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ABSTRACT

Let M be a finite von Neumann algebra, let S(M) be the =-algebra of measurable operators
affiliated with M. Maharam traces @ on a von Neumann algebra M with values in complex
Dedekind complete vector lattices are considered. The singular value function of operators
from S(M), associated with such a trace ® are determined. The main properties of these
singular value functions, similar to classical singular value functions of measurable operators,
are studied.
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Introduction

The modern theory of noncommutative measure and integration finds its roots in the seminal papers of
LE.Segal [1] and J.Dixmier [2]. The introduced by I.E.Segal noncommutative L!-space associated with an
exact normal semiinfinite trace is the main object of many investigations both in the theory of noncommutative
integration and in its multiple applications ( for example,[3], [4], [5], [6]). Detailed information on the current
state of this theory is presented in [7], [8], [9], [10] and [11].

The existence of the center-valued traces in finite von Neumann algebras makes it natural to construct the
theory of integration for traces with values in the complex Dedekind complete vector lattice Fc = F @ i F. If the
von Neumann algebra is commutative, then construction of Fc-valued integration for it is the component part
for the investigation of the properties of order continuous maps of vector lattices. The theory of such mappings
is described rather thoroughly in the monograph [12]. An import role among these mappings is played by
operators with the Maharam property. LP-spaces associated with such operators are profound examples of
Banach-Kantorovich lattices.

In [13], [14] and [15] a theory of non-commutative integration for traces ® with values in the complex
Dedekind complete vector lattice Fc was constructed. In particular, for Maharam traces ®, with the help of
the locally measure topology in the algebra S(M) of all measurable operators affiliated with the von Neumann
algebra M, the Banach-Kantorovich space LP (M, ®) c S(M),1 < p < co was constructed and properties of
such spaces are considered.
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The singular value function, associated with a Maharam trace

This article is devoted to a study of singular value function of operators from S(M), associated with a
Maharam trace ®. Also dominated properties of these singular value functions, similar to classical singular
value functions of measurable operators, are proved.

In studying the x-algebra S(M, 7) of all T-measurable operators, the notion of singular value functions plays
an important role. There is an intimate relationship between the properties of 7-measurable operators and the
properties of the singular value function (see for example ([11], Chapter 3)). For x € S(M, 7), the singular
value function u(x) is defined by

u(t;x) =inf{s > 0: 7(E(5,00)(x)) <t}, >0,

where E 5 ) (x) is the spectral projection of the operator x corresponding to the interval (s, o). The following
expression is classical:

u(t;x) =inf{||lxpllpr : p € PM), T(1-p) <t}, x e S(M, 1), t >0,

where P(M) is the set of all projectors in von Neumann algebra M.

In the present article, we will study the corresponding notion for traces ® : M — F¢. More precisely, let
M be a finite von Neumann algebra, with center Z(M), on the Hilbert space H. Let 8 be a commutative
von Neumann algebra, *-isomorphic to a von Neumann subalgebra A in Z(M), and let ® be a S(B)-valued
Maharam trace on M. Denote by P (B) the set of all f € Sj,(B), for which the support s(f) = 1.

For x € S(M), the singular value function, associated with a Maharam trace @ is the map ®(x) : (0, 0) —
Sn(B) defined by the equality

®(t;x) :=inf{g € P(B) : ®(Eg(x)) <t-1}, 1> 0,

where E,(x) € P(M) is the projector in M, which is a projection onto a closed subspace {£ € H : x(£) > g(£)}.
For all ¢ > 0, the singular value function ®(x) admits the characterization

@O(t;x) = inf{||xe||q: e € P(M), xe € E(M,A), ®D(1-¢) <1-1},

where
EM,A) = {x € S(M) : |x| < a forsome a € S+(ﬂ)}

is a Banach-Kantorovich space with S, (A)-valued norm

|x||a = inf{a € S;(A) : |x| < a}.

We use the terminology and results of the theory of von Neumann algebras [8], [9], the theory of measurable
operators [1], [10], [11] and of the theory of Dedekind complete vector lattices and Banach-Kantorovich spaces
theory [12].

