможных двумерных направлений описывается грассманианом G(2, 4) —

многообразием всех двумерных линейных подпространств четырёхмерного пространства. Каждая точка этого
многообразия соответствует плоскости, проходящей через x0. В каждой из этих плоскостей рассматриваются
прямые, ограниченные заданным углом, что позволяет свести задачу устойчивости к двумерной, где применимы
методы анализа на основе гармонической меры. Полученные локальные оценки затем объединяются путём
интегрирования по G(2, 4), что и даёт глобальную оценку устойчивости.
Однако важно подчеркнуть, что переход от трёхмерного к четырёхмерному пространству R4 требует не просто

обобщения ранее полученных результатов, а постановки принципиально новой задачи. Методы, использованные
в [1] для доказательства устойчивости задачи с неполными данными в R3, не переносятся напрямую на
четырёхмерный случай. Это связано, в частности, с невозможностью применения конформных отображений и
локального сведения задачи к двумерному случаю, как это делалось ранее.
Проблемы восстановления функций по неполным интегральным данным активно исследуются в различных

постановках интегральной геометрии и обратных задач. В частности, важным направлением являются задачи, в
которых доступна лишь часть информации, ограниченная по геометрическим или аналитическим причинам. В
последние годы было получено множество значимых результатов, связанных с устойчивостью и единственностью
восстановления в подобных условиях.
В работе Уотерса [12] исследуется устойчивость временно-зависимого рентгеновского преобразования в

условиях ограниченной видимости. Рассматривается случай, когда информация поступает только из определённой
области, и доказываются априорные оценки, отражающие логарифмический характер нестабильности задачи. Эта
модель демонстрирует важность локальной геометрии доступных направлений и мотивирует разработку новых
подходов к устойчивости в условиях ограничений.
Стефанов в [13] доказывает теорему о поддержке функции на лоренцовых многообразиях, используя свойства

геодезических потоков и методов микролокального анализа. Несмотря на то что метрика отличается от
евклидовой, геометрическая логика, лежащая в основе восстановления, во многом схожа с нашей: данные по
интегралам вдоль геодезических позволяют судить о функции в области.
В работе Стефанова и Янга [14] исследуется обратная задача Дираихле-Неймана для уравнений с

гиперболическим типом, с акцентом на томографические аспекты в лоренцовой геометрии. Здесь центральным
является вопрос, можно ли по данным на границе области восстановить внутреннюю структуру, что близко к
нашему стремлению восстановить функцию по интегралам вдоль ограниченного семейства прямых.
В работе Белласуэда и Бен Айша [15] рассматривается устойчивое восстановление функции, «скрытой»

под маской, в контексте задач обратного распространения волн. Хотя постановка относится к волновой
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физике, характер устойчивости — логарифмический, как и в нашей работе, что подчёркивает общую природу
нестабильности в задачах с неполными данными.
Демченко в статье [16] анализирует задачу восстановления источника для волнового уравнения в условиях

частичныхданных. Важнымявляется то, что даже при ограниченной информации возможнодоказать устойчивость
(пусть и слабую) решения, при условии выполнения определённых геометрических условий.
Наконец, Илмавирта [17] изучает рентгеновские преобразования на псевдоримановых многообразиях, с

акцентом на параметризацию направлений и инвариантность задачи. Хотя геометрия существенно отличается
от евклидовой, использование многообразий направлений близко к нашему подходу с грассманианом G(2, 4).
Таким образом, все перечисленные работы подтверждают фундаментальную важность геометрического

характера доступных данных, структуру направлений и априорные оценки. Настоящая статья продолжает и
обобщает эту линию исследований, предлагая новую четырёхмерную модель с использованием расслоенного
интегрирования по грассманиану и строгое логарифмическое обоснование устойчивости и единственности.
Изучение задач интегральной геометрии, связанных с восстановлением функции по её интегралам по

определённым семействам подмножеств, остаётся актуальной как в теоретическом, так и в прикладном аспектах.
При этом особый интерес представляют некорректные задачи, в которых малые изменения в исходных
данных могут приводить к значительным отклонениям в решении. Такие задачи требуют специальных методов
регуляризации и анализа устойчивости.
В предыдущих работах одного из авторов [1, 18, 19, 20, 21, 22, 23] были исследованы различные классы

