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Abstract
Let 𝑀 be a finite von Neumann algebra, let 𝑆(𝑀) be the ∗-algebra of measurable operators
affiliated with 𝑀 . Maharam traces Φ on a von Neumann algebra 𝑀 with values in complex
Dedekind complete vector lattices are considered. The singular value function of operators
from 𝑆(𝑀), associated with such a trace Φ are determined. The main properties of these
singular value functions, similar to classical singular value functions of measurable operators,
are studied.
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Introduction

The modern theory of noncommutative measure and integration finds its roots in the seminal papers of
I.E.Segal [1] and J.Dixmier [2]. The introduced by I.E.Segal noncommutative 𝐿1-space associated with an
exact normal semiinfinite trace is the main object of many investigations both in the theory of noncommutative
integration and in its multiple applications ( for example,[3], [4], [5], [6]). Detailed information on the current
state of this theory is presented in [7], [8], [9], [10] and [11].

The existence of the center-valued traces in finite von Neumann algebras makes it natural to construct the
theory of integration for traces with values in the complex Dedekind complete vector lattice 𝐹C = 𝐹 ⊕ 𝑖𝐹. If the
von Neumann algebra is commutative, then construction of 𝐹C-valued integration for it is the component part
for the investigation of the properties of order continuous maps of vector lattices. The theory of such mappings
is described rather thoroughly in the monograph [12]. An import role among these mappings is played by
operators with the Maharam property. 𝐿 𝑝-spaces associated with such operators are profound examples of
Banach-Kantorovich lattices.

In [13], [14] and [15] a theory of non-commutative integration for traces Φ with values in the complex
Dedekind complete vector lattice 𝐹C was constructed. In particular, for Maharam traces Φ, with the help of
the locally measure topology in the algebra 𝑆(𝑀) of all measurable operators affiliated with the von Neumann
algebra 𝑀 , the Banach-Kantorovich space 𝐿 𝑝 (𝑀,Φ) ⊂ 𝑆(𝑀), 1 ≤ 𝑝 < ∞ was constructed and properties of
such spaces are considered.

Received : 5–January–2025, Accepted : 27–march–2025
* Corresponding author

 https://doi.org/10.56143/ujmcs.v1i1.6 \ 


The singular value function, associated with a Maharam trace

This article is devoted to a study of singular value function of operators from 𝑆(𝑀), associated with a
Maharam trace Φ. Also dominated properties of these singular value functions, similar to classical singular
value functions of measurable operators, are proved.

In studying the ∗-algebra 𝑆(𝑀, 𝜏) of all 𝜏-measurable operators, the notion of singular value functions plays
an important role. There is an intimate relationship between the properties of 𝜏-measurable operators and the
properties of the singular value function (see for example ([11], Chapter 3)). For 𝑥 ∈ 𝑆(𝑀, 𝜏), the singular
value function 𝜇(𝑥) is defined by

𝜇(𝑡; 𝑥) := inf{𝑠 ≥ 0 : 𝜏(𝐸 (𝑠,∞) (𝑥)) ≤ 𝑡}, 𝑡 ≥ 0,

where 𝐸 (𝑠,∞) (𝑥) is the spectral projection of the operator 𝑥 corresponding to the interval (𝑠,∞). The following
expression is classical:

𝜇(𝑡; 𝑥) := inf{∥𝑥𝑝∥𝑀 : 𝑝 ∈ 𝑃(𝑀), 𝜏(1 − 𝑝) ≤ 𝑡}, 𝑥 ∈ 𝑆(𝑀, 𝜏), 𝑡 ≥ 0,

where 𝑃(𝑀) is the set of all projectors in von Neumann algebra 𝑀 .
In the present article, we will study the corresponding notion for traces Φ : 𝑀 → 𝐹C. More precisely, let

𝑀 be a finite von Neumann algebra, with center 𝑍 (𝑀), on the Hilbert space 𝐻. Let B be a commutative
von Neumann algebra, ∗-isomorphic to a von Neumann subalgebra A in 𝑍 (𝑀), and let Φ be a 𝑆(B)-valued
Maharam trace on 𝑀 . Denote by P(B) the set of all 𝑓 ∈ 𝑆ℎ (B), for which the support 𝑠( 𝑓 ) = 1B .

For 𝑥 ∈ 𝑆(𝑀), the singular value function, associated with a Maharam trace Φ is the map Φ(𝑥) : (0,∞) →
𝑆ℎ (B) defined by the equality

Φ(𝑡; 𝑥) := inf{𝑔 ∈ P(B) : Φ(𝐸𝑔 (𝑥)) ≤ 𝑡 · 1}, 𝑡 > 0,

where 𝐸𝑔 (𝑥) ∈ 𝑃(𝑀) is the projector in𝑀 , which is a projection onto a closed subspace {𝜉 ∈ 𝐻 : 𝑥(𝜉) > 𝑔(𝜉)}.
For all 𝑡 > 0, the singular value function Φ(𝑥) admits the characterization

Φ(𝑡; 𝑥) = inf{∥𝑥𝑒∥A : 𝑒 ∈ 𝑃(𝑀), 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1},

where
𝐸 (𝑀,A) =

{
𝑥 ∈ 𝑆(𝑀) : |𝑥 | ≤ 𝑎 for some 𝑎 ∈ 𝑆+(A)

}
is a Banach-Kantorovich space with 𝑆ℎ (A)-valued norm

∥𝑥∥A = inf{𝑎 ∈ 𝑆+(A) : |𝑥 | ≤ 𝑎}.
We use the terminology and results of the theory of von Neumann algebras [8], [9], the theory of measurable

operators [1], [10], [11] and of the theory of Dedekind complete vector lattices and Banach-Kantorovich spaces
theory [12].

1. Preliminaries

Let 𝐻 be a Hilbert space over the field C of complex numbers, let 𝐵(𝐻) be the ∗-algebra of all bounded
linear operators on 𝐻, and 1 be the identity operator on 𝐻. Let 𝑀 be a von Neumann algebra acting on 𝐻, let
𝑍 (𝑀) be the center of 𝑀 and 𝑃(𝑀) = {𝑝 ∈ 𝑀 : 𝑝2 = 𝑝 = 𝑝∗} be the lattice of all projectors in 𝑀 . We denote
by 𝑃 𝑓 𝑖𝑛 (𝑀) the set of all finite projectors in 𝑀.