1. Preliminaries

Let H be a Hilbert space over the field C of complex numbers, let B(H) be the *-algebra of all bounded
linear operators on H, and 1 be the identity operator on H. Let M be a von Neumann algebra acting on H, let
Z(M) be the center of M and P(M) = {p € M : p> = p = p*} be the lattice of all projectors in M. We denote
by P, (M) the set of all finite projectors in M.

A densely-defined closed linear operator x (possibly unbounded) affiliated with M is said to be measurable
if there exists a sequence {p,}>, € P(M) such that p, 11, p,(H) € D(x) and p;; =1~ p, € Pyin(M) for
every n =1,2,... (here D(x) is the domain of x).
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The set S(M) of all measurable with respect to M operators is a complex x-algebra with unit element 1, with
respect to the operations of strong sum, strong product and the #-operation of taking adjoints (see [1]). The
von Neumann algebra M is a %-subalgebra of S(M). The set of all self-adjoint elements in S(M) is denoted by
Sn(M), which is a real linear subspace of S(M).

Let x € S(M) and x = u|x| be the polar decomposition, where |x| = (x*x)%, u is a partial isometry in B(H).
Thenu € M and |x| € S(M).Ifx € S;,(M) and {E;(x)} are the spectral projections of x, then { E,(x)} € P(M).

Let M be a commutative von Neumann algebra. Then M admits a faithful semi-finite normal trace 7,
and M is x-isomorphic to the s-algebra L*(Q, X, u) of all bounded complex measurable functions with the
identification almost everywhere, where (Q, X, u) is a measurable space. In addition, u(A) = 7(xa), A € X.
Moreover, S(M) = L%(Q, X, i), where L°(Q, =, u) is the *-algebra of all complex measurable functions with
the identification almost everywhere [1].

Let M be an von Neumann algebra, let F' be an Dedekind complete vector lattice, and let Fc = F @ iF be a
complexification of F. If z = @ +iB € Fc, @, B € F, thenZ := @ — iB, and |z| := sup{Re(e'2) : 0 < 6 < 27}
(see[12], 1.3.13).

An Fc-valued trace on the von Neumann algebra M is a linear mapping ® : M — F¢ given ®(x*x) =
O (xx*) > 0 for all x € M. It is clear that ®(My) C F, ®(M,) C Fy, ={a € F : a > 0}. A trace ® is said to
be faithful if the equality ®(x*x) = 0 implies x = 0, normal if ®(x,) T ®(x) for every xo,x € Mp, x4 T x.

If M is a finite von Neumann algebra, then its center-valued trace @y, : M — Z(M) is an example of a
Z(M)-valued faithful normal trace.

Let A be a separating family of finite normal numerical traces on the von Neumann algebra M, C* = [] C.,
TEA

where C, = C for all T € A. Then ®(x) = {7(x)}rea is also an example of an faithful normal C*-valued trace
on M.

Let us list some properties of the trace ® : M — Fc.

Proposition 1.1. ([13]) (i) Let x,y,a,b € M. Then
O (x*) = P(x), P(xy) = D(yx), (|x*]) = D(|x]),
|@(axb)| < |lalla bl a P (Ix]);
(if) If @ is a faithful trace, then M is finite;
(iii) If M is a finite von Neumann algebra, then ®(®Dys(x)) = ©(x) for all x € M;
(iv) ®(|x + y|) < ®(|x]) + ©(|y|) forall x,y € M.

The trace ® : M — F possesses the Maharam property if for any x € M,, 0 < f < ®(x), f € F, there
exists a positive y < x such that ®(y) = f. A faithful normal F-valued trace @ with the Maharam property is
called a Maharam trace (compare with [12], III, 3.4.1). Obviously, any faithful finite numerical trace on M is
a C-valued Maharam trace.