задач интегральной геометрии и получены оценки устойчивости. В частности, в статьях [18, 19, 20] получены
логарифмические оценки устойчивости и построены формулы обращения для задач с интегрированием по
параболам, конусам и кривым с особенностями. В работах [22, 23] предложены постановки с разрывными
весовыми функциями и исследованы методы продолжения решения в симметричных областях. В статье [21]
были рассмотрены два класса слабо некорректных задач интегральной геометрии. Первый класс связан
с восстановлением функции по интегралам вдоль кусочно-гладких кривых с особенностью в вершине на
плоскости. Для этого класса получены оценки устойчивости в пространствах конечной гладкости , доказаны
теоремы существования и получены аналитические формулы обращения. Второй класс задач основан на
интегрировании по семействам конусов в n-мерном пространстве. В работе показано существенное различие
между чётномерным и нечётномерным случаями, установлены теоремы единственности и устойчивости, а также
выведены соответствующие формулы обращения.
Настоящая работа посвящена изучению задачи интегральной геометрии в пространстве R4, которая

относится к классу сильно некорректных задач. Основное внимание уделяется построению условия
существования решения, формуле обращения и оценке степени нестабильности задачи. Предложенный подход
является развитием методов, разработанных ранее для задач в пространстве меньшей размерности, и требует
принципиально новых технических средств.

1. Постановка задачи

Рассмотрим пространство R4 с декартовой системой координат (x1, x2, x3, x4). ПустьB ⊂ R4 —ограниченная
область с гладкой границей. Через π обозначим двумерные линейные подпространства в R4, принадлежащие
многообразию Грассмана G(2, 4), и через l ⊂ π ∩B — отрезки прямых, лежащие в пересечении π ∩B.
Пусть функция f ∈ C∞

0 (B) задана на отрезках l ⊂ π ∩B, и для каждой такой прямой задан интеграл:

Rf(π, l) =

∫
l

f(x) ds,

где ds— элемент длины на прямой l. Задача заключается в восстановлении функции f(x) в области B по всем
таким интегралам.
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Отметим, что область B покрыта лишь подмножеством всех возможных прямых в R4, т.е. имеем дело с
задачей по неполным данным. Такая постановка приводит к сильно некорректной задаче, поскольку информация
ограничена как по направлениям, так и по длине прямых.
Целью работы является:

• установить условия разрешимости задачи;
• получить формулу обращения;
• дать априорные оценки для возможных решений в функциональных пространствах;
• проанализировать степень нестабильности в зависимости от характеристик множества данных.

2. Геометрическая структура задачи

2.1. Пространство направлений: роль G(2, 4)

В трёхмерном случае (R3) множество всех направлений задаётся как подмножество единичной сферы S2. Это
даёт возможность естественно работать с углами и секторами в сферических координатах.
В четырёхмерном случае (R4) мы рассматриваем прямые, лежащие в двумерных плоскостях, проходящих через

точку x0. Такие плоскости описываются грассманианом:

G(2, 4) = многообразие всех двумерных линейных подпространств в R4.

Это компактное 4-мерное многообразие (см. [7, 3]). Таким образом, направление задаётся не просто вектором, а
плоскостью π и направлением внутри неё.

2.2. Как строятся плоскости π и семейство прямых

Фиксируем точку x0 ∈ R4. Через неё проходит всё множество двумерных линейных подпространств π ∈
G(2, 4). В каждой такой плоскости фиксируется сектор направлений (например, с центральным углом θ), и
рассматриваются прямые, проходящие через x0 в этих направлениях.
Итак, множество прямых — это объединение всех локальных пучков прямых, заданных в плоскостях

π ∈ Π ⊂ G(2, 4), с локальным ограничением по углу.

2.3. Покрытие области B

Пусть B ⊂ R4 — ограниченная область, содержащая x0. Мы рассматриваем семейство прямых, формируемое
так:

• для каждой плоскости π ∈ Π ⊂ G(2, 4),
• фиксируется сектор направлений Γπ ⊂ S1

π ,
• рассматриваются прямые L, проходящие через x0 в этих направлениях,
• эти прямые ограничиваются отрезками, лежащими в B.

Таким образом, получается частичное покрытие области B направленными отрезками.

2.4. Визуализация: построение семейства прямых из x0

Процесс можно описать так:

1. В точке x0 фиксируется плоскость π.

2. В ней выделяется сектор направлений Γπ .
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3. Через x0 и каждое направление из Γπ проводится прямая.

4. Повторяя это для различных π, получаем семейство прямых, «веером» заполняющих окрестность x0.

Объединяя все такие прямые, мы строим множество «частичных лучей» в R4, по которым интегрируется
функция f(x).