A densely-defined closed linear operator 𝑥 (possibly unbounded) affiliated with 𝑀 is said to be measurable
if there exists a sequence {𝑝𝑛}∞𝑛=1 ⊂ 𝑃(𝑀) such that 𝑝𝑛 ↑ 1, 𝑝𝑛 (𝐻) ⊂ 𝔇(𝑥) and 𝑝⊥𝑛 = 1 − 𝑝𝑛 ∈ 𝑃 𝑓 𝑖𝑛 (𝑀) for
every 𝑛 = 1, 2, . . . (here 𝔇(𝑥) is the domain of 𝑥).
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The set 𝑆(𝑀) of all measurable with respect to 𝑀 operators is a complex ∗-algebra with unit element 1, with
respect to the operations of strong sum, strong product and the ∗-operation of taking adjoints (see [1]). The
von Neumann algebra 𝑀 is a ∗-subalgebra of 𝑆(𝑀). The set of all self-adjoint elements in 𝑆(𝑀) is denoted by
𝑆ℎ (𝑀), which is a real linear subspace of 𝑆(𝑀).

Let 𝑥 ∈ 𝑆(𝑀) and 𝑥 = 𝑢 |𝑥 | be the polar decomposition, where |𝑥 | = (𝑥∗𝑥) 1
2 , 𝑢 is a partial isometry in 𝐵(𝐻).

Then𝑢 ∈ 𝑀 and |𝑥 | ∈ 𝑆(𝑀). If 𝑥 ∈ 𝑆ℎ (𝑀) and {𝐸𝜆(𝑥)} are the spectral projections of 𝑥, then {𝐸𝜆(𝑥)} ⊂ 𝑃(𝑀).
Let 𝑀 be a commutative von Neumann algebra. Then 𝑀 admits a faithful semi-finite normal trace 𝜏,

and 𝑀 is ∗-isomorphic to the ∗-algebra 𝐿∞(Ω, Σ, 𝜇) of all bounded complex measurable functions with the
identification almost everywhere, where (Ω, Σ, 𝜇) is a measurable space. In addition, 𝜇(𝐴) = 𝜏(𝜒𝐴), 𝐴 ∈ Σ.

Moreover, 𝑆(𝑀) � 𝐿0(Ω, Σ, 𝜇), where 𝐿0(Ω, Σ, 𝜇) is the ∗-algebra of all complex measurable functions with
the identification almost everywhere [1].

Let 𝑀 be an von Neumann algebra, let 𝐹 be an Dedekind complete vector lattice, and let 𝐹C = 𝐹 ⊕ 𝑖𝐹 be a
complexification of 𝐹. If 𝑧 = 𝛼 + 𝑖𝛽 ∈ 𝐹C, 𝛼, 𝛽 ∈ 𝐹, then 𝑧 := 𝛼 − 𝑖𝛽, and |𝑧 | := sup{𝑅𝑒(𝑒𝑖 𝜃 𝑧) : 0 ≤ 𝜃 < 2𝜋}
(see[12], 1.3.13).

An 𝐹C-valued trace on the von Neumann algebra 𝑀 is a linear mapping Φ : 𝑀 → 𝐹C given Φ(𝑥∗𝑥) =
Φ(𝑥𝑥∗) ≥ 0 for all 𝑥 ∈ 𝑀. It is clear that Φ(𝑀ℎ) ⊂ 𝐹, Φ(𝑀+) ⊂ 𝐹+ = {𝑎 ∈ 𝐹 : 𝑎 ≥ 0}. A trace Φ is said to
be faithful if the equality Φ(𝑥∗𝑥) = 0 implies 𝑥 = 0, normal if Φ(𝑥𝛼) ↑ Φ(𝑥) for every 𝑥𝛼, 𝑥 ∈ 𝑀ℎ, 𝑥𝛼 ↑ 𝑥.

If 𝑀 is a finite von Neumann algebra, then its center-valued trace Φ𝑀 : 𝑀 → 𝑍 (𝑀) is an example of a
𝑍 (𝑀)-valued faithful normal trace.

Let Δ be a separating family of finite normal numerical traces on the von Neumann algebra 𝑀, CΔ =
∏
𝜏∈Δ

C𝜏 ,

where C𝜏 = C for all 𝜏 ∈ Δ. Then Φ(𝑥) = {𝜏(𝑥)}𝜏∈Δ is also an example of an faithful normal CΔ-valued trace
on 𝑀.

Let us list some properties of the trace Φ : 𝑀 → 𝐹C.

Proposition 1.1. ([13]) (𝑖) Let 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑀. Then
Φ(𝑥∗) = Φ(𝑥), Φ(𝑥𝑦) = Φ(𝑦𝑥), Φ( |𝑥∗ |) = Φ( |𝑥 |),
|Φ(𝑎𝑥𝑏) | ≤ ∥𝑎∥𝑀 ∥𝑏∥𝑀Φ( |𝑥 |);
(𝑖𝑖) If Φ is a faithful trace, then 𝑀 is finite;
(𝑖𝑖𝑖) If 𝑀 is a finite von Neumann algebra, then Φ(Φ𝑀 (𝑥)) = Φ(𝑥) for all 𝑥 ∈ 𝑀 ;
(𝑖𝑣) Φ( |𝑥 + 𝑦 |) ≤ Φ( |𝑥 |) +Φ( |𝑦 |) for all 𝑥, 𝑦 ∈ 𝑀.

The trace Φ : 𝑀 → 𝐹C possesses the Maharam property if for any 𝑥 ∈ 𝑀+, 0 ≤ 𝑓 ≤ Φ(𝑥), 𝑓 ∈ 𝐹, there
exists a positive 𝑦 ≤ 𝑥 such that Φ(𝑦) = 𝑓 . A faithful normal 𝐹C-valued trace Φ with the Maharam property is
called a Maharam trace (compare with [12], III, 3.4.1). Obviously, any faithful finite numerical trace on 𝑀 is
a C-valued Maharam trace.