Let us give another examples of Maharam traces. Let M be a finite von Neumann algebra, let A be a
von Neumann subalgebra in Z(M), and let T : Z(M) — A be an injective linear positive normal operator. If
f € S(A) is a reversible positive element, then ®(T, f)(x) = fT(Dys(x)) is an S(A)-valued faithful normal
trace on M. In addition, if T(ab) = aT(b) forall a € A, b € Z(M), then ®(T, f) is a Maharam trace on M.

Note that if 7 is a faithful normal finite numerical trace on M and dim(Z(M)) > 1, then ®(x) = r(x)1is a
Z(M)-valued faithful normal trace. In addition, @ does not possess the Maharam property (see [13]).

Let F have an order unit 1r. Denote by B(F) the complete Boolean algebra of unitary elements with
respect to 1, and let Q be the Stone representation space of the Boolean algebra B(F). Let Coo(Q) be
the order complete vector lattice of all continuous functions a : Q — [—oco, +oo] such that a~!({#c0}) is a
nowhere dense subset of Q. We identify F' with the order-dense ideal in Co(Q) containing algebra C(Q) of
all continuous real functions on Q. In addition, 1 is identified with the function equal to 1 identically on Q
([12], 1.4.4).
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The next theorem gives the description of Maharam traces on von Neumann algebras.

Theorem 1.1. ([13]) Let ® be an Fc-valued Maharam trace on a von Neumann algebra M. Then there exists
a von Neumann subalgebra A in Z(M), a x-isomorphism  from A onto the x-algebra C(Q)c, an injective
positive linear normal operator & from Z(M) onto A with &(1) =1, > = &, such that

1) ©(x) = (DY (E(Dp(x))) forall x € M;

2) ®(zy) = ®(zE(y)) forall z,y € Z(M);

3) ®(zy) =¥ (2)@(y) forallz € A,y € M.

Due to Theorem 1.1, the x-algebra 8 = C(Q)c is *-isomorphic to a von Neumann subalgebra in Z(M).
Therefore B is a commutative von Neumann algebra, and =-algebra Ce, (Q)c is identified with «-algebra S(B).
It is clear that the *-isomorphism ¢ from A onto B can be extended to a #-isomorphism from S(A) onto
S(8B). We denote this mapping also by .

Let @ be an S(8)-valued Maharam trace on a von Neumann algebra M. Next we will need the concept of a
central extension of a von Neumann algebra from [16].

A set {z;} ey of pairwise orthogonal nonzero central projections from M will be called a partition of unity
1,if sup jes%i = 1. Following [16], denote by E (M, A) the set of all those operators x € S(M) for which there
exists a partition of unity {z;};e; € P(A) andaset {x;};c; C M suchthatxz; = x;z; forall j € J. Itis clear
that M c E(M,A),S(A) Cc E(M,A) and E(M, A) is an *-subalgebra of S(M) with respect to the natural
operations in S(M). E(M, A) is called the central extension of the algebra M with respect to the subalgebra
A cC Z(M).

Proposition 1.2. ([17], Proposition 3.4) For the operator x € S(M) the following conditions are equivalent:
(i) x € E(M, A);
(ii) there exists a € S+(A) such that |x| < a.

According to proposition 1.2, for each x € E(M, A), an element ||x||# = inf{a € S, (A) : x| < a} from
S, (A) is defined. The following theorem follows from the results of [17].

Theorem 1.2. (E(M,A), || - ||a) is a Banach-Kantorovich space over Sy (A).

It follows directly from Theorem 1.2 that the mapping ||x||g = ¥ (||x||#) defines an S}, (B)-valued norm on
E(M, A), with respect to which E(M, A) becomes a Banach-Kantorovich space over Sy (8).

2. Spectral distribution functions and singular value functions, associated with a Maharam
trace

Let B be a commutative von Neumann algebra *-isomorphic to the von Neumann subalgebra (A in the center
Z(M)of M and ® : M — S(B) be the Maharam trace on M (see Theorem 1.1). We suppose that ®(1) = 1.