2.5. Заключение

Геометрическая структура задачи определяется двумя уровнями параметризации: выбором плоскости π ∈
G(2, 4) и направлением внутри неё. Пространство направлений представляет собой волокнистое пространство: над
каждой точкойG(2, 4) виситS1. Это делает задачу существенно более сложной и исключает прямое использование
методов из R3.

3. Вспомогательная лемма

Рассмотрим ограниченную областьB ⊂ R4, содержащую точку x0. ПустьΠ ⊂ G(2, 4)— семейство двумерных
плоскостей, проходящих через x0, и в каждой π ∈ Π задан сектор направлений Γπ ⊂ S1

π .
Пусть f ∈ C0(B)—непрерывная функция с компактным носителем вB, и известны значения её интегралов по

отрезкам всех прямых, проходящих через x0 в направлениях из Γπ , во всех π ∈ Π. Обозначим это интегральное
преобразование черезRf .

Лемма 1 (о логарифмической устойчивости). Пусть B ⊂ R4 — ограниченная область, содержащая точку
x0. Пусть Π ⊂ G(2, 4) — семейство двумерных плоскостей, проходящих через x0, и для каждой π ∈ Π задан
сектор направленийΓπ ⊂ S1

π , угловаяширина которого характеризуется параметром ε > 0. Тогда существует
постоянная

C = C
(
B,Π, {Γπ}

)
> 0,

такая что для любой f ∈ C0(B) выполняется оценка

∥f∥L2(B) ≤
C√
| log ε|

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)
)1/2

. (3.1)

Доказательство. Рассмотрим фиксированную плоскость π ∈ Π, проходящую через точку x0. Тогда задача
сводится к двумерной: необходимо оценить нормуфункции f , ограниченной наB ∩ π, по значениям её интегралов
по отрезкам, исходящим из точки x0 в направлениях θ ∈ Γπ .
В двумерном случае аналогичная задача изучена в работе [1], где получена логарифмическая априорная оценка

∥f∥L2(B∩π) ≤
Cπ√
| log ε|

(∫
Γπ

|Rf(π, θ)|2 dθ
)1/2

,

где ε характеризует угловую ширину сектора Γπ .
Интегрируя эти двумерные оценки по всем π ∈ Π ⊂ G(2, 4) относительно меры Хаара µ(π), получаем

требуемую оценку (3.1).
Отметим, что полученная постоянная C зависит только от геометрии области B, выбранного семейства

плоскостей Π ⊂ G(2, 4) и конфигурации секторов {Γπ}, и не зависит от функции f .

Замечание о мере Хаара. Мера µ(π) является инвариантной относительно действия группы SO(4) на
грассманиане G(2, 4) ∼= SO(4)/[SO(2)× SO(2)]. Она играет аналогичную роль мере Лебега на евклидовом
пространстве. Конструкции и свойства такой меры подробно рассмотрены в [4, 5].
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4. Теорема единственности

4.1. Формулировка

Теорема 1. Пусть f ∈ C0(B), гдеB ⊂ R4 —ограниченная область. Предположим, что для всехπ ∈ Π ⊂ G(2, 4)

и всех направлений θ ∈ Γπ ⊂ S1
π , выполняется

Rf(π, θ) =

∫
Lπ,θ

f(x) ds = 0,

где Lπ,θ ⊂ π— отрезок прямой, проходящий через фиксированную точку x0 ∈ B в направлении θ и лежащий
в плоскости π.
Предположим также, что семейство отрезков {Lπ,θ} покрывает область B в следующем смысле:

∀x ∈ B ∃π ∈ Π, θ ∈ Γπ : x ∈ Lπ,θ.

Тогда f(x) = 0 для всех x ∈ B.

4.2. Доказательство

Рассмотрим произвольную плоскость π ∈ Π. Тогда ограничение функции f на π представляет собой
непрерывную функцию f |π ∈ C0(B ∩ π). По предположению, для всех направлений θ ∈ Γπ имеем:∫

Lπ,θ

f(x) ds = 0.

То есть известны значения интегралов функции по отрезкам, лежащим в плоскости π, направленным в секторе
Γπ , и проходящим через точкуx0. Это означает, что в каждой плоскости решается задача восстановленияфункции
по интегралам по пучку направлений, исходящих из одной точки.
Согласно результатам, доказаннымв [1], в двумерном случае (в плоскости) такая системаинтегралов однозначно

определяет функцию, при условии, что сектор направлений Γπ содержит открытую дугу. Следовательно,

f |B∩π ≡ 0.

Так какмножество плоскостейπ ∈ Π таково, что для каждой точкиx ∈ B найдётся отрезокLπ,θ ∋ x, на котором
интеграл функции равен нулю, и, следовательно, функция обнуляется в каждой плоскости, охватывающей x, то
получаем:

∀x ∈ B f(x) = 0.