Let us give another examples of Maharam traces. Let 𝑀 be a finite von Neumann algebra, let A be a
von Neumann subalgebra in 𝑍 (𝑀), and let 𝑇 : 𝑍 (𝑀) → A be an injective linear positive normal operator. If
𝑓 ∈ 𝑆(A) is a reversible positive element, then Φ(𝑇, 𝑓 ) (𝑥) = 𝑓 𝑇 (Φ𝑀 (𝑥)) is an 𝑆(A)-valued faithful normal
trace on 𝑀. In addition, if 𝑇 (𝑎𝑏) = 𝑎𝑇 (𝑏) for all 𝑎 ∈ A, 𝑏 ∈ 𝑍 (𝑀), then Φ(𝑇, 𝑓 ) is a Maharam trace on 𝑀.

Note that if 𝜏 is a faithful normal finite numerical trace on 𝑀 and dim(𝑍 (𝑀)) > 1, then Φ(𝑥) = 𝜏(𝑥)1 is a
𝑍 (𝑀)-valued faithful normal trace. In addition, Φ does not possess the Maharam property (see [13]).

Let 𝐹 have an order unit 1𝐹 . Denote by 𝐵(𝐹) the complete Boolean algebra of unitary elements with
respect to 1𝐹 , and let 𝑄 be the Stone representation space of the Boolean algebra 𝐵(𝐹). Let 𝐶∞(𝑄) be
the order complete vector lattice of all continuous functions 𝑎 : 𝑄 → [−∞, +∞] such that 𝑎−1({±∞}) is a
nowhere dense subset of 𝑄. We identify 𝐹 with the order-dense ideal in 𝐶∞(𝑄) containing algebra 𝐶 (𝑄) of
all continuous real functions on 𝑄. In addition, 1𝐹 is identified with the function equal to 1 identically on 𝑄
([12], 1.4.4).
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The next theorem gives the description of Maharam traces on von Neumann algebras.

Theorem 1.1. ([13]) Let Φ be an 𝐹C-valued Maharam trace on a von Neumann algebra 𝑀. Then there exists
a von Neumann subalgebra A in 𝑍 (𝑀), a ∗-isomorphism 𝜓 from A onto the ∗-algebra 𝐶 (𝑄)C, an injective
positive linear normal operator E from 𝑍 (𝑀) onto A with E(1) = 1, E2 = E, such that

1) Φ(𝑥) = Φ(1)𝜓(E(Φ𝑀 (𝑥))) for all 𝑥 ∈ 𝑀 ;
2) Φ(𝑧𝑦) = Φ(𝑧E(𝑦)) for all 𝑧, 𝑦 ∈ 𝑍 (𝑀);
3) Φ(𝑧𝑦) = 𝜓(𝑧)Φ(𝑦) for all 𝑧 ∈ A, 𝑦 ∈ 𝑀.

Due to Theorem 1.1, the ∗-algebra B = 𝐶 (𝑄)C is ∗-isomorphic to a von Neumann subalgebra in 𝑍 (𝑀).
Therefore B is a commutative von Neumann algebra, and ∗-algebra 𝐶∞(𝑄)C is identified with ∗-algebra 𝑆(B).
It is clear that the ∗-isomorphism 𝜓 from A onto B can be extended to a ∗-isomorphism from 𝑆(A) onto
𝑆(B). We denote this mapping also by 𝜓.

Let Φ be an 𝑆(B)-valued Maharam trace on a von Neumann algebra 𝑀. Next we will need the concept of a
central extension of a von Neumann algebra from [16].

A set {𝑧 𝑗} 𝑗∈𝐽 of pairwise orthogonal nonzero central projections from 𝑀 will be called a partition of unity
1, if sup 𝑗∈𝐽 𝑧 𝑗 = 1. Following [16], denote by 𝐸 (𝑀,A) the set of all those operators 𝑥 ∈ 𝑆(𝑀) for which there
exists a partition of unity {𝑧 𝑗} 𝑗∈𝐽 ⊂ 𝑃(A) and a set {𝑥 𝑗} 𝑗∈𝐽 ⊂ 𝑀 such that 𝑥𝑧 𝑗 = 𝑥 𝑗 𝑧 𝑗 for all 𝑗 ∈ 𝐽. It is clear
that 𝑀 ⊂ 𝐸 (𝑀,A), 𝑆(A) ⊂ 𝐸 (𝑀,A) and 𝐸 (𝑀,A) is an ∗-subalgebra of 𝑆(𝑀) with respect to the natural
operations in 𝑆(𝑀). 𝐸 (𝑀,A) is called the central extension of the algebra 𝑀 with respect to the subalgebra
A ⊂ 𝑍 (𝑀).

Proposition 1.2. ([17], Proposition 3.4) For the operator 𝑥 ∈ 𝑆(𝑀) the following conditions are equivalent:
(𝑖) 𝑥 ∈ 𝐸 (𝑀,A);
(𝑖𝑖) there exists 𝑎 ∈ 𝑆+(A) such that |𝑥 | ≤ 𝑎.

According to proposition 1.2, for each 𝑥 ∈ 𝐸 (𝑀,A), an element ∥𝑥∥A = inf{𝑎 ∈ 𝑆+(A) : |𝑥 | ≤ 𝑎} from
𝑆+(A) is defined. The following theorem follows from the results of [17].

Theorem 1.2. (𝐸 (𝑀,A), ∥ · ∥A) is a Banach-Kantorovich space over 𝑆ℎ (A).

It follows directly from Theorem 1.2 that the mapping ∥𝑥∥B = Ψ(∥𝑥∥A) defines an 𝑆ℎ (B)-valued norm on
𝐸 (𝑀,A), with respect to which 𝐸 (𝑀,A) becomes a Banach-Kantorovich space over 𝑆ℎ (B).

2. Spectral distribution functions and singular value functions, associated with a Maharam
trace

Let B be a commutative von Neumann algebra ∗-isomorphic to the von Neumann subalgebra A in the center
𝑍 (𝑀) of 𝑀 and Φ : 𝑀 → 𝑆(B) be the Maharam trace on 𝑀 (see Theorem 1.1). We suppose that Φ(1) = 1B .