For each f € §,(8), we denote by s(f) the support of f,i.e. s(f) =1g —sup{e € P(B) : fe =0}. Itis
clear that s(®(1)) = 1. Let £ (8) denote the set of all f € S, (8B) for which the support s(f) = 1g. It is clear
that each element f € P(B) is invertible in the algebra S, (8), i.e. there exists an element g € S;,(B) such
that f - g =1g,and g € P(B).

Definition 2.1. Let 0 <xe S(M) and geP(B). The S(B)-valued spectral distribution function
d(.;x): P(B) — S,(B) is defined by
d(g;x) = ®(Eg(x)),

where E,(x) € P(M)is the projector in M, which is a projection onto a closed subspace {¢ € H : x(£) > g(£)}.

ujmes.tstu.uz


http://ujmcs.tstu.uz

Zakirov B.S.

Evidently, the mapping d(.;x) is decreasing. If g, g, € P(B), n=1,2,..., and g, | g, then
Eq(x) = sup Eg, (x) in My, and so, ®(E,(x)) = sup ®(Eg,(x)). Hence, d(.; x) is right-continuous on P (8).

n>1 n>1

Definition 2.2. For x € S(M), the singular value function, associated with a Maharam trace @ is the map
O(.;x) : (0,00) — §,(B) defined by the equality

O(r;x) =inf{g e P(B) : d(g;|x]) <t-1}, r>0. 2.1

It is clear that ®(¢;x) < ®(s;x) at s < ¢. In addition, the map ®(¢;x) has the following useful continuity
property.
Proposition 2.1. If t,,t >0,n=1,2,..., and t, |t, then ®(t;x) =sup O(t,;x).

n>1

Proof. Let 7,,,t >0,n=1,2,..., and ¢, | t. Then

O(1;x) = inf{g € P(B) : d(g; x]) < inf(rn - 1)}

= inf {g eP(B):d(g;|x]) <t,-1 forall n> 1}
= sup {inf{g eP(B):d(g lx]) <t 1}} = sup ®(1,; x),
n>1 nx1
ie. ©(t;x) =supd(t,;x). >
n>1
Example 2.1. Letx =p € P(M) and g € P(8B). Then
d(g;p) = P(Eq(p)) =®(p),if g <1,and d(g;p) =0,if g >1. Henceby (1) ®(t;p) =1, if 0<z-1<
O(p), and ©(t; p) =0,if -1 > O(p).

m

Example 2.2. Let M be a finite von Neumann algebra and suppose that x = 3 a;p;, where p1,...,pm €
Jj=1

P(M) with p;pr =0 whenever j # k, and aq,...,a, € R are such that a; # ax whenever j # k. For the

computation of ®(x), it may be assumed that @1 > a2 > ... > a,, > 0. If g € P(B) and g > a; - 1, then
clearly d(g;x) = 0. However, if a - 1 < g < @1 - 1, then E4(x) = p1, and so d(g;x) = ®((p1)). Similarly, if
@3-1< g <ap-1,then Eg(x) = p1 + p2,and so d(g;x) = ®(p1 + p2) = ®(p1) + D(p2). In general, we have

J
d(g;x)= Y ®(pi), if aj-1<g<a;-1(geP(B)),
i=1

where j=1,2,...,m, and ;1 =0.
Define py = Z @d(p;) for j =1,2,...,m. Referring to (2.1), we see that ®(z;x) =0 if -1 > p,,. Also,

if ppy>t- 1>pm 1, then ®(t;x) = a,, - 1, and if p,,_1 >¢-1 > p,_2, then ®(¢;x) = ;-1 - 1, and so on.
Hence,
a1-1, 0<t-1<pq;
O(tx)=q -1, p;j>t-1>22;_1, 2<j<m-1;
0, t-1>pp.

Theorem 2.1. Let x € S(M). For all t > 0, the singular value function ®(., x) admits the characterization

O(r;x) = inf{||xe||g : e € P(M), xe € E(M,A), ®(1-¢) <r-1}. 2.2)
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Proof. We fix t > 0 and put
Gx)={g e P(B): d(glxl) <r-1}.