Таким образом, f ≡ 0 в B. Теорема доказана.

4.3. Заключение и замечания

Доказанная теорема утверждает, что знание интегралов функции по семейству отрезков, лежащих в
фиксированных двумерных плоскостях и проходящих через одну точку, при условии охвата области B,
обеспечивает однозначность восстановления функции.

Это результат существенно отличается от классических задач преобразования Радона, поскольку:

• направление интегрирования ограничено локальными пучками в каждой плоскости;
• пространство направлений параметризуется не сферой, а грассманианом G(2, 4);
• отсутствует возможность сведения задачи к двумерной глобальной постановке.
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Важнейшую роль играет условие покрытия: без него возможны нетривиальные функции, ортогональные к
системе отрезков. Теорема, таким образом, подтверждает корректность самой постановки задачи восстановления
при наличии априорных геометрических условий.

5. Теорема устойчивости

Здесь и далее параметр ε > 0 характеризует угловуюширину секторовΓπ ⊂ S1
π и, тем самым, степень неполноты

данных.

5.1. Формулировка

Теорема 2 (логарифмическая устойчивость). Пусть f ∈ C0(B), где B ⊂ R4 — ограниченная область. Пусть
x0 ∈ B, и для каждого π ∈ Π ⊂ G(2, 4) задан сектор направлений Γπ ⊂ S1

π . Предположим, что семейство
отрезков {Lπ,θ} покрывает область B в смысле:

∀x ∈ B ∃π ∈ Π, θ ∈ Γπ : x ∈ Lπ,θ.

Тогда существует константа
C = C

(
B,Π, {Γπ}, x0

)
> 0

такая, что выполняется оценка

∥f∥L2(B) ≤
C√
| log ε|

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)
)1/2

. (5.1)

5.2. Доказательство

Шаг 1. Локальная оценка в фиксированной плоскости. Зафиксируем π ∈ Π. Тогда в этой плоскости задача
сводится к восстановлению функции fπ := f |π ∈ C0(B ∩ π) ⊂ R2 по интегралам по отрезкам Lπ,θ, проходящим
через точку x0 ∈ π в направлениях θ ∈ Γπ ⊂ S1.
Пусть Dπ := B ∩ π. Согласно теореме из [1], в такой двумерной постановке справедлива априорная оценка:

∥fπ∥L2(Dπ) ≤
C1(π)√
| log ε|

(∫
Γπ

|Rf(π, θ)|2 dθ
)1/2

.

Доказательство этой оценки основано на построении вспомогательной субгармонической функции u(z),
гармонической в Dπ \ {x0}, принимающей значения, определяемые преобразованием Rf(π, θ), и применении
интегральной теоремы о средних (см. [3]).
Шаг2.Интегрирование по пространствуплоскостей.Интегрируяполученнуюоценкупо всемπ ∈ Π ⊂ G(2, 4)

с использованием меры Хаара µ(π), получаем:∫
Π

∥fπ∥2L2(Dπ)
dµ(π) ≤ C2

| log ε|

∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π).

Согласно результатам интегральной геометрии (см. [5], [4]), при условии, что множество отрезков {Lπ,θ}
покрывает B, это усреднение обеспечивает мажоранту всей нормы:

∥f∥2L2(B) ≤ C3

∫
Π

∥fπ∥2L2(Dπ)
dµ(π).

Подставляя предыдущую оценку, получаем
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∥f∥L2(B) ≤
C√
| log ε|

(∫
Π

∫
Γπ

|Rf(π, θ)|2 dθ dµ(π)
)1/2

.

Теорема доказана.

5.3. Заключение

Полученная логарифмическая оценка демонстрирует характерную для задач с неполными данными слабую
устойчивость. Появление логарифма связано с деградацией гармонической меры при сужении сектора
направлений: для секторов Γπ с угловой шириной порядка ε, вес в центральной точке x0 убывает как | log ε|−1,
что и отражается в правой части оценки.
Таким образом, при любых ограничениях на направление интегрирования, сохраняющих покрытие области B,

задача остаётся устойчивой, хотя и с существенно более слабой оценкой, чем в случае полной информации.

6. Обсуждение и приложения

6.1. Связь с задачами геодезического типа

Рассматриваемая задача относится к классу задач интегральной геометрии с частичными данными. Существуют
аналогии с задачами геодезической томографии, в которых изучаются интегралы по геодезическим линиям
на римановых или псевдоримановых многообразиях (см. [6]). Однако, в отличие от таких задач, где линии
интегрирования определяются метрикой и не всегда являются линейными, в нашей постановке рассматриваются
только прямолинейные отрезки, расположенные в фиксированных двумерных плоскостях.