For each 𝑓 ∈ 𝑆ℎ (B), we denote by 𝑠( 𝑓 ) the support of 𝑓 , i.e. 𝑠( 𝑓 ) = 1B − sup{𝑒 ∈ 𝑃(B) : 𝑓 𝑒 = 0}. It is
clear that 𝑠(Φ(1)) = 1B . Let P(B) denote the set of all 𝑓 ∈ 𝑆+(B) for which the support 𝑠( 𝑓 ) = 1B . It is clear
that each element 𝑓 ∈ P(B) is invertible in the algebra 𝑆ℎ (B), i.e. there exists an element 𝑔 ∈ 𝑆ℎ (B) such
that 𝑓 · 𝑔 = 1B , and 𝑔 ∈ P(B).

Definition 2.1. Let 0 ≤ 𝑥 ∈ 𝑆(𝑀) and 𝑔 ∈ P(B). The 𝑆(B)-valued spectral distribution function
𝑑 (.; 𝑥) : P(B) → 𝑆ℎ (B) is defined by

𝑑 (𝑔; 𝑥) := Φ(𝐸𝑔 (𝑥)),

where 𝐸𝑔 (𝑥) ∈ 𝑃(𝑀) is the projector in𝑀 , which is a projection onto a closed subspace {𝜉 ∈ 𝐻 : 𝑥(𝜉) > 𝑔(𝜉)}.
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Evidently, the mapping 𝑑 (.; 𝑥) is decreasing. If 𝑔, 𝑔𝑛 ∈ P(B), 𝑛 = 1, 2, ..., and 𝑔𝑛 ↓ 𝑔, then
𝐸𝑔 (𝑥) = sup

𝑛≥1
𝐸𝑔𝑛 (𝑥) in 𝑀+, and so, Φ(𝐸𝑔 (𝑥)) = sup

𝑛≥1
Φ(𝐸𝑔𝑛 (𝑥)). Hence, 𝑑 (.; 𝑥) is right-continuous on P(B).

Definition 2.2. For 𝑥 ∈ 𝑆(𝑀), the singular value function, associated with a Maharam trace Φ is the map
Φ(.; 𝑥) : (0,∞) → 𝑆ℎ (B) defined by the equality

Φ(𝑡; 𝑥) := inf{𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ 𝑡 · 1}, 𝑡 > 0. (2.1)

It is clear that Φ(𝑡; 𝑥) ≤ Φ(𝑠; 𝑥) at 𝑠 < 𝑡. In addition, the map Φ(𝑡; 𝑥) has the following useful continuity
property.

Proposition 2.1. If 𝑡𝑛, 𝑡 > 0, 𝑛 = 1, 2, ..., and 𝑡𝑛 ↓ 𝑡, then Φ(𝑡; 𝑥) = sup
𝑛≥1

Φ(𝑡𝑛; 𝑥).

Proof. Let 𝑡𝑛, 𝑡 > 0, 𝑛 = 1, 2, ..., and 𝑡𝑛 ↓ 𝑡. Then

Φ(𝑡; 𝑥) = inf{𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ inf
𝑛≥1

(𝑡𝑛 · 1)}

= inf
{
𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ 𝑡𝑛 · 1 for all 𝑛 ≥ 1

}
= sup

𝑛≥1

{
inf{𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ 𝑡𝑛 · 1}

}
= sup

𝑛≥1
Φ(𝑡𝑛; 𝑥),

i.e. Φ(𝑡; 𝑥) = sup
𝑛≥1

Φ(𝑡𝑛; 𝑥). ▷

Example 2.1. Let 𝑥 = 𝑝 ∈ 𝑃(𝑀) and 𝑔 ∈ P(B). Then
𝑑 (𝑔; 𝑝) = Φ(𝐸𝑔 (𝑝)) = Φ(𝑝), if 𝑔 < 1, and 𝑑 (𝑔; 𝑝) = 0, if 𝑔 ≥ 1. Hence by (1) Φ(𝑡; 𝑝) = 1, if 0 < 𝑡 · 1 ≤
Φ(𝑝), and Φ(𝑡; 𝑝) = 0, if 𝑡 · 1 > Φ(𝑝).

Example 2.2. Let 𝑀 be a finite von Neumann algebra and suppose that 𝑥 =
𝑚∑
𝑗=1
𝛼 𝑗 𝑝 𝑗 , where 𝑝1, . . . , 𝑝𝑚 ∈

𝑃(𝑀) with 𝑝 𝑗 𝑝𝑘 = 0 whenever 𝑗 ≠ 𝑘, and 𝛼1, . . . , 𝛼𝑚 ∈ R+ are such that 𝛼 𝑗 ≠ 𝛼𝑘 whenever 𝑗 ≠ 𝑘. For the
computation of Φ(𝑥), it may be assumed that 𝛼1 > 𝛼2 > . . . > 𝛼𝑚 > 0. If 𝑔 ∈ P(B) and 𝑔 ≥ 𝛼1 · 1, then
clearly 𝑑 (𝑔; 𝑥) = 0. However, if 𝛼2 · 1 ≤ 𝑔 < 𝛼1 · 1, then 𝐸𝑔 (𝑥) = 𝑝1, and so 𝑑 (𝑔; 𝑥) = Φ((𝑝1)). Similarly, if
𝛼3 · 1 ≤ 𝑔 < 𝛼2 · 1, then 𝐸𝑔 (𝑥) = 𝑝1 + 𝑝2, and so 𝑑 (𝑔; 𝑥) = Φ(𝑝1 + 𝑝2) = Φ(𝑝1) +Φ(𝑝2). In general, we have

𝑑 (𝑔; 𝑥) =
𝑗∑︁

𝑖=1

Φ(𝑝𝑖), if 𝛼 𝑗+1 · 1 ≤ 𝑔 < 𝛼 𝑗 · 1 (𝑔 ∈ P(B)),

where 𝑗 = 1, 2, . . . , 𝑚, and 𝛼𝑚+1 = 0.