Ifg1,80 € G(x), e=5((g2—g1)+), then g=g1 Ago=g1-e+gr-(1-¢) € P(B), at the same time
d(g; 1) = D(Eg(x)) = D(Eg, () - € + D(Egy(x)) - (1 - )
<t-e+t-(1-e)=t-1,

i.e. g1 A g2 € G(x). Using mathematical induction, we obtain that for any finite set {g;}!; C G(x) the
inclusion holds true /n\ gi € G(x). Since the Boolean algebra P($) has a countable type, there exists a
sequence {gx};"; C Gl(:)g) for which gx | f, where
f=0(;x) =inf{g € P(B) : d(g;|x|) <t-1} € Sp(B).
Since g | f and for all k € N the inequality d(gg; |x|) <t -1istrue, then
t-12d(gk; |xD) Td(f;1x]).
In particular, the inequality is true
QEs(x))=d(f;|x]) <t-1ie ®(1-e)<t-1,
where e =1-Ef(x) € P(M). Since |x|e < f € S,(8B), then xe € E(M,A). Moreover, using the polar
decomposition x = u|x| of the operator x, we obtain ||xe||g = ||u|x|e||g < |||x|ells < f. Therefore,
Y(t;x) =inf{||xe||lg: e € P(M), xe e E(IM,A), ®(1-¢) <t-1} < f = D(1;x).
To prove the reverse inequality, we set
Alx)={ee P(M):xe€c E(IM,A), D(1—-¢) <t-1}.

Then, we have W(f;x) = inf{||xe||s : e € A(x)}. Suppose that the inequality ®(t;x) = f < W(t;x) is not
satisfied. Therefore, there exists an e € A(x) for which the inequality f < ||xe||g does not hold. In particular,
this means that there exist 0 # g € P(M), & > 0, for which the inequalities

|xeq| < |lxeql|s = |lxel|ls - g < qf +&q.

are true. Therefore, there exists an e € A(x) for which the inequality f < ||xe|| g does not hold. In particular,
this means that there exist 0 # g € P(M), € > 0, for which the inequalities

lxeq| < lixeqlls = llxellz - g < qf +&q

are true. Let g1 = gg + 2¢ - ¢q. Consider the element r = s((|xe| — g1)+) from P(M). From the relations

|xelrq > (qg +2&-q)g=qg+2&-q >qg+&-q = |xeq| = |xe|q

it follows that |xe|rg > |xe|g, which is impossible.
Thus, the inequality ®(z#;x) < W(t; x) is satisfied. Consequently, the equality ®(z;x) = W(¢;x) is true. >

Recall that for each x € §(M), the support projection of x is denoted by s(x), thatis, s(x) = 1 — n(x), where
n(x) is the projection onto Ker(x). For t > 0, define

Ri={x e S(M) : ®(s(x)) <t-1}.

The following proposition presents a geometric interpretation of the singular value function in terms of what
might be called generalized approximation numbers.
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Proposition 2.2. [fx € S(M), then
O(1;x) =inf{llx = yllg : y € Ry, (x—y) € E(M, A)}
forallt > 0.

Proof. Let 7 > 0 and x € S(M) be fixed. Let x = u|x| is the polar decomposition of x, ®(¢;x) = f and p =
E¢(|x|) € P(M). Defining y = xp, e =1 — p, it follows thatx — y = x(1 - p) = xe, and so,x —y € E(M,A)
with

llx = yllg = lluelxle || s = llelx|llg < P(#;x).

Moreover, s(y) < p, which implies that

D(s(y)) < @(p) = P(Ef(Ix))) =d(f;|x]) <t-1.
Consequently,
inf{l|lx - yllg:y € Ry, (x —y) € E(M, A)} < O(;x).