Таким образом, наша задача ближе по духу к преобразованию Радона, но с существенным ограничением:
интегрирование не происходит по всему пространству направлений, а только по суженным пучкам в ограниченных
подмногообразиях G(2, 4)× S1.

6.2. Принципиальные отличия от задач на многообразиях

Задача, рассматриваемая в данной работе,формулируется в евклидовомпространствеR4, но с параметризацией,
не обладающей полной симметрией. Напомним, что в трёхмерной постановке (R3) возможно использование
конформных преобразований и редукция задачи к двумерной (см. [1]). В четырёхмерном случае такой редукции
не существует: грассманианG(2, 4) не допускает конформной структуры, согласующейся с евклидовой метрикой.
Кроме того, интегрирование происходит по семейству двумерных сечений, что существенно усложняет

геометрию задачи и исключает прямое использование стандартных методов спектральной теории или
вариационных подходов.

6.3. О возможности обобщения на Rn

Одним из возможных направлений обобщения является постановка аналогичной задачи в Rn при
фиксированной размерности интегрирующих подпространств — например, двумерных или k-мерных.
Однако, как показал анализ, при увеличении размерности пространства резко усложняется структура

грассманиана G(k, n), что приводит к существенным трудностям:

• мера Хаара становится всё менее конструктивной;
• отсутствует инвариантность направлений относительно подгрупп движений;
• ухудшается локальная устойчивость: логарифмические оценки заменяются на сублогарифмические (см. [8],
[9]).
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Таким образом, хотя теоретическая постановка задачи возможна и в произвольной размерности, переход к Rn

требует существенной модификации методов.

7. Заключение

В данной работе рассмотрена новая постановка задачи интегральной геометрии с неполными данными
в четырёхмерном евклидовом пространстве R4. В отличие от классических преобразований Радона и их
модификаций в R2 и R3, данная задача отличается следующими особенностями:

• интегрирование происходит по пучкам прямых, лежащих в двумерных линейных подпространствах;
• направления интегрирования параметризуются элементами грассманиана G(2, 4) и секторами Γπ ⊂ S1

π;
• отсутствует возможность сведения к двумерной задаче через конформные преобразования;
• пространственная структура охвата определяется системой подпространств и требует анализа на
многообразии G(2, 4).

В рамках данной постановки нами доказаны следующие результаты:

1. Теорема единственности: при условии, что семейство направлений покрывает областьB, знание интегралов
по соответствующим отрезкам однозначно определяет функцию;

2. Теорема устойчивости: получена логарифмическая априорная оценка нормы функции через интегралы по
неполному семейству прямых. Характер оценки обусловлен геометрическим вырождением гармонической
меры при сужении сектора направлений;

3. Построена строгая геометрическая модель задачи через параметризациюG(2, 4), уточнена роль меры Хаара
и доказана вспомогательная лемма, дающая ключевую оценку по частичным данным.

Особенностью данной постановки является её потенциальная применимость к задачам с локализованным
доступом к данным (например, в математических моделях, описывающих ограниченное поле зрения датчиков
или частичные потоки информации).
Будущие исследования могут быть направлены на:

• обобщение полученных результатов на произвольную размерность Rn и более высокие грассманианы
G(k, n);

• изучение аналогичных задач на римановых многообразиях с ограниченным набором геодезических
направлений;

• разработку численных алгоритмов, использующих доказанные априорные оценки в качестве базиса для
регуляризации некорректных задач.

Таким образом, представленная работа не только предлагает новую постановку и её строгое математическое
обоснование, но и открывает возможности для дальнейшего развития методов частичной интегральной геометрии
в многомерных пространствах.
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On the Stability of the Solution to an Integral Geometry Problem from Incomplete
Data in Four Dimensional Space
Akram K. Begmatov, Alisher S. Ismoilov

Abstract

This paper addresses an inverse problem in integral geometry in four-dimensional space R4 based on incomplete
data. The problem involves recovering a function defined in a bounded domain from its integrals along line
segments lying in two-dimensional planes intersecting the domain. The incompleteness arises due to the restriction
on the set of available directions and lengths of the lines, which leads to a severely ill-posed problem. A constructive
inversion formula is proposed under geometric constraints, and a priori estimates are derived. The results obtained
lay the foundation for applying the method in tomographic and geophysical problems with limited observational
geometry.
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