Define 𝜌𝑘 =
𝑗∑

𝑖=1
Φ(𝑝𝑖) for 𝑗 = 1, 2, . . . , 𝑚. Referring to (2.1), we see that Φ(𝑡; 𝑥) = 0 if 𝑡 · 1 ≥ 𝜌𝑚. Also,

if 𝜌𝑚 > 𝑡 · 1 ≥ 𝜌𝑚−1, then Φ(𝑡; 𝑥) = 𝛼𝑚 · 1, and if 𝜌𝑚−1 > 𝑡 · 1 ≥ 𝜌𝑚−2, then Φ(𝑡; 𝑥) = 𝛼𝑚−1 · 1, and so on.
Hence,

Φ(𝑡; 𝑥) =

𝛼1 · 1, 0 < 𝑡 · 1 ≤ 𝜌1;
𝛼 𝑗 · 1, 𝜌 𝑗 > 𝑡 · 1 ≥ 𝜆 𝑗−1, 2 ≤ 𝑗 ≤ 𝑚 − 1;

0, 𝑡 · 1 > 𝜌𝑚.

Theorem 2.1. Let 𝑥 ∈ 𝑆(𝑀). For all 𝑡 > 0, the singular value function Φ(., 𝑥) admits the characterization

Φ(𝑡; 𝑥) = inf{∥𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1}. (2.2)
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Proof. We fix 𝑡 > 0 and put

𝐺 (𝑥) = {𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ 𝑡 · 1}.

If 𝑔1, 𝑔2 ∈ 𝐺 (𝑥), 𝑒 = 𝑠((𝑔2 − 𝑔1)+), then 𝑔 = 𝑔1 ∧ 𝑔2 = 𝑔1 · 𝑒 + 𝑔2 · (1 − 𝑒) ∈ P(B), at the same time

𝑑 (𝑔; |𝑥 |) = Φ(𝐸𝑔 (𝑥)) = Φ(𝐸𝑔1 (𝑥)) · 𝑒 +Φ(𝐸𝑔2 (𝑥)) · (1 − 𝑒)

≤ 𝑡 · 𝑒 + 𝑡 · (1 − 𝑒) = 𝑡 · 1,

i.e. 𝑔1 ∧ 𝑔2 ∈ 𝐺 (𝑥). Using mathematical induction, we obtain that for any finite set {𝑔𝑖}𝑛𝑖=1 ⊂ 𝐺 (𝑥) the

inclusion holds true
𝑛∧
𝑖=1
𝑔𝑖 ∈ 𝐺 (𝑥). Since the Boolean algebra 𝑃(B) has a countable type, there exists a

sequence {𝑔𝑘}∞𝑘=1 ⊂ 𝐺 (𝑥) for which 𝑔𝑘 ↓ 𝑓 , where

𝑓 = Φ(𝑡; 𝑥) := inf{𝑔 ∈ P(B) : 𝑑 (𝑔; |𝑥 |) ≤ 𝑡 · 1} ∈ 𝑆ℎ (B).

Since 𝑔𝑘 ↓ 𝑓 and for all 𝑘 ∈ N the inequality 𝑑 (𝑔𝑘 ; |𝑥 |) ≤ 𝑡 · 1 is true, then

𝑡 · 1 ≥ 𝑑 (𝑔𝑘 ; |𝑥 |) ↑ 𝑑 ( 𝑓 ; |𝑥 |).

In particular, the inequality is true

Φ(𝐸 𝑓 (𝑥)) = 𝑑 ( 𝑓 ; |𝑥 |) ≤ 𝑡 · 1 i.e. Φ(1 − 𝑒) ≤ 𝑡 · 1,

where 𝑒 = 1 − 𝐸 𝑓 (𝑥) ∈ 𝑃(𝑀). Since |𝑥 |𝑒 ≤ 𝑓 ∈ 𝑆ℎ (B), then 𝑥𝑒 ∈ 𝐸 (𝑀,A). Moreover, using the polar
decomposition 𝑥 = 𝑢 |𝑥 | of the operator 𝑥, we obtain ∥𝑥𝑒∥B = ∥𝑢 |𝑥 |𝑒∥B ≤ ∥|𝑥 |𝑒∥B ≤ 𝑓 . Therefore,

Ψ(𝑡; 𝑥) = inf{∥𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1} ≤ 𝑓 = Φ(𝑡; 𝑥).
To prove the reverse inequality, we set

Λ(𝑥) = {𝑒 ∈ 𝑃(𝑀) : 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1}.

Then, we have Ψ(𝑡; 𝑥) = inf{∥𝑥𝑒∥B : 𝑒 ∈ Λ(𝑥)}. Suppose that the inequality Φ(𝑡; 𝑥) = 𝑓 ≤ Ψ(𝑡; 𝑥) is not
satisfied. Therefore, there exists an 𝑒 ∈ Λ(𝑥) for which the inequality 𝑓 ≤ ∥𝑥𝑒∥B does not hold. In particular,
this means that there exist 0 ≠ 𝑞 ∈ 𝑃(𝑀), 𝜀 > 0, for which the inequalities

|𝑥𝑒𝑞 | ≤ ∥𝑥𝑒𝑞∥B = ∥𝑥𝑒∥B · 𝑞 ≤ 𝑞 𝑓 + 𝜀𝑞.

are true. Therefore, there exists an 𝑒 ∈ Λ(𝑥) for which the inequality 𝑓 ≤ ∥𝑥𝑒∥B does not hold. In particular,
this means that there exist 0 ≠ 𝑞 ∈ 𝑃(𝑀), 𝜀 > 0, for which the inequalities

|𝑥𝑒𝑞 | ≤ ∥𝑥𝑒𝑞∥B = ∥𝑥𝑒∥B · 𝑞 ≤ 𝑞 𝑓 + 𝜀𝑞

are true. Let 𝑞1 = 𝑞𝑔 + 2𝜀 · 𝑞. Consider the element 𝑟 = 𝑠(( |𝑥𝑒 | − 𝑞1)+) from 𝑃(𝑀). From the relations

|𝑥𝑒 |𝑟𝑞 ≥ (𝑞𝑔 + 2𝜀 · 𝑞)𝑞 = 𝑞𝑔 + 2𝜀 · 𝑞 > 𝑞𝑔 + 𝜀 · 𝑞 ≥ |𝑥𝑒𝑞 | = |𝑥𝑒 |𝑞

it follows that |𝑥𝑒 |𝑟𝑞 > |𝑥𝑒 |𝑞, which is impossible.
Thus, the inequality Φ(𝑡; 𝑥) ≤ Ψ(𝑡; 𝑥) is satisfied. Consequently, the equality Φ(𝑡; 𝑥) = Ψ(𝑡; 𝑥) is true. ▷

Recall that for each 𝑥 ∈ 𝑆(𝑀), the support projection of 𝑥 is denoted by 𝑠(𝑥), that is, 𝑠(𝑥) = 1 − 𝑛(𝑥), where
𝑛(𝑥) is the projection onto 𝐾𝑒𝑟 (𝑥). For 𝑡 > 0, define

𝑅𝑡 = {𝑥 ∈ 𝑆(𝑀) : Φ(𝑠(𝑥)) ≤ 𝑡 · 1}.