To obtain the reverse inequality, suppose that y € R, is such that x —y € E(M,A). Since xn(y) =
(x = y)n(y), it is clear that ||xn(y)||s < ||x — y||g. Furthermore, ®(1 —n(y)) = ®(s(y) <t -1, and so, by
Theorem 2.1 implies that

®(1;x) = inf{||xe||g : e € P(M), xe e E(IM,A), ®(1-¢) <t-1} < |Ix -yl 5.
This shows that
O(t;x) <inf{llx - yllg:y € Ry, (x —y) € E(M,A)},
which concludes that proof of the proposition. >
In the next theorem, some basic properties of singular value functions are collected.
Theorem 2.2. Lett > 0. For all x,y € S(M), the following hold:

(i). ®(t;x) = D(t; |x|) = D(t;x*) and O(¢t; ax) = |a|D(t;x) forall @ € C.

(if). ®(t;xe) = 0whenever ®(e) <t -1 foralle € P(M). Inparticular, ®(t;x) =0 forall t -1 > ®(s(x)).
(iii). If |x| < |y|, then ®(t;x) < D(t; y).

(iv). ©(t1 +12;x+y) < D(t1;x) + D(tp; ¥) forallti,tp > 0.

). If xe EIM,A), t, >0, n=1,2,..., and t, |0, then

llx|lg = sup @(t,; x).

n>1

Proof. (i). The equality ®(¢;x) = ®(z;|x|) follows directly from the definition of the mapping ®(¢;x).
Let x = u|x| be the polar decomposition of the operator x. Then |x*| = u|x|u*. Therefore, for g € P(B) we
have
d(g;x") = ®(Eg(x7)) = ®(uEg(x)u”) = (Eg(x) = d(g; x).

Consequently, ®(¢; x) = O(z; x¥).
Finally, for any @ € C, ¢t > 0 we have that

O(r; ax) = inf{||axe||g : e € P(M), axe € E(M,A), ®(1-¢) <t-1}
= |a|inf{||xe||g : e € P(M), xe € E(M,A), ®(1—e) <t-1} = |a|D(t; x).

(if). If ®(e) <t -1, then, trivially, xe(1 —¢) =0 and ®(1 - (1-¢)) <1 -1; hence, ®(t;xe) = 0 follows
immediately from (2.2).
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(iii). If |x| < |y|, then d(g;|x|) < d(g;|y|) forall g € P(B). Hence ®(t;x) < O(t;y).

(iv). For all g1, g2 € P(B) the following inequality holds

Eg ig,(Ix+y]) < Eg (Ix]) V Eg,(|y]).
It follows that
D(Eg g, (|x +y]) < D(Eg, (Ix])) + P(Eg,(|y])).

We fix & > 0 and set g1 = ®(11;,x), g2 = P(t2;y) + & - 1. Using the inequality ®(Eg, (|y|) < P(Ea(1y;y) (1y])
we have
(I)(E<D(t1;x)+(1>(z2;y)+s-1 < (I)(E(D(tl,'x)(lxl)) + (I)(ECD(tz;y)+8-1(|y|))

S 11 T+ D(Eqry;y) (I¥]) < (11 +12) - 1,

ie. (D(E(D(ll;x)+<l>(t2;y)+s-1 < (tl + IZ) -1
Since ®(t1;x) + O(t2;y) + -1 € P(B), then from the definition of the mapping ®(¢;x) the following
inequality follows
D((t1+12);x+y) < D(t1;x) + D(12;y) +& - 1.

From here, at ¢ | 0, we obtain the required inequality

O((t1 +12);x +y) < D(t1;x) + D(12;y).

(vi). First we show that for all ¢ € P(8), x € E(M,A), t >0 the equality ®(z;gx) = g®d(¢;x) is true.
Because
D(1; gx) = inf{||gxe||g : e € P(M), gxe € E(M,A), ®(1—-¢) <t-1}

= inf{q||gxe|lg : e € P(M),qxe € E(M,A), ®(1—¢) <t-1} = q®P(1; gx),

then from the inequality |gx| < |x| follows the inequality g®(z; gx) < g®(¢;x) (see the property (iii) proved
above).
On the other hand, if e € P(M), gxe € E(M,A) and ®(1-¢) <¢-1, then

O(1;x) = q@(1;x) + (1 - ¢)®(1;x) < qllgxe||s + (1 - q)D(z;x).