The following proposition presents a geometric interpretation of the singular value function in terms of what
might be called generalized approximation numbers.

ujmcs.tstu.uz 76

http://ujmcs.tstu.uz


Zakirov B.S.

Proposition 2.2. If 𝑥 ∈ 𝑆(𝑀), then

Φ(𝑡; 𝑥) = inf{∥𝑥 − 𝑦∥B : 𝑦 ∈ 𝑅𝑡 , (𝑥 − 𝑦) ∈ 𝐸 (𝑀,A)}

for all 𝑡 > 0.

Proof. Let 𝑡 > 0 and 𝑥 ∈ 𝑆(𝑀) be fixed. Let 𝑥 = 𝑢 |𝑥 | is the polar decomposition of 𝑥, Φ(𝑡; 𝑥) = 𝑓 and 𝑝 =

𝐸 𝑓 ( |𝑥 |) ∈ 𝑃(𝑀). Defining 𝑦 = 𝑥𝑝, 𝑒 = 1 − 𝑝, it follows that 𝑥 − 𝑦 = 𝑥(1 − 𝑝) = 𝑥𝑒, and so, 𝑥 − 𝑦 ∈ 𝐸 (𝑀,A)
with

∥𝑥 − 𝑦∥B = ∥𝑢𝑒 |𝑥 |𝑒 ∥B = ∥𝑒 |𝑥 |∥B ≤ Φ(𝑡; 𝑥).
Moreover, 𝑠(𝑦) ≤ 𝑝, which implies that

Φ(𝑠(𝑦)) ≤ Φ(𝑝) = Φ(𝐸 𝑓 ( |𝑥 |)) = 𝑑 ( 𝑓 ; |𝑥 |) ≤ 𝑡 · 1.

Consequently,
inf{∥𝑥 − 𝑦∥B : 𝑦 ∈ 𝑅𝑡 , (𝑥 − 𝑦) ∈ 𝐸 (𝑀,A)} ≤ Φ(𝑡; 𝑥).

To obtain the reverse inequality, suppose that 𝑦 ∈ 𝑅𝑡 is such that 𝑥 − 𝑦 ∈ 𝐸 (𝑀,A). Since 𝑥𝑛(𝑦) =
(𝑥 − 𝑦)𝑛(𝑦), it is clear that ∥𝑥𝑛(𝑦)∥B ≤ ∥𝑥 − 𝑦∥B . Furthermore, Φ(1 − 𝑛(𝑦)) = Φ(𝑠(𝑦) ≤ 𝑡 · 1, and so, by
Theorem 2.1 implies that

Φ(𝑡; 𝑥) = inf{∥𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1} ≤ ∥𝑥 − 𝑦∥B .

This shows that
Φ(𝑡; 𝑥) ≤ inf{∥𝑥 − 𝑦∥B : 𝑦 ∈ 𝑅𝑡 , (𝑥 − 𝑦) ∈ 𝐸 (𝑀,A)},

which concludes that proof of the proposition. ▷

In the next theorem, some basic properties of singular value functions are collected.

Theorem 2.2. Let 𝑡 > 0. For all 𝑥, 𝑦 ∈ 𝑆(𝑀), the following hold:

(𝑖). Φ(𝑡; 𝑥) = Φ(𝑡; |𝑥 |) = Φ(𝑡; 𝑥∗) and Φ(𝑡;𝛼𝑥) = |𝛼 |Φ(𝑡; 𝑥) for all 𝛼 ∈ C.
(𝑖𝑖). Φ(𝑡; 𝑥𝑒) = 0 whenever Φ(𝑒) ≤ 𝑡 · 1 for all 𝑒 ∈ 𝑃(𝑀). In particular, Φ(𝑡; 𝑥) = 0 for all 𝑡 · 1 ≥ Φ(𝑠(𝑥)).
(𝑖𝑖𝑖). If |𝑥 | ≤ |𝑦 |, then Φ(𝑡; 𝑥) ≤ Φ(𝑡; 𝑦).
(𝑖𝑣). Φ(𝑡1 + 𝑡2; 𝑥 + 𝑦) ≤ Φ(𝑡1; 𝑥) +Φ(𝑡2; 𝑦) for all 𝑡1, 𝑡2 > 0.
(𝑣). If 𝑥 ∈ 𝐸 (𝑀,A), 𝑡𝑛 > 0, 𝑛 = 1, 2, ..., and 𝑡𝑛 ↓ 0, then

∥𝑥∥B = sup
𝑛≥1

Φ(𝑡𝑛; 𝑥).

Proof. (𝑖). The equality Φ(𝑡; 𝑥) = Φ(𝑡; |𝑥 |) follows directly from the definition of the mapping Φ(𝑡; 𝑥).
Let 𝑥 = 𝑢 |𝑥 | be the polar decomposition of the operator 𝑥. Then |𝑥∗ | = 𝑢 |𝑥 |𝑢∗. Therefore, for 𝑔 ∈ P(B) we

have
𝑑 (𝑔; 𝑥∗) = Φ(𝐸𝑔 (𝑥∗)) = Φ(𝑢𝐸𝑔 (𝑥)𝑢∗) = Φ(𝐸𝑔 (𝑥) = 𝑑 (𝑔; 𝑥).

Consequently, Φ(𝑡; 𝑥) = Φ(𝑡; 𝑥∗).
Finally, for any 𝛼 ∈ C, 𝑡 > 0 we have that

Φ(𝑡;𝛼𝑥) = inf{∥𝛼𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝛼𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1}

= |𝛼 | inf{∥𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1} = |𝛼 |Φ(𝑡; 𝑥).