Therefore,
q®(1;x) < qllgxel|s < [lgxel s,

and hence g®(z;x) < D(¢; gx). Thus, the equality is true @ (z; gx) = gD(z;x).

If xe E(M,A),then x-1€ E(M,A), and it follows directly from Proposition 2.1 that ®(z;x) < ||x||s
for all r > 0. In addition, the inequality ®(¢1;x) < ®(tp;x) istrue for 0 < tp < #1.

Thus, ®(7,;x) Tz < ||x|lg as t, | 0 for some 0 < z € §,(B).

If z # ||x|| 8, then for any & > O there is g, € P(8B), such that

O(1n;xqs) = P(tn;X)qe < 29 < qs - |Ixll3
for all 7,, € (0, ). From here, by virtue of proposition 2.1, we obtain that
@ (1n;xqs) < z2q, forall 1, € (0,¢).
Again using proposition 2.1, we have,
O({lxqs| > 2q}) < P({Ixqe| > P(tn,xq¢)}) < tn -1
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for all t,, € (0, ). Hence, ®({|xqg .| > zq}) = 0. This means that [xqg.| < zq, in particular, ||xg¢|lg < zq«,
which is not the case. Thus,
llxl| 3 = sup @(n; x).

nx1
>
Corollary 2.1. Forany x,y € E(M,A), t >0 the inequality holds
|D(5;x) = @(£; y)| < [lx - ylls.
Proof. By Theorem 2.2 (iv) we have that

O (11 +12;%) = D(t1 + 125y + (x = ¥)) < D(t1;y) + P(12;x —y) < P(11;y) +[Ix — yll 8.
Similarly,

O (11 +12;y) = D(t1 + 12,0+ (y — X)) < D(12;x) + D(t1;y — x) < D(tz;x) + [|Ix — yll 5.
Assuming in these inequalities ¢; = ¢, t, = 0, we obtain

O(r;x) < D(1;y) + [lx — yllg and (5;y) < @(£;x) + [|x -yl 3,

from which it follows that |®(#;x) — ®(£; )| < ||lx — yl|s. >

The following proposition establishes the relation between ordinal convergence in S(M) and ordinal
convergence of singular values functions.

Proposition 2.3. If x,,,x € S(M), n € N and 0 < x,, T x, then ®(t,x,) T ®(t,x) forallt > 0.
Proof. Let x,,,x € S(M) and 0 < x,, T x. First, let us show that
d(g,xn) Td(g,x),8 € P(B) (2.3)
We fix g € P(B) and put Gg(x) ={& € H:x(§) > 8(&)}, Gglxn) ={& € H:x,(&) > h(£)}, (n=1,2,...).
Since x,, < Xp41,then Gg(x,) C Gg(xu41). Furthermore, the condition x,, T x imply that G4 (x) = U Gg(x,)
n=1
and E¢(x,) T Eg(x). Hence, by normality of trace ®,
d(h;xp) = ®(Eg(xn)) T P(Eg(x)) = d(h;x).
Since
O(t,x,) < P(t,x,41) < DP(1,x)
foralln=1,2,...and t > 0, it is clear that ®(¢,x,) T, and that
sup @(t,x,) < D(t,x)
n>1
for all ¢+ > 0. For the proof of the reverse inequality, it may be assumed that # > 0 is such that ®(¢,x,) < g,
for all n and some g € P(B). Hence d(g,x,) <t-1 for all n. Then by (2.3), it follows that d(g,x) <1t-1.
Consequently, ®(z,x) < g. This suffices to show that ®(z,x) < sup, ., ®(¢,x,). The proof is complete. >

Conclusion

In this paper, the Maharam trace ® on a von Neumann algebra M with values in complex Dedekind complete
vector lattice is considered. For an operator x from the %-algebra S(M) of measurable operators affiliated with
M, the singular value function of x, associated with such a trace @ are determined. The main properties of these
singular value functions, similar to classical singular value functions of measurable operators with respect
numerical trace, are studied.
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