(𝑖𝑖). If Φ(𝑒) ≤ 𝑡 · 1, then, trivially, 𝑥𝑒(1 − 𝑒) = 0 and Φ(1 − (1 − 𝑒)) ≤ 𝑡 · 1; hence, Φ(𝑡; 𝑥𝑒) = 0 follows
immediately from (2.2).
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(𝑖𝑖𝑖). If |𝑥 | ≤ |𝑦 |, then 𝑑 (𝑔; |𝑥 |) ≤ 𝑑 (𝑔; |𝑦 |) for all 𝑔 ∈ P(B). Hence Φ(𝑡; 𝑥) ≤ Φ(𝑡; 𝑦).

(𝑖𝑣). For all 𝑔1, 𝑔2 ∈ P(B) the following inequality holds

𝐸𝑔1+𝑔2 ( |𝑥 + 𝑦 |) ≤ 𝐸𝑔1 ( |𝑥 |) ∨ 𝐸𝑔2 ( |𝑦 |).

It follows that
Φ(𝐸𝑔1+𝑔2 ( |𝑥 + 𝑦 |)) ≤ Φ(𝐸𝑔1 ( |𝑥 |)) +Φ(𝐸𝑔2 ( |𝑦 |)).

We fix 𝜀 > 0 and set 𝑔1 = Φ(𝑡1; 𝑥), 𝑔2 = Φ(𝑡2; 𝑦) + 𝜀 · 1. Using the inequality Φ(𝐸𝑔2 ( |𝑦 |) ≤ Φ(𝐸Φ(𝑡2;𝑦) ( |𝑦 |)
we have

Φ(𝐸Φ(𝑡1;𝑥 )+Φ(𝑡2;𝑦)+𝜀 ·1 ≤ Φ(𝐸Φ(𝑡1;𝑥 ) ( |𝑥 |)) +Φ(𝐸Φ(𝑡2;𝑦)+𝜀 ·1( |𝑦 |))

≤ 𝑡1 · 1 +Φ(𝐸Φ(𝑡2;𝑦) ( |𝑦 |)) ≤ (𝑡1 + 𝑡2) · 1,

i.e. Φ(𝐸Φ(𝑡1;𝑥 )+Φ(𝑡2;𝑦)+𝜀 ·1 ≤ (𝑡1 + 𝑡2) · 1.
Since Φ(𝑡1; 𝑥) +Φ(𝑡2; 𝑦) + 𝜀 · 1 ∈ P(B), then from the definition of the mapping Φ(𝑡; 𝑥) the following

inequality follows
Φ((𝑡1 + 𝑡2); 𝑥 + 𝑦) ≤ Φ(𝑡1; 𝑥) +Φ(𝑡2; 𝑦) + 𝜀 · 1.

From here, at 𝜀 ↓ 0, we obtain the required inequality

Φ((𝑡1 + 𝑡2); 𝑥 + 𝑦) ≤ Φ(𝑡1; 𝑥) +Φ(𝑡2; 𝑦).

(𝑣𝑖). First we show that for all 𝑞 ∈ 𝑃(B), 𝑥 ∈ 𝐸 (𝑀,A), 𝑡 > 0 the equality Φ(𝑡; 𝑞𝑥) = 𝑞Φ(𝑡; 𝑥) is true.
Because

Φ(𝑡; 𝑞𝑥) = inf{∥𝑞𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑞𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1}

= inf{𝑞∥𝑞𝑥𝑒∥B : 𝑒 ∈ 𝑃(𝑀), 𝑞𝑥𝑒 ∈ 𝐸 (𝑀,A), Φ(1 − 𝑒) ≤ 𝑡 · 1} = 𝑞Φ(𝑡; 𝑞𝑥),

then from the inequality |𝑞𝑥 | ≤ |𝑥 | follows the inequality 𝑞Φ(𝑡; 𝑞𝑥) ≤ 𝑞Φ(𝑡; 𝑥) (see the property (𝑖𝑖𝑖) proved
above).

On the other hand, if 𝑒 ∈ 𝑃(𝑀), 𝑞𝑥𝑒 ∈ 𝐸 (𝑀,A) and Φ(1 − 𝑒) ≤ 𝑡 · 1, then

Φ(𝑡; 𝑥) = 𝑞Φ(𝑡; 𝑥) + (1 − 𝑞)Φ(𝑡; 𝑥) ≤ 𝑞∥𝑞𝑥𝑒∥B + (1 − 𝑞)Φ(𝑡; 𝑥).

Therefore,
𝑞Φ(𝑡; 𝑥) ≤ 𝑞∥𝑞𝑥𝑒∥B ≤ ∥𝑞𝑥𝑒∥B ,

and hence 𝑞Φ(𝑡; 𝑥) ≤ Φ(𝑡; 𝑞𝑥). Thus, the equality is true Φ(𝑡; 𝑞𝑥) = 𝑞Φ(𝑡; 𝑥).
If 𝑥 ∈ 𝐸 (𝑀,A), then 𝑥 · 1 ∈ 𝐸 (𝑀,A), and it follows directly from Proposition 2.1 that Φ(𝑡; 𝑥) ≤ ∥𝑥∥B

for all 𝑡 > 0. In addition, the inequality Φ(𝑡1; 𝑥) ≤ Φ(𝑡2; 𝑥) is true for 0 < 𝑡2 < 𝑡1.
Thus, Φ(𝑡𝑛; 𝑥) ↑ 𝑧 ≤ ∥𝑥∥B as 𝑡𝑛 ↓ 0 for some 0 ≤ 𝑧 ∈ 𝑆ℎ (B).
If 𝑧 ≠ ∥𝑥∥B , then for any 𝜀 > 0 there is 𝑞𝜀 ∈ 𝑃(B), such that

Φ(𝑡𝑛; 𝑥𝑞𝜀) = Φ(𝑡𝑛; 𝑥)𝑞𝜀 ≤ 𝑧𝑞𝜀 < 𝑞𝜀 · ∥𝑥∥B

for all 𝑡𝑛 ∈ (0, 𝜀). From here, by virtue of proposition 2.1, we obtain that

Φ(𝑡𝑛; 𝑥𝑞𝜀) ≤ 𝑧𝑞𝜀 for all 𝑡𝑛 ∈ (0, 𝜀).

Again using proposition 2.1, we have,

Φ({|𝑥𝑞𝜀 | > 𝑧𝑞𝜀}) ≤ Φ({|𝑥𝑞𝜀 | > Φ(𝑡𝑛, 𝑥𝑞𝜀)}) ≤ 𝑡𝑛 · 1
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for all 𝑡𝑛 ∈ (0, 𝜀). Hence, Φ({|𝑥𝑞𝜀 | > 𝑧𝑞𝜀}) = 0. This means that |𝑥𝑞𝜀 | ≤ 𝑧𝑞𝜀 , in particular, ∥𝑥𝑞𝜀 ∥B ≤ 𝑧𝑞𝜀 ,

which is not the case. Thus,
∥𝑥∥B = sup

𝑛≥1
Φ(𝑡𝑛; 𝑥).

▷

Corollary 2.1. For any 𝑥, 𝑦 ∈ 𝐸 (𝑀,A), 𝑡 > 0 the inequality holds

|Φ(𝑡; 𝑥) −Φ(𝑡; 𝑦) | ≤ ∥𝑥 − 𝑦∥B .

Proof. By Theorem 2.2 (𝑖𝑣) we have that

Φ(𝑡1 + 𝑡2; 𝑥) = Φ(𝑡1 + 𝑡2; 𝑦 + (𝑥 − 𝑦)) ≤ Φ(𝑡1; 𝑦) +Φ(𝑡2; 𝑥 − 𝑦) ≤ Φ(𝑡1; 𝑦) + ∥𝑥 − 𝑦∥B .

Similarly,

Φ(𝑡1 + 𝑡2; 𝑦) = Φ(𝑡1 + 𝑡2; 𝑥 + (𝑦 − 𝑥)) ≤ Φ(𝑡2; 𝑥) +Φ(𝑡1; 𝑦 − 𝑥) ≤ Φ(𝑡2; 𝑥) + ∥𝑥 − 𝑦∥B .

Assuming in these inequalities 𝑡1 = 𝑡, 𝑡2 = 0, we obtain

Φ(𝑡; 𝑥) ≤ Φ(𝑡; 𝑦) + ∥𝑥 − 𝑦∥B and Φ(𝑡; 𝑦) ≤ Φ(𝑡; 𝑥) + ∥𝑥 − 𝑦∥B ,

from which it follows that |Φ(𝑡; 𝑥) −Φ(𝑡; 𝑦) | ≤ ∥𝑥 − 𝑦∥B . ▷
The following proposition establishes the relation between ordinal convergence in 𝑆(𝑀) and ordinal

convergence of singular values functions.

Proposition 2.3. If 𝑥𝑛, 𝑥 ∈ 𝑆(𝑀), 𝑛 ∈ N and 0 ≤ 𝑥𝑛 ↑ 𝑥, then Φ(𝑡, 𝑥𝑛) ↑ Φ(𝑡, 𝑥) for all 𝑡 > 0.

Proof. Let 𝑥𝑛, 𝑥 ∈ 𝑆(𝑀) and 0 ≤ 𝑥𝑛 ↑ 𝑥. First, let us show that

𝑑 (𝑔, 𝑥𝑛) ↑ 𝑑 (𝑔, 𝑥), 𝑔 ∈ P(B) (2.3)

We fix 𝑔 ∈ P(B) and put 𝐺𝑔 (𝑥) = {𝜉 ∈ 𝐻 : 𝑥(𝜉) > 𝑔(𝜉)}, 𝐺𝑔 (𝑥𝑛) = {𝜉 ∈ 𝐻 : 𝑥𝑛 (𝜉) > ℎ(𝜉)}, (𝑛 = 1, 2, ...).
Since 𝑥𝑛 ≤ 𝑥𝑛+1, then 𝐺𝑔 (𝑥𝑛) ⊂ 𝐺𝑔 (𝑥𝑛+1). Furthermore, the condition 𝑥𝑛 ↑ 𝑥 imply that 𝐺𝑔 (𝑥) =

∞⋃
𝑛=1

𝐺𝑔 (𝑥𝑛)
and 𝐸𝑔 (𝑥𝑛) ↑ 𝐸𝑔 (𝑥). Hence, by normality of trace Φ,

𝑑 (ℎ; 𝑥𝑛) = Φ(𝐸𝑔 (𝑥𝑛)) ↑ Φ(𝐸𝑔 (𝑥)) = 𝑑 (ℎ; 𝑥).

Since
Φ(𝑡, 𝑥𝑛) ≤ Φ(𝑡, 𝑥𝑛+1) ≤ Φ(𝑡, 𝑥)

for all 𝑛 = 1, 2, . . . and 𝑡 > 0, it is clear that Φ(𝑡, 𝑥𝑛) ↑𝑛 and that

sup
𝑛≥1

Φ(𝑡, 𝑥𝑛) ≤ Φ(𝑡, 𝑥)

for all 𝑡 > 0. For the proof of the reverse inequality, it may be assumed that 𝑡 > 0 is such that Φ(𝑡, 𝑥𝑛) < 𝑔,
for all 𝑛 and some 𝑔 ∈ P(B). Hence 𝑑 (𝑔, 𝑥𝑛) ≤ 𝑡 · 1 for all 𝑛. Then by (2.3), it follows that 𝑑 (𝑔, 𝑥) ≤ 𝑡 · 1.
Consequently, Φ(𝑡, 𝑥) < 𝑔. This suffices to show that Φ(𝑡, 𝑥) ≤ sup𝑛≥1 Φ(𝑡, 𝑥𝑛). The proof is complete. ▷

Conclusion

In this paper, the Maharam trace Φ on a von Neumann algebra 𝑀 with values in complex Dedekind complete
vector lattice is considered. For an operator 𝑥 from the ∗-algebra 𝑆(𝑀) of measurable operators affiliated with
𝑀 , the singular value function of 𝑥, associated with such a traceΦ are determined. The main properties of these
singular value functions, similar to classical singular value functions of measurable operators with respect
numerical trace, are studied.